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Abstract
Analysis of the failure mechanism of inclined coal pillars is one of the complicated issues. The wide variability of dip angles 
of inclined coal pillars makes it more complex. The asymmetric stress distribution and the tendency of shearing along the 
bedding planes make the inclined coal pillars to behave differently from the flat coal pillars. There is a need for in-depth 
investigation of the failure mechanism for addressing the instability problems of the inclined coal pillars. Most of the lit-
erature quantifies only the magnitudes of the mean principal stresses by classical statistics. As the stress is a second-order 
tensor having six independent components, the classical statistics is not appropriate to calculate the mean and variability of 
the principal stresses at the onset of failure of the pillars. In this paper, a comprehensive analysis is done to understand the 
complex failure mechanism of the inclined coal pillar using numerical modelling as well as tensorial statistics and validated 
the results with field measurement data of failure cases. The failure mechanism is analysed by quantification of the char-
acteristics of the inclined coal pillars by the principal-stress magnitude and its orientation, induced at the time of failure. 
Since the spatial variability of the magnitudes and orientations of the induced principal stresses exist within the inclined coal 
pillars, the mean induced principal stresses 

(

�1, �2 and �3

)

 are used to quantify the stress states within it. The failure stress 
states within the coal pillars having different dip angles are generated by the calibrated elasto-plastic numerical modelling 
with the ubiquitous joint model. Several statistical parameters are calculated to quantify the stress-tensor variability and the 
correlation among the stress-tensor components. It is found that the correlation coefficients among the shear components 
increase significantly with the increase of the coal pillar dip angle. Therefore, the inclined coal pillars are highly susceptible 
to shear failure. The magnitudes, as well as orientations of the mean induced principal stresses within the coal pillars obtained 
through numerical modelling, are quantified by the tensorial as well as classical statistics. It is found that the magnitude of 
the mean major induced principal stress 

(

�1

)

 at the time of failure, i.e. the strength of the pillar decreases with the increase 
of the dip angles. The validation of the results with the actual stress measurement data shows that all the failed pillar cases 
are correctly predicted by the tensorial statistical approach whereas the classical statistical approach does not effectively 
predict the actual failed condition of the pillars. The study would help to characterise the behaviour of the inclined pillars 
and address the instability issues for safe and efficient mining of inclined coal seams.
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List of Symbols
IPS	� Induced principal stresses within the pillar
T	� Stress tensor matrix
T	� Mean stress tensor matrix
σ, τ	� Normal and shear components of stress tensor
σ1, σ2, σ3	� Major, intermediate and minor principal 

stresses
�1, �2, �3	� Mean major, intermediate and minor principal 

stresses
ΩS	� Variance matrix of individual tensor 

component
N	� Numbers of hexahedral elements within the 

numerical model of the coal pillar
�	� Azimuth counted from the north (i.e. Y-axis) in 

the clockwise direction
�	� Plunge counted with respect to the horizontal 

plane and is positive for upward direction
�	� Mean azimuth
�	� Mean plunge
l, m, n	� Direction cosine along X, Y and Z axis
̃ti	� Stress vector of the ith element
�̃t	� Mean stress vector
Σt	� Covariance matrix
ΩEd	� Euclidean dispersion
tr()	� Trace of a matrix
det()	� Determinant of a matrix
|| ||	� Frobenius norm or Euclidean norm
x̃	� Direction vector
�̃ 	� Mean direction vector
�H , �h	� Major and minor horizontal in situ stresses
�v	� Vertical in situ stresses
H	� Depth of cover
S	� Flat coal pillar strength
σc	� Intact strength of the coal
h	� Coal pillar height
w	� Coal pillar width
Ti	� Half-vectorisation of stress tensor matrix 

vech
(

Ti
)

Ωg	� Generalised variance
ΩEff 	� Effective variance
Ωtotal	� Total variance
MCSS	� Mohr–Coulomb strain softening

1  Introduction

The analysis of the stress field during the excavation is 
essential to assess the stability of the underground struc-
tures. As the rockmass is in a stressed condition due to the 
existence of the in situ stresses, the excavation causes the 
redistribution of the in situ stress field. It changes not only 
the magnitude but also the orientation of the stress tensor. 
Along with the magnitude, the orientation of the stress 

tensor is a major factor for the underground structures sta-
bility assessment (Arthur et al. 1980; Zou and Kaiser 1990; 
Martin 1997; Martin and Kaiser 1999; Kaiser et al. 2001; 
Diederichs et al. 2004; Shen et al. 2018; Bai et al. 2019; Yao 
et al. 2019; Xu and Arson 2015; Li et al. 2019; Yan et al. 
2020). As the stability is evaluated by the principal stresses 
induced due to the excavation, it is required to estimate their 
magnitudes and the orientation in and around the excavation.

The induced principal stresses (IPS) show spatial vari-
ability in the magnitude and the orientation. The variability 
of stress is significant in coal pillars. When the coal pillars 
are on the verge of failure, the stress is more at the core and 
gradually decreases toward the edges from the core (Das 
et al. 2019a, b). Due to the spatial variability in the stresses, 
the difficulties are faced during the calculation of the mag-
nitude and orientation of the mean IPS 

(

�1, �2 and �3

)

 
at the onset of failure of the coal pillar. The mean IPS 
(

�1, �2 and �3

)

 not only represents the statistical character-
istics of the stress data but also describe the overall stress 
conditions in a coal pillar (Cantieni and Anagnostou 2009; 
Koptev 2013; Siren et al. 2015; Han et al. 2016). Though 
numerical modelling is found to be a suitable tool to evaluate 
the stress tensor in the coal pillar, it gives the magnitude and 
orientation of the IPS at each zone/element. Since stress is a 
second-order tensor having six independent components, the 
classical statistics, used for the scalar or vector quantities, 
cannot be applied to calculate the mean, variance and other 
statistical parameters (Gao and Harrison 2018a, 2019; Feng 
et al. 2019). The classical statistics separately calculate the 
magnitude and orientation of the IPS. Therefore, the inter-
relation between the magnitude and the orientation of the 
IPS are not addressed by classical statistics. The variability 
of the stress within the coal pillar is quantified by the disper-
sion, which is usually measured by the standard deviation for 
scalar or vector data in classical statistics (Gao and Harrison 
2018b; Lei and Gao 2019). Hence, the tensorial statistics 
are required to analyse the failure mechanism for dealing 
with the stress–tensor components for quantification of the 
variability and the mean of the IPS within the coal pillars.

The behaviour of inclined coal pillars is dissimilar and 
more complex than the flat coal pillars due to the variability 
of dip angles, asymmetric stress distribution and the ten-
dency of shearing along the bedding planes. For address-
ing the instability problems of inclined coal pillars, there 
is a need to investigate the failure mechanism of inclined 
coal pillars. The tensorial statistics found to be the right 
tool for the analysis of the failure mechanism of inclined 
coal pillars. Gao and Harrison (2017, 2018a, b, 2019) stud-
ied the variability in the measurement of the in situ stresses 
by tensorial statistics. They found that the classical statis-
tics are not appropriate for the analysis of the stress tensor 
because it considers the principal stresses magnitudes and 
their orientations as independent quantities and ignores the 
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inter-relation between them. The mean calculated by the 
classical statistics does not maintain the orthogonality of 
the principal stresses. They showed the procedures to cal-
culate the mean principal stresses by the tensorial statistics. 
A multivariate distribution model of the second-order stress 
tensor was proposed in their study to quantify the variability 
of stress tensors. As the study is performed on the in situ 
stress data, it does not illustrate the magnitudes, orientations 
and variability of the IPS due to the excavation. However, 
this approach can be extended to understand the complex 
nature of stress condition induced in the inclined coal pillars 
at the onset of failure.

Das et al. (2019b) showed that the distribution of stress in 
the flat coal pillar is almost symmetric but it is highly asym-
metric for the inclined coal pillar. They found that the mag-
nitude of the mean major IPS 

(

�1

)

 in the flat coal pillars is 
very close to the mean vertical stress component of the stress 
tensor. When the dip angle of the coal pillar increases, the 
magnitude of the mean vertical stress component decreases 
and the shear components along the bedding planes increase. 
The shearing characteristics arise due to the tendency of the 
rockmass to slide along the inclined bedding planes. But, 
their study does not quantify the orientation of the mean 
major IPS 

(

�1

)

 within the coal pillar at the time of failure.
Most of the literature (Wang et al. 2017, 2020; Mohan 

et al. 2001; Seo et al. 2016; Wu et al. 2020; Jaiswal and 
Shrivastva 2009; Shabanimashcool and Li 2013; Mandal 
et al. 2020) mainly emphasised the magnitude of the IPS 
on the coal pillars, induced due to the extraction of the coal 
seam. In their study, the mean of the IPS was calculated by 
classical statistics. The orientation or directional aspects of 
the IPS were not mentioned in these studies. Limited litera-
ture is found which studied the orientation of the IPS within 
the coal pillars or the surrounding rockmass due to the exca-
vation (Foroughi 1996; Eberhardt 2001; Maritz 2015; Ptáček 
2015). Eberhardt (2001) studied the rotation of the principal 
stresses ahead of the tunnel face during the excavation. He 
carried out three-dimensional finite element modelling to 
analyse the near-field stress during the sequential excava-
tion of the tunnel. He found that the damage in the sur-
rounding rockmass depends on the amount of stress rotation. 
He considered the rotation of the principal stresses during 
sequential advancement at some particular points ahead of 
the tunnel face. His study does not describe the procedure 
to calculate the magnitude and orientation of the mean IPS.

It is found from the literature that the inclined coal pillar 
behaves differently than the flat coal pillar as the inclined 
rock strata show spatial variability in the stress and com-
plex directional failure characteristics (Das et al. 2019a, 
b). Thus, the study of the failure mechanism and the stress 
state within the inclined coal pillars are needed for a better 
understanding of its characteristics. The literature does not 

suitably describe the quantification of the magnitude and 
the orientation of the mean IPS 

(

�1, �2 and �3

)

 within the 
inclined pillars on the verge of failure. In this paper, the 
characteristics of the inclined pillars are studied by quan-
tifying the magnitude and the orientation of the mean IPS 
(

�1, �2 and �3

)

 at the time of failure in which the mean major 
IPS 

(

�1

)

 represents the strength of the coal pillar. The elasto-
plastic numerical simulation with the ubiquitous joint con-
stitutive model is carried out by FLAC3D (Itasca 2017) to 
generate the stress tensor within the inclined pillar at the 
time of failure. The ubiquitous joint constitutive model is 
capable to simulate the failure behaviour of the rock strata 
along the inclined bedding planes. The values of the stress 
components within the inclined coal pillar are obtained at 
each zone/element of the numerical model. The mean IPS 
(

�1, �2 and �3

)

 within the inclined coal pillars are calcu-
lated from the array of the stress tensor data by the tensorial 
as well as classical statistics. The spatial variability of the 
stress tensor, the correlation and the covariance among the 
stress–tensor elements are calculated for the coal pillars of 
different dip angles. A comparison is carried out between the 
results obtained by the tensorial as well as classical statistics. 
The change of the magnitude and the orientation of the mean 
IPS 

(

�1, �2 and �3

)

 are shown for the different inclinations 
of the coal pillar. The validation of the failure mechanism 
of the inclined pillars is carried out by the failed coal pil-
lar cases where the induced stress is measured in different 
underground coal mines.

2 � Mean and Variability of the IPS 
by Classical Statistics

In three dimensions, the stresses in an object are represented 
by the second-order tensor of a 3 × 3 matrix as given below:

where τ and σ are the shear and normal components, 
respectively. In this stress tensor, the components �xy = �yx , 
�xz = �zx and �yz = �zy . Thus, the tensor T becomes sym-
metric. The eigenvectors and eigenvalues of tensor T give 
the orientation and the magnitude of the principal stresses, 
respectively, in an object (Brady and Brown 1993). At the 
onset of failure of the inclined coal pillar, the stress tensor 
(T) is not similar at each location of the inclined coal pillar. 
It results in different magnitude and the orientation of the 
IPS within the inclined pillar. The stress tensor within the 
inclined pillar can be denoted as follows:

(1)T =

⎡

⎢

⎢

⎣

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

⎤

⎥

⎥

⎦

,
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Here, i denotes the hexahedral zones as shown in Fig. 1. 
The eigenvalues and the eigenvectors give the magnitude 
and the orientation of the IPS, respectively, at each block. 
The mean of the IPS can be calculated by classical statistics 
as follows:

where �1 , �2 and �3 are the mean major, mean intermediate 
and mean minor IPS respectively within the inclined coal 
pillar; �i

1
 , �i

2
 and �i

3
 are the major, intermediate and minor 

IPS respectively in the ith block of the inclined coal pillar.
In classical statistics, the variances of the stress–tensor 

component are calculated independently by processing each 
component. In the Cartesian coordinate system, the mean 
values of the shear components are zero by definition. Equa-
tion (4) shows the dispersion of individual tensor component 
with respect to its mean.

(2)Ti =

⎡

⎢

⎢

⎣

�
i
xx

�
i
xy

�
i
xz

�
i
yy

�
i
yz

Symmetry �
i
zz

⎤

⎥

⎥

⎦

.

(3)�1 =
1

N

i=N
∑

i=1

�
i
1
; �2 =

1

N

i=N
∑

i=1

�
i
2
; �3 =

1

N

i=N
∑

i=1

�
i
3
,

(4)

ΩS =
1

N − 1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

i=N
∑

i=1

�

�
i
xx
− �xx

�2
i=N
∑

i=1

�

�
i
xy

�2 i=N
∑

i=1

�

�
i
xz

�2

i=N
∑

i=1

�

�
i
yy
− �yy

�2 i=N
∑

i=1

�

�
i
yz

�2

Symmetry
i=N
∑

i=1

�

�
i
zz
− �zz

�2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where N is the number of the block within the inclined coal 
pillar.

The overall dispersion of the stress tensor about its mean 
is not quantified by the Eq. (4). The variance in the magni-
tude of the IPS is expressed by the following equation:

The orientation of the IPS is quantified by the azimuth 
and plunge. The azimuth and the plunge can be represented 
by a point on the surface of a sphere. The azimuth 
� ∈ [0, 2�] is counted from the north (i.e. Y-axis) in a clock-
wise direction. The plunge � ∈

[

−
�

2
,
�

2

]

 is counted with 
respect to the horizontal plane and is positive for upward 
direction. In Cartesian coordinate, the orientation is repre-
sented by the direction cosines. The direction cosines are 
obtained from the azimuth and the plunge by the following 
equation:

where l, m and n signify the direction cosine along X-, Y- 
and Z-axis, respectively. These also denote the unit vector of 
a line along X-, Y- and Z-axis, respectively. The orientations 
of the IPS at each block of the inclined coal pillar (Fig. 1) 
are obtained by the eigenvector of the stress tensor Ti. The 
mean orientation of the IPS is calculated as follows (Davis 
1986; Fisher et al. 1993):

where li, mi and ni are the direction cosine of the IPS in the 
ith block of the inclined coal pillar; l , m and n are the mean 
direction cosine of the IPS in the inclined coal pillar and 

R =

�

�

∑i=N

i=1
li
�2

+
�

∑i=N

i=1
mi

�2

+
�

∑i=N

i=1
ni
�2

 measures 

the concentration of the spherical data.
After calculating the mean direction cosines of the IPS, 

the mean azimuth 
(

�

)

 and the mean plunge 
(

�

)

 are obtained 
as follows:

(5)

var
(

�1

)

=
1

N

∑
(

�
i

1
− �1

)2
;var

(

�2

)

=
1

N

∑
(

�
i

2
− �2

)2
;var

(

�3

)

=
1

N

∑
(

�
i

3
− �3

)2
.

(6)l = cos � sin� ;m = cos � cos� ; n = sin �,

(7)l =

∑i=N

i=1
li

R
;m =

∑i=N

i=1
mi

R
;n =

∑i=N

i=1
ni

R
,

T
1 T

2 T
3

T
N

T
i

Ti = Stress tensor of ith block of inclined coal pillar

θ

Inclined coal pillar

Fig. 1   Schematic diagram of the inclined coal pillar having different 
stress tensor within it



3267Investigation of Failure Mechanism of Inclined Coal Pillars: Numerical Modelling and Tensorial…

1 3

The spherical variance of the orientation data of the IPS 
is expressed by the following equation:

where N is the number of data points.

3 � Mean and Variability of the IPS 
by Tensorial Statistics

As per the tensorial statistics, the stress should be analysed 
in the common Cartesian coordinate in the Euclidean space. 
In Euclidean space, the arithmetic mean between two points 
lies at the mid-point of the line joining the two points. 
Euclidean mean stress is calculated by averaging each tensor 
component. Euclidean mean stress tensor 

(

T
)

 within the 
inclined coal pillar can be written as follows (Walker et al. 
1990):

(8)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜑 =

⎧

⎪

⎨

⎪

⎩

mod
��

2𝜋 + tan−1
�

l∕m
��

, 2𝜋
�

if m ≥ 0

𝜋 + tan−1
�

l∕m
�

if m < 0

𝜃 = sin−1
�

n
�

.

(9)var(�, �) =
(

1 −
R

N

)

,

The eigenvectors and the eigenvalues of the matrix T 
give the orientations and the magnitudes of the mean IPS 
(

�1, �2 and �3

)

 , respectively.
As the matrix Ti is symmetric, the half-vectorisation 

gives a column vector which consists of six components of 
the stress tensor (Seber 2007). The half-vectorisation can be 
written by the following expression:

The mean stress vector �̃t can be obtained from Eq. (10) 
as follows:

The covariance matrix of the six stress components are 
as follows (Johnson 2002):

(10)

T =

1

N

i=N
�

i=1

T
i
=

1

N

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

i=N
∑

i=1

�
i
xx

i=N
∑

i=1

�
i
xy

i=N
∑

i=1

�
i
xz

i=N
∑

i=1

�
i
yy

i=N
∑

i=1

�
i
yz

Symmetry
i=N
∑

i=1

�
i
zz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

�xx �xy �xz

�yy �yz

Symmetry �zz

⎤

⎥

⎥

⎦

.

(11)̃
t
i= vech

(

T
i
)

=
[

�
i
xx

�
i
xy

�
i
xz

�
i
yy

�
i
yz

�
i
zz

]T
.

(12)�̃t= vech
(

T

)

=
[

�
xx

�
xy

�
xz

�
yy

�
yz

�
zz

]T
.

(13)

Σt =
1

N − 1

i=N
�

i=1

�

̃ti − �̃t

��

̃ti − �̃t

�T

,

=
1

N − 1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

var
�

�xx

�

cov
�

�xx , �xy
�

cov
�

�xx , �xz
�

cov
�

�xx , �yy
�

cov
�

�xx , �yz
�

cov
�

�xx , �zz
�

var
�

�xy

�

cov
�

�xy , �xz
�

cov
�

�xy , �yy
�

cov
�

�xy , �yz
�

cov
�

�xy , �zz
�

var
�

�xz

�

cov
�

�xz , �yy
�

cov
�

�xz , �yz
�

cov
�

�xz , �zz
�

var
�

�yy

�

cov
�

�yy , �yz
�

cov
�

�yy , �zz
�

Symmetry var
�

�yz

�

cov
�

�yz , �zz
�

var
�

�zz

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=
1

N − 1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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�
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�
i
xx
− �xx
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�
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�
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�

�

�
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⎥
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The variability of the stress tensor is measured by the 
Euclidean dispersion and the multivariate dispersion. In 
multivariate statistics, the dispersion of the stress–tensor 
matrix is quantified by three ways i.e., total variation, gen-
eralized variance and effective variance.

The Euclidean dispersion 
(

ΩEd

)

 of a matrix is written as 
follows:

where || || is the Frobenius norm or Euclidean norm (Horn 
2013).

The total variation 
(

Ωtotal

)

 , generalized variance 
(

Ωg

)

 and 
effective variance 

(

ΩEff

)

 of a stress tensor are given by the 
following equations (Peña and Rodrı́guez 2003):

where tr() is the trace of a matrix, det() is the determinant of 
a matrix, p is the dimension of a matrix. For 3-D cases, the 
dimension of the stress–tensor matrix is 3.

4 � Design of Numerical Modelling

The complete stress tensor (all components of stress tensor) 
at the onset of failure of the coal pillars having different 
dip angles is generated by simulating the compressive test-
ing of the inclined coal pillars. The numerical simulation 
is performed to obtain the stress–strain curve under similar 
conditions to the uniaxial compressive strength (UCS) in 
a universal testing machine (UTM) at the laboratory. The 
coal pillars are uniaxially compressed between the upper 
and the lower rock formation of the coal pillar which serve 
the purpose of platens analogous to the platens of a UTM. 
A full coal pillar is simulated for each dip angle to under-
stand the stress conditions at the onset of failure of a pil-
lar. The upward and downward movements of the platens 
are allowed during the UCS testing at the laboratory. In the 
numerical modelling, the boundary conditions represent a 
similar condition of the UCS testing in a UTM. Most of 
the published papers used roller boundary conditions at the 
lateral boundaries for the simulation of an inclined pillar 
(Lorig and Cabrera 2013; Ma et al. 2016; Jessu et al. 2018; 
Jessu and Spearing 2019; Garza-Cruz et al. 2019). Lorig 
and Cabrera (2013) suggested to simulate the symmetry of 

(14)ΩEd =
1

N

N
∑

i=1

‖

‖

‖

Ti − T
‖

‖

‖

2

,

(15)Ωtotal = tr
(

Σt

)

,

(16)Ωg = det
(

Σt

)

,

(17)Ωeff =
1
2
p(p+1)

√

Ωg,
the inclined coal pillars either by keeping the boundaries 
far enough to avoid its influence on the results or using the 
periodic boundary condition. The periodic boundary condi-
tions assume infinite arrays of pillars. Thus, the periodic 
boundary conditions are applied at the lateral boundaries and 
the bottom of the model is fixed along the z direction. Mizzi 
et al. (2020) discussed the implementation of the periodic 
boundary conditions in numerical modelling. At the top of 
the model, a constant compressive velocity of 10–5 m/s is 
applied to move the upper and the lower strata along the 
vertical direction as shown in Fig. 2 (Das et al. 2017, 2019b; 
Mandal et al. 2008).

4.1 � Constitutive Models of Rockmass used 
in Numerical Simulation

The presence of bedding planes plays a major role in the 
anisotropic characteristics of the coal measure rocks. The 
inclined rock strata have the shear failure propensity along 
the bedding planes. This characteristic of the inclined rock 
strata is suitably simulated by the ubiquitous joint model. 
The failure modes simulated by this constitutive model 
are (a) rock matrix failure by shear and tension and (b) the 
sliding failure along the bedding planes (Das et al. 2017, 
2019b). The failure characteristics of the rock matrix and 
bedding planes are simulated independently in the numerical 
modelling (Das et al. 2019b) by incorporating the directional 
failure criterion for anisotropic characteristics of bedding 
planes within the elasto-plastic rockmass failure criterion.

The coal pillar is modelled by the Mohr–Coulomb con-
stitutive model with strain softening (MCSS) for matrix 

Coal seam: Strain Softening 
ubiquitous joint model

Roof and floor strata:
Ubiquitous joint model

10-5 m/s

Inclined
coal pillar

Elastic
platen

Elastic
platen

Fig. 2   Constitutive models used in numerical modelling
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failure which is coupled with the ubiquitous joint model for 
sliding along the bedding planes. The upper and the lower 
rock formation up to fifteen metres (i.e. five times the coal 
pillar’s height) are modelled by assigning the elasto-plastic 
MC model along with the ubiquitous joints model. The 
elastics model is considered for the rest of the strata which 
resembles the stiff platens of a UTM. Figure 2 illustrates the 
constitutive models of the rockmass used in the numerical 
simulation of the UCS testing on the pillars with the width-
to-height ratio of 3.5. The height and width of the pillar as 
shown in Fig. 2 are considered as 3.0 m and 10.5 m, respec-
tively. The cohesion, friction angle, direction of dip and dip 
angle of the existing bedding planes are the input parameters 
of the ubiquitous joint model. In this constitutive model, the 
failure along the bedding planes and the rock matrix failure 
are checked separately during each iteration step and accord-
ingly, the stress states are updated in the numerical models. 
The stress state within the inclined coal pillar is analysed at 
the onset of failure to quantify their characteristics.

4.2 � Determination of Rockmass Properties 
from the Intact Rock Properties

The proper estimation of the required input parameters 
determines the accuracy of the numerical simulation. For 
the simulation of underground excavation, the intact rock 
properties found from the laboratory testing cannot be used 
directly as it does not represent the rockmass at actual field 
conditions. The proper conversion of laboratory tested intact 
rock properties to rockmass properties is needed for effective 
numerical modelling of field conditions (Das et al. 2017, 
2019b; Mandal et al. 2008).

The various input parameters required for the numerical 
simulation by MCSS with ubiquitous joint constitutive mode 
are (a) elastic constants, i.e. Poisson’s ratio and Young’s 
modulus, (b) cohesions and friction angles (peak and resid-
ual values), (c) post-peak characteristics of the rock matrix, 
i.e. strain-softening parameters, (d) in situ stresses and (e) 
properties of the bedding planes, i.e. dip angle, dip direction, 
friction angle and cohesion. Das et al. (2017, 2019a, b) sug-
gested to consider the values of bedding planes friction angle 
and its cohesion as 24° and 0.18 MPa, respectively for the 

Table 1   Intact rock properties

Cgsst coarse-grained sandstone, Fgsst fine-grained sandstone, Mgsst medium-grained sandstone, UCS uniaxial compressive strength, BTS Bra-
zilian tensile strength, Poisson’s ratio of the rock strata is considered as 0.25. The coal pillar is simulated for the Salarjung coal seam as high-
lighted in bold and italics

Rock type Thickness (m) Young’s modulus (GPa) Density (kg/m3) UCS (MPa) BTS (MPa)

Cgsst 4.23 3.7 2210 24 1.6
IA seam 1.07 1.8 1580 22.1 2.3
Shale 0.69 2.3 1580 19.5 1.3
Cgsst 3.52 3.7 2200 24 1.7
Carbonaceous shale 0.6 1.7 1500 21.1 1.41
Cgsst 3 2.85 2195 18.88 1.72
Fgsst 0.72 5.2 2440 49.6 6.9
Cgsst 5.28 3.5 2140 15.31 1.64
Fgsst 2.89 4.1 2270 24.8 2.5
Cgsst 0.85 2.4 2190 15.6 1.83
I seam 1.3 1.9 1580 24.5 2.4
Cgsst 17.6 3.53 2246 23.13 2.54
II seam 5.08 1.8 1580 22.5 2.4
Mgsst 13.51 2.72 2203 22.97 2.67
Fgsst 0.32 3.9 2310 34.1 3.7
LB1 seam 0.45 2 1580 20.1 2.4
Mgsst 9.29 3.6 2210 23.83 2.02
IIIB seam 1.25 2.0 1580 18.9 2.4
Carbonaceous shale 13.07 4.0 2138 14.45 1.33
IIIA seam 1.2 2.0 1580 25 2.4
Cgsst (immediate roof) 8.26 5.3 2286 21.36 2.02
Salarjung coal seam (coal pillar) 7.45 2.0 1580 18.9 1.26
Cgsst (floor) 50 3.3 2190 18.5 1.23
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coal measures strata in Indian geomining conditions. These 
values are used to simulated the shearing characteristics of 
bedding planes by the ubiquitous joint model. The intact 
properties of the laboratory scale rock samples are shown 
in Table 1 which are converted to the rockmass properties 
by the Sheorey’s rockmass failure criterion (Sheorey 1997). 
The internal friction angle and the cohesion for the rockmass 
are calculated by this failure criterion. Bieniawski RMR 
(Bieniawski 1976) is used in this criterion to estimate the 
rockmass properties by converting the laboratory strength 
properties of intact rock.

Sheorey’s rockmass failure criterion (Sheorey 1997) is 
written as follows:

where σ1 is the tri-axial strength (MPa); σ3 is the confining 
stress (MPa); σc is the compressive strength (MPa); σt is 
the tensile strength (MPa); b is equal to 0.51 which is con-
stant in the failure criterion obtained from triaxial test data, 
and RMR is the Bieniawski Rock Mass Rating (Bieniawski 
1976). The subscript m and i in the above equations repre-
sent the rockmass and the intact rock, respectively.

The failure envelop of the rockmass is expressed by the 
Eq. (20) where τ is the shear strength of the rockmass (MPa), 
σ is the normal stress (MPa), �0m is the coefficient of fric-
tion of the rockmass, �0m is the internal friction angle of the 
rockmass.

where

(18)�1m = �cm(1 +
�3m

�tm

)bm ,

(19)

�cm = �cie
(
RMR−100

20
)

�tm = �tie
(RMR−100)
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⎫
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⎪
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⎪

⎪

⎭

,
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σ

σtm

)cm

,

(21)�sm =

(
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b
bm
m

(

1 + bm
)1+bm

)1∕2

,

(22)�om =
τ2
sm

(

1 + bm
)2

− σ2
tm

2�smσtm
(

1 + bm
) ,

Various researchers (Kushwaha et al. 2010; Mandal et al. 
2008; Das et al. 2017, 2019b) used this non-linear failure 
criterion for successful simulation of underground coal 
mining-related problems.

4.3 � Consideration of In Situ Stresses

The failure of a coal pillar significantly depends on the 
in situ stresses conditions. The mean in seam horizontal 
in situ stress is predicted by Sheorey (1994). The value of 
the major (σH) and minor (σh) components of the horizontal 
in situ stresses (MPa) are obtained as follows:

where υ is the Poisson’s ratio, H is the depth of cover (m), β 
is the coefficient of thermal expansion (/oC), E is the Young’s 
modulus (GPa), G is the geothermal gradient (oC/m).

The vertical in situ stress is calculated as follows:

Equation (24) has good agreement with the in situ stress 
measurement data (Sheorey et al. 2001). The mean value 
of the in situ horizontal stress of Indian coal measures rock 
is calculated by putting the values of G = 3 × 10–2 °C/m, 
ν = 0.25, E = 2 GPa, β = 0.00003/°C as per Sheorey et al. 
(2001). Thus, Eq. (24) can be written as follows:

Equations  (25) and (26) are used to calculate in  situ 
stresses which are the input parameters for the numerical 
simulation. These equations have successfully been used in 
different studies (Mohan et al. 2001; Kushwaha and Baner-
jee 2005; Singh et al. 2011; Mandal et al. 2008; Kushwaha 
et al. 2010; Das et al. 2017, 2019b) to simulate the practical 
coal mining problems.

(23)
cm = �

0.9
0m

�tm

�sm

,

�0m = tan�0m.

(24)�H = �h =
�

1 − �

�v +
�EG

1 − �

(H + 1000),

(25)�v = 0.025H.

(26)�H = �h = 2.4 + 0.01H.

Table 2   Rate of cohesion and internal friction angle drop with 
respect to plastic shear strain

Plastic shear strain Cohesion (MPa) Internal 
friction angle 
(deg)

0.0 0.23 42.15
0.06 0.01 37
0.08 0.0 35
0.1 0.0 35
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4.4 � Calibration of MCSS Parameters 
for the Numerical Simulation

UCS testing of pillars with the different width-to-height 
ratio is simulated to calibrate and generate suitable MCSS 
parameters, i.e. cohesion and internal friction angle drop 
with respect to the plastic strain. The zone size of the coal 
pillar is kept as 0.5 m × 0.5 m × 0.5 m in the numerical mod-
els. The calibration of the MCSS parameters for the coal 
seam is carried out with this zone size. The zone sizes along 
the x and y directions of the lower and upper strata are also 

kept as 0.5 m × 0.5 m × 0.5 m. But, the zone size along the 
z-direction of the lower and upper strata is varied with the 
ratio 0.8 and 1.1, respectively, to make denser zones near 
to the coal seam. Several trial numerical models are run to 
find proper MCSS parameters so that the values of pillar 
strength obtained by the numerical simulation are near to 
the values obtained by the empirical strength formula for 
different width-to-height ratio. The pillar strength formula 
as given in Eq. (27) (Sheorey et al. 1987; Sheorey 1992) is 
used to calibrate the MCSS parameters.
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Fig. 3   Comparison between the strength obtained by the numerical modelling and by the empirical formula for calibration of MCSS parameters
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where S is the strength of the flat coal pillar (MPa), σci is 
the laboratory strength of the coal sample (MPa), h is the 
coal pillar height (m), w is the coal pillar width (m), H is 
the depth cover (m).

(27)S = 0.27�cih
−0.36 +

(

H

250
+ 1

)(

w

h
− 1

)

,
Table 2 shows the calibrated MCSS parameters. Figure 3 

shows the comparison between the strength obtained by 
the empirical formulation and by the numerical simulation 
studies. The R2 value, i.e. the coefficient of determination 
between the numerically and empirically obtained pillar 
strength is 0.94 as shown in Fig. 3b. The well-calibrated 
input parameters are used for the simulation of actual field 
conditions and the parametric study.
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Fig. 5   Major IPS (σ1) and vertical stress vs. axial strain curve of the coal pillar for a Dip 0°, b Dip 10°, c Dip 20°, d Dip 30° and e Dip 40°
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5 � Parametric Study

After calibration of the MCSS parameters, the parametric 
study is carried out by varying dip angles of the coal pil-
lars from 0° to 40° at an interval of 10° for the pillars of 
width-to-height ratio 3.5. Figure 4 shows the grid of the 
numerical modelling of the incline coal pillars having the 
height and width as 3.0 m and 10.5 m, respectively. The 
numerical models are simulated as per the rock formations 
of the Shanthikhani Mine, one of the inclined mine of Sin-
gareni Collieries Company Limited (SCCL), India as shown 
in Table 1. The numerical UCS test is performed by the 
calibrated MCSS parameters to obtain the failure stress state 
within the inclined coal pillars. This parametric study helps 
to quantify the effects of the dip of the pillars on the stress 
state within the pillar.

6 � Results of Numerical Modelling

Figure 5 illustrates the stress–strain curve obtained during 
the loading process of the pillar in numerical modelling. In 
this figure, the major IPS (σ1) and the vertical stress within 
the inclined coal pillar are averaged by the classical statistics 
at each iteration step and plotted with the corresponding 
axial strain. It is obtained from this figure that the differ-
ence between the mean major IPS 

(

�1

)

 and the mean verti-
cal stress is less in the case of a flat coal pillar. But, as the 
inclination of the pillar increases, the difference in magni-
tude between the mean major IPS 

(

�1

)

 and the mean vertical 

stress with a pillar increases. From this phenomenon, it can 
be anticipated that the direction of the mean major IPS 

(

�1

)

 
gradually deviates from the vertical axis as the inclination 
of the pillar increases.

The analysis is done at the onset of the failure of the pil-
lar, i.e. when the stresses reach the peak. At this stage, the 
stress state is not uniform within the coal pillar. Figure 6a 
shows that at the middle of the pillar, the magnitude of the 
major IPS (σ1) is high and it gradually decreases towards 
the edges of the pillar. It is depicted from Fig. 6b, c that 
two hexahedral zones at different locations in the inclined 
coal pillar have different orientations of the IPS though 
their magnitudes are approximately equal. It suggests that 
the IPS show spatial variability within the inclined coal pil-
lar in respect of magnitude as well as orientation. From the 
results of the numerical modelling, the stress tensor at each 
hexahedral zone of the inclined coal pillars is extracted to 
calculate the magnitude and the orientation of the IPS at 
each hexahedral zone.

The orientation of the IPS at each hexahedral zone of the 
coal pillar is represented by the point on the surface of a unit 
sphere. MATLAB codes are written to plot the directional 
data on the surface of the three-dimensional unit sphere. 
Figures 7, 8a and 9a show the direction of the IPS in the coal 
pillars having different dip angles at the onset of the failure. 
The dip of the inclined pillar is along the south direction 
and the rise side of the pillar is along the north direction. 
It is obtained from Fig. 7 that the points which denote the 
orientation of the major IPS (σ1) are concentrated at the pole 
of the unit sphere in the case of the pillar with dip angle 0°. 
It indicates that the direction of the major IPS (σ1) at the 

Fig. 6   Contours of the major 
IPS [σ1] (Pa) in the coal pillar of 
the inclination 40° and the vari-
ation of the orientation of the 
principal stresses within it
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onset of failure of the flat pillar is along the vertical axis, 
i.e. perpendicular to the flat pillar. But as the inclination of 
the coal pillar increases, the points are shifted from the pole 
towards the equatorial plane in the north direction which is 
the direction of the rise side of the inclined pillar. In Figs. 8a 

and 9a, the intermediate (σ2) and minor (σ3) IPS are scattered 
in the equatorial plane in the case of a flat pillar. It indicates 
that the intermediate (σ2) and minor (σ3) IPS act in the flat 
pillar along the horizontal direction. Therefore, the IPS in 
the flat coal pillar maintains the orthogonality. To comply 

Fig. 7   Direction of the major 
IPS (σ1) in the coal pillar with 
respect to the dip of the coal 
pillar
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with the orthogonality, the intermediate (σ2) and minor (σ3) 
IPS within the inclined coal pillar deviate from the equato-
rial plane as shown in Figs. 8 and 9, respectively. The quan-
tification of the mean IPS 

(

�1, �2 and �3

)

 will provide a clear 
picture of the stress conditions within the inclined pillar.

7 � Determination of the Magnitudes 
of the Mean IPS

The magnitudes of the mean IPS within the coal pillar of 
different dip angles are quantified by classical and tensorial 
statistics as given below:

Fig. 8   Direction of the interme-
diate IPS (σ2) in the coal pillar 
with respect to the dip of the 
coal pillar
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7.1 � Calculation of by Classical Statistics

Equation (3) is used to calculate the mean IPS 
(

�1, �2 and �3

)

 
by the classical statistics. Figures 10, 11 and 12 show the 
histogram of the IPS obtained by the classical statistics. It 
is obtained from these figures that the magnitudes of the 
mean major IPS 

(

�1

)

 at the time of failure, i.e., the strength 

of the pillar decrease with the increase of the coal pillar 
dip angle. Tables 3, 4 and 5 show the descriptive statistics 
of the IPS within the inclined pillars at the time of failure 
obtained by the classical statistics. It is found from these 
tables that the standard deviations of magnitudes of all the 
three IPS are minimum for inclined coal pillars of dip 40°. 
The magnitudes of the IPS within the inclined coal pillars at 

Fig. 9   Direction of the minor 
IPS (σ3) in the coal pillar with 
respect to the dip of the coal 
pillar
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Fig. 10   Histogram of major IPS [σ1] (MPa) within the inclined coal pillars of different dip angle at the time of failure
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Fig. 11   Histogram of intermediate IPS [σ2] (MPa) within the inclined coal pillars of different dip angle at the time of failure
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the onset of failure show the positively skewed distribution 
as shown in Figures 10, 11 and 12. As the skewness value 
of the major IPS (σ1) is more for the pillar of dip angle 0°, 
the distribution of the major IPS (σ1) is comparatively more 
skewed in the case of the flat pillar. Similarly, the skewness 
values of intermediate (σ2) and minor (σ3) IPS are more for 
the pillar of dip angle 40°.

7.2 � Calculation by Tensorial Statistics

After obtaining the stress tensor at each hexahedral zone 
within the inclined coal pillar, the tensorial statistics is 
applied to estimate the mean values of the IPS. The mean 

Dip 00 Dip 100 Dip 200

Dip 300 Dip 400

Mean = 1.95
Std. Dev. = 1.813
N = 1,764 

Mean = 1.8
Std. Dev. = 1.612
N = 1,764 

Mean = 1.72
Std. Dev. = 1.696
N = 1,764 

Mean = 1.86
Std. Dev. = 1.813
N = 1,764 

Mean = 1.33
Std. Dev. = 1.415
N = 1,764 

Fig. 12   Histogram of minor IPS [σ3] (MPa) within the inclined coal pillars of different dip angle at the time of failure

Table 3   Statistical analysis of the major IPS (σ1) in the inclined coal 
pillars of different dip angle by classical statistics

Major induced principal stress (σ1)

Dip 0° Dip 10° Dip 20° Dip 30° Dip 40°

Mean (MPa) 9.96 8.86 7.58 5.67 4.35
Median (MPa) 7.44 6.56 5.35 5.76 4.99
Mode (MPa) 6.23 6.74 2.08 0.03 11.17
Std. deviation (MPa) 8.60 8.11 7.27 4.09 3.21
Variance (MPa2) 74.06 77.80 72.57 29.79 21.44
Skewness 0.75 0.60 0.46 0.40 0.45
Kurtosis − 1.34 − 1.15 − 0.79 − 1.23 − 1.09

Table 4   Statistical analysis of the intermediate IPS (σ2) in the 
inclined coal pillars of different dip angle by classical statistics

Intermediate induced principal stress (σ2)

Dip 0° Dip 10° Dip 20° Dip 30° Dip 40°

Mean (MPa) 2.40 2.28 2.40 2.56 2.02
Median (MPa) 1.88 1.76 1.64 2.07 1.52
Mode (MPa) 1.29 1.29 1.12 − 0.11 2.35
Std. deviation (MPa) 2.05 2.05 2.29 2.23 2.05
Variance (MPa2) 4.21 4.36 5.17 5.08 4.11
Skewness 0.50 0.60 0.66 0.36 0.74
Kurtosis − 1.13 − 0.95 − 0.90 − 1.36 − 0.61

Table 5   Statistical analysis of the minor IPS (σ3) in the inclined coal 
pillars of different dip angle by classical statistics

Minor induced principal stress (σ3)

Dip 0° Dip 10° Dip 20° Dip 30° Dip 40°

Mean (MPa) 1.95 1.8 1.72 1.86 1.33
Median (MPa) 1.4 1.26 1.07 1.09 0.93
Mode (MPa) 1.16 1.25 0.36 − 0.11 2.21
Std. deviation (MPa) 1.81 1.61 1.70 1.81 1.441
Variance (MPa2) 3.28 3.07 3.05 3.67 2.79
Skewness 0.64 0.64 0.71 0.70 1.30
Kurtosis − 0.90 − 0.98 − 0.86 − 0.92 0.67
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stress tensor 
(

T
)

 in the inclined coal pillars is obtained by 
Eq. (10) whose eigenvalues give the magnitudes of the mean 
IPS 

(

�1, �2 and �3

)

 within the inclined coal pillars. Table 6 
shows the comparison between the magnitudes of the mean 
IPS 

(

�1, �2 and �3

)

 within the inclined coal pillars at the 
time of failure obtained by the classical statistics and tenso-
rial statistics. It shows that the values of mean major IPS 

(

�1

)

 
and intermediate IPS 

(

�2

)

 calculated by the tensorial statis-
tics are less than the values calculated by the classical sta-
tistics. But, the values of mean minor IPS 

(

�3

)

 calculated by 
the tensorial statistics are more than the values calculated by 
the classical statistics.

7.3 � Determination of the Variability of the Stress 
Tensor

The variance values of the IPS as given in Tables 3, 4 and 5, 
describe the variation in the magnitudes of the IPS. These 
are calculated individually by classical statistics. It does not 
represent the total variation of the stress tensor within the 
inclined coal pillars because the classical statistics do not 
consider the interrelation between other stress components. 
Therefore, the tensorial statistics are applied to quantify the 
overall dispersion or variability of the stress tensor within 
the inclined coal pillars with dip angle 0°–40°. At first, the 
covariance matrix for the stress tensor of the coal pillars with 
different dip angles is computed by Eq. (13). The covariance 
matrices are shown in Appendix. In the covariance matrix, 
the values along the diagonal line represent the variance of 
the corresponding stress component. The values of other 
cells in the covariance matrix represent the covariance 
between two stress components. In each covariance matrix, 
the variance of the vertical stress component (σzz) is more 

compared to the variance of other stress components. As 
the dip of the pillar increases, the variance of the vertical 
stress component (σzz) decreases. The variance of the verti-
cal stress component (σzz) is 77.99 MPa2 and 17.18 MPa2 
for the coal pillar with dip angles 0° and 40°, respectively.

After obtaining the covariance matrix, the overall varia-
tion of the stress tensor within the inclined coal pillars are 
computed by the Eqs. (14)–(17). The values of different 
variances are tabulated in Table 7. The Euclidean disper-
sion (ΩEd) and the total variation (Ωtotal) of the stress tensor 
consider only the variances of stress–tensor components. As 
these ignore the covariance between the tensor components, 
their values do not represent the total dispersion of the stress 
tensor. The generalised, as well as effective variances, are 
more efficient to measure the dispersion of complete stress 
tensor as these consider the covariance between the tensor 
components. The higher values of these variances signify 
more dispersion of the stress tensor with respect to its mean 
stress tensor. It is found that the variance value is less for 
the coal pillar with a dip angle of 40° compared to a coal 
pillar with a dip angle of 0°. It indicates that the stress ten-
sor within the coal pillar having the dip angle 40° is more 
concentrated to its mean stress tensor in comparison to the 
coal pillar having the dip angle 0°.

The values in the correlation matrix signify the cor-
relation between two stress components. The correlation 
matrices are shown in Figures 13, 14, 15, 16 and 17. It is 
obtained from these figures that the correlation coefficients 
among σxx, σyy and σzz are more compared to the correlation 
between other stress components. As the dip of the pillar 
increases, the correlation among normal stress components 
(σxx, σyy and σzz) decreases, e.g., the correlation coefficients 
between σyy and σzz is 0.98 and 0.86 for the coal pillar with 
dip angles 0° and 40°, respectively. It is observed that the 

Table 6   Magnitude of the mean 
IPS (at the time of failure) in the 
inclined coal pillars of different 
dip angles obtained by classical 
statistics and by tensorial 
statistics

�
1
(MPa) �

2
(MPa) �

3
(MPa)

Classical 
statistics

Tensorial 
statistics

Classical 
statistics

Tensorial 
statistics

Classical 
statistics

Tensorial 
statistics

Dip 0° 9.96 9.74 2.40 2.30 1.95 2.27
Dip 10° 8.86 8.61 2.28 2.25 1.40 1.65
Dip 20° 7.58 7.28 2.40 2.33 1.72 2.06
Dip 30° 5.67 5.24 2.56 2.64 1.86 2.22
Dip 40° 4.35 2.03 2.02 2.12 1.33 1.87

Table 7   Variability of the stress 
tensor within the inclined coal 
pillars

Dip 0° Dip 10° Dip 20° Dip 30° Dip 40°

Euclidean dispersion (ΩEd) in (MPa)2 88.79 84.97 84.92 41.53 31.60
Total variation (Ωtotal) in (MPa)2 87.14 83.56 82.74 40.26 29.09
Generalised variance (Ωg) in (MPa)12 0.27 0.043 0.022 0.01 0.009
Effective variance (Ωeff) in (MPa)2 0.80 0.59 0.53 0.48 0.35
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correlation coefficients among the shear components, i.e., 
τxy, τxz and τyz increase with the increase of coal pillar dip 
angle. For example, the correlation coefficient between τxy 
and τxz is 0.0 and − 0.89 for the coal pillar with dip angles 0° 
and 40°, respectively. It suggests that the shear components 
in the flat pillars are less compared to the inclined pillars. As 
the inclination of the pillars increases, the shear components 

of the stress tensor become significant. This is due to the 
sliding tendency of the surrounding inclined rock formations 
along the bedding planes. As the rock easily fails in shear, 
the failure of the inclined pillar is governed by the induced 
shear stress within it.

It is found by quantifying the stress conditions with ten-
sorial statistics that the flat pillars fail under slabbing or 

σxx(MPa)

σyy(MPa)

σzz(MPa)

τxy(MPa)

τxz(MPa)

τyz(MPa)

σxx(MPa) σyy(MPa) σzz(MPa) τxy(MPa) τxz(MPa) τyz(MPa)

Fig. 13   Correlation matrix for the stress tensor within the coal pillar with dip angle 0°

σxx(MPa)

σyy(MPa)

σzz(MPa)

τxy(MPa)

τxz(MPa)

τyz(MPa)

σxx(MPa) σyy(MPa) σzz(MPa) τxy(MPa) τxz(MPa) τyz(MPa)

Fig. 14   Correlation matrix for the stress tensor within the coal pillar with dip angle 10°
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spalling. As the correlation among the shear components 
of stress within the inclined coal pillars increases with the 
dip angle, the formation of the shear band becomes more 
prominent with the increase of the dip angle. The shear band 
propagates towards the core of the pillar with the increase 

of the dip of the pillar. Thus, the inclined coal pillars fail 
under shear conditions. The inclined coal pillars experience 
high-stress conditions at the dip side which cause severe side 
spalling in the inclined coal pillars. Therefore, stiff supports 
are required to be installed at the dip side of the pillar to 
prevent the shearing along the bedding planes.

σxx(MPa)

σyy(MPa)

σzz(MPa)

τxy(MPa)

τxz(MPa)

τyz(MPa)

σxx(MPa) σyy(MPa) σzz(MPa) τxy(MPa) τxz(MPa) τyz(MPa)

Fig. 15   Correlation matrix for the stress tensor within the coal pillar with dip angle 20°

σxx(MPa)

σyy(MPa)

σzz(MPa)

τxy(MPa)

τxz(MPa)

τyz(MPa)

σxx(MPa) σyy(MPa) σzz(MPa) τxy(MPa) τxz(MPa) τyz(MPa)

Fig. 16   Correlation matrix for the stress tensor within the coal pillar with dip angle 30°
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8 � Determination of the Orientation 
of the Mean IPS

Figures 7, 8 and 9 show the directional data, i.e. azimuth 
and plunge of the IPS within the coal pillars of different 
dip angles. The orientations of the IPS at each hexahedral 
zone as shown in Fig. 1 are calculated separately from the 
eigenvectors of the matrix Ti (Eq. 2). The orientations of the 
mean IPS 

(

�1, �2 and �3

)

 within the inclined coal pillars are 
calculated by the classical statistics using Eq. (8). The tenso-
rial statistics is also applied to obtain the orientations of the 
mean IPS 

(

�1, �2 and �3

)

 from the eigenvectors of the matrix 
T (Eq. 10). From Table 8, it is depicted that the plunge value 

of the mean major IPS 
(

�1

)

 decreases with the increase of 
the dip angles of the coal pillar. For example, the plunge 
values of the mean major IPS 

(

�1

)

 obtained by the classi-
cal statistics are 82.85° and 37.79° whereas by the tensorial 
statistics are 89.99° and 57.13° for the coal pillar of dip 
angles 0° and 40°, respectively. Ideally, the plunge value of 
the mean major IPS 

(

�1

)

 should be 90° in case of a flat coal 
pillar at the time of its failure. The plunge value of the mean 
major IPS 

(

�1

)

 calculated by the classical statistics deviates 
from 90°. But, the tensorial statistical approach gives the 
correct result for the calculation of the orientation of the 
mean IPS 

(

�1, �2 and �3

)

 . Figure 18 shows the orientation 

σxx(MPa)

σyy(MPa)

σzz(MPa)

τxy(MPa)

τxz(MPa)

τyz(MPa)

σxx(MPa) σyy(MPa) σzz(MPa) τxy(MPa) τxz(MPa) τyz(MPa)

Fig. 17   Correlation matrix for the stress tensor within the coal pillar with dip angle 40°

Table 8   Orientation of the mean IPS obtained by the classical statistics and tensorial statistics for the coal pillars of different dip angles

�
1

�
2

�
3

Azimuth (degree) Plunge (degree) Azimuth (degree) Plunge (degree) Azimuth (degree) Plunge (degree)

Dip 0° Classical statistics 0.37 82.85 273.92 − 0.78 4.03 1.48
Tensorial statistics 25.73 89.99 271.30 0.00 1.30 0.00

Dip 10° Classical statistics 0.03 80.20 269.88 0.04 359.56 2.66
Tensorial statistics 0.02 86.25 270.07 − 0.00 0.07 3.74

Dip 20° Classical statistics 0.11 74.97 269.87 1.34 359.58 0.91
Tensorial statistics 359.95 81.99 270.28 − 0.04 0.29 8.00

Dip 30° Classical statistics 359.99 67.73 272.35 9.87 2.09 − 6.61
Tensorial statistics 359.96 75.60 270.22 0.05 359.76 14.40

Dip 40° Classical statistics 0.01 37.79 270.62 7.25 0.894 − 16.47
Tensorial statistics 0.03 57.13 271.47 − 0.93 2.08 32.85
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(plunge value) of the mean major IPS 
(

�1

)

 calculated by 
tensorial statistics for the coal pillars of different dip angles.

The spherical variances of the orientation data of the 
major IPS (σ1) increase with the increase of coal pillar dip 
angle as shown in Table 9. It suggests that the orientation 
data of the major IPS (σ1) within the coal pillar of dip angle 
0° are more concentrated at the pole as shown in Fig. 7. The 
orientation data of the major IPS (σ1) within the coal pillar 
of dip angle 40° are comparatively more dispersed on the 
surface of the unit sphere as shown in Fig. 7.

As shown in Table 8, there is a difference between the 
orientation data calculated by the classical statistics and 
by the tensorial statistics. The effectiveness of these two 
approaches is evaluated to identify the proper procedures 
of the calculation of the mean IPS 

(

�1, �2 and �3

)

 . It is a 
fact that the IPS i.e. σ1, σ2 and σ3 are orthogonal to each 
other. Therefore, the orientation calculated by the classical 
statistics and tensorial statistics should satisfy the orthogo-
nality of the IPS. The mean direction vector 

(

�̃

)

 of the IPS 
is expressed as follows:

where i = 1, 2 and 3 related to the major, intermediate and 
minor IPS.

To maintain the orthogonality, the dot product between 
the mean direction vectors of the IPS should be zero, i.e.

It is found that the mean direction vectors obtained by 
the classical statistics do not satisfy Eq. (29). For example, 
�̃1 ∙ �̃2 = 0.085 , �̃2 ∙ �̃3 = 0.04 and �̃3 ∙ �̃1 = 0.584 calcu-
lated by the classical statistics for the inclined coal pillar of 
dip angle 40°. But, the mean direction vectors calculated by 
the tensorial statistics satisfy Eq. (29). As the classical sta-
tistics separately evaluates the IPS, the orthogonality among 
them does not exist. Therefore, it can be concluded that the 
tensorial statistics is more accurate to calculate the mean IPS 
(

�1, �2 and �3

)

 conditions within the coal pillars.

9 � Validation by the Field Measured Data

The actual stress measurement data from various Indian 
underground coal mines are used to validate the failure anal-
ysis results of the inclined coal pillar obtained by numerical 
simulation and tensorial statistics. The stress capsules with 
vibrating wire sensors are installed inside the coal pillar by 
drilling horizontal holes. It measures the change of induced 

(28)�̃i =
[

li mi ni

]T

,

(29)�̃i ∙ �̃j = 0 (i, j = 1, 2, 3 and i ≠ j).

900 840 780

740 830

Dip of coal pillar  00

860 820

760 570

Dip of coal pillar  100
Dip of coal pillar  200

Dip of coal pillar  300 Dip of coal pillar  400

Direction of mean major 
IPS ( σ1 ) 

Fig. 18   Direction of the mean major IPS 
(

�
1

)

 at the time of failure of the pillar obtained by the tensorial statistics for the coal pillars of different 
dip angles

Table 9   Spherical variance of 
the orientation data of the IPS 
for the coal pillars of different 
dip angles

σ1 σ2 σ3

Dip 0° 0.03 0.44 0.45
Dip 10° 0.07 0.39 0.39
Dip 20° 0.13 0.37 0.37
Dip 30° 0.18 0.47 0.49
Dip 40° 0.43 0.42 0.42



3284	 A. J. Das et al.

1 3

stress during the extraction by the caving method of mining. 
Figure 19 illustrates the installation of the stress capsule in 
the coal pillar of 3 and 4 Incline mine, Jhanjra. Field investi-
gations (Das et al. 2019a, b; Singh et al. 2011) were carried 
out to collect the relevant geomining parameters and stress 
monitoring data from different underground coal mines, 
i.e. SRP-1 mine, SRP-3A mine, RK-8 mine, GDK-2 mine, 
GDK-5 mine of SCCL, Chirimiri Colliery, Churcha Colliery, 
Nowrozabad East Colliery, Rajnagar Colliery of South East-
ern Coalfields Limited (SECL) and 3 and 4 Incline Jhanjra 
Project Colliery of Eastern Coalfields Limited (ECL). Fig-
ure 20 shows the induced stress measurement data in the 
coal pillars/remnants during the depillaring with the caving 
method. It is found that the induced stress values increase 
as the extraction line (goaf edge) comes closer to the pil-
lars/remnants. The maximum stress is observed when the 
pillars/remnants are at the goaf. From the field investigation 
and the readings of the stress capsule, it is found that the 
stress value is maximum when the pillars/remnants are on 
the verge of failure. As these are the failed pillars/remnants, 
the safety factor of these pillars/remnants is supposed to be 
less than 1.0. The tensorial statistics, as well as the classical 
statistical approach, is applied to calculate the mean major 
IPS 

(

�1

)

 at the time of failure, i.e. the strength by numerical 
modelling. The safety factor is calculated by dividing the 
mean major IPS 

(

�1

)

 with the pillar load, which is calculated 
from the stress monitoring data. Table 10 shows the geomin-
ing conditions and the safety factors of the failed inclined 
pillars/remnants calculated by the tensorial as well as clas-
sical statistical approaches. It is found that the safety factor 
calculated by the classical statistical approach is more than 
1.0 for three cases out of ten failed pillar cases. It suggests 
that the classical statistical approach does not predict the 
failed pillar cases correctly. But, all the failed pillar cases 

are correctly predicted by the tensorial statistical approach 
where the safety factors of all failed cases are less than 1.0.

10 � Conclusions

A comprehensive analysis is done to understand this com-
plex failure mechanism using elasto-plastic numerical mod-
elling as well as tensorial statistics to address the instability 
issues of inclined coal pillars during underground mining. 
The results of the study are validated with the field meas-
urement data of failure cases of the underground coal mines 
in India.

It is found that the stress states of the coal pillar, at the 
time of its failure, are better represented by the Induced Prin-
cipal Stresses (IPS). The IPS exhibit spatial variability in 
terms of magnitudes and directions within a coal pillar. 
Though the variability exists, a particular value of the IPS 
should be calculated to identify the failure stress state of 
a coal pillar. The failure stress state has been character-
ised by the magnitudes and the direction of the mean IPS 
(

�1, �2 and �3

)

 . In this study, the tensorial and classical sta-
tistics are applied to quantify the magnitudes and the direc-
tion of the mean IPS 

(

�1, �2 and �3

)

 within the inclined coal 
pillars at the onset of failure.

It is obtained from the study that the tensorial statistics is 
comparatively effective to quantify the magnitudes and the 
direction of the mean IPS 

(

�1, �2 and �3

)

 . Because the mean 
IPS 

(

�1, �2 and �3

)

 obtained by the tensorial statistics satisfy 
the orthogonality between each other. The magnitude of the 
mean major IPS 

(

�1

)

 at the time of failure, i.e. the strength 
of the pillar decreases with the increase of the coal pillar 
dip angle. It signifies that the inclined coal pillars of the 

Fig. 19   a Coal pillar of under-
ground coal mines at 3 and 4 
incline mine, Jhanjra, b installa-
tion of stress capsule in the coal 
pillar of 3 and 4 incline mine, 
Jhanjra
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same dimensions as the flat coal pillars fail comparatively 
in less stress. The correlation coefficients among the shear 
components i.e., τxy, τxz and τyz increase with the increase 
of the dip angle of the pillar. This phenomenon shows the 
increase of the shear components with the dip of the coal 
pillar during its failure. Therefore, the inclined coal pillars 

are more susceptible to shear failure. The variation of the 
stress tensor within the inclined coal pillars are calculated 
by the Euclidean dispersion (ΩEd), total variation (Ωtotal) 
generalised variance (Ωg) and effective variance (Ωeff). The 
variance of the stress–tensor matrix of an inclined pillar is 
less compared to the flat pillars.

Fig. 20   Measurement of change of stress in different underground coal mines during the extraction of the pillars (Das et al. 2019a, b; Singh et al. 
2011)
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It is found that the directions of the IPS within the flat 
coal pillars are concentrated around the pole of a unit sphere. 
But as the dip of the coal pillars increases, the points are 

more dispersed and shifted towards the equatorial plane. 
This phenomenon signifies that the direction of the mean 
major IPS 

(

�1

)

 within the flat coal pillar is along the vertical 

Table 11   Covariance (MPa2) 
matrix for the stress tensor 
within the coal pillar with dip 
angle 0°

σxx(MPa) τxy(MPa) τxz(MPa) σyy(MPa) τyz(MPa) σzz(MPa)

σxx (MPa) 3.79 − 0.00 0.00 3.59 − 0.00 16.48
τxy (MPa) 0.02 − 0.00 − 0.00 0.00 -0.00
τxz (MPa) 0.71 0.00 0.00 0.00
σyy (MPa) 3.62 − 0.00 16.14
τyz (MPa) Symmetry 0.69 − 0.01
σzz (MPa) 77.99

Table 12   Covariance matrix 
(MPa2) for the stress tensor 
within the coal pillar with dip 
angle 10°

σxx(MPa) τxy(MPa) τxz(MPa) σyy(MPa) τyz(MPa) σzz(MPa)

σxx (MPa) 4.28 − 0.00 − 0.00 3.595 − 0.83 17.80
τxy (MPa) 0.03 − 0.06 − 0.00 0.00 − 0.00
τxz (MPa) 0.78 − 0.00 0.00 − 0.00
σyy (MPa) 3.23 − 0.84 15.53
τyz (MPa) Symmetry 0.83 − 3.57
σzz (MPa) 74.73

Table 13   Covariance matrix 
(MPa2) for the stress tensor 
within the coal pillar with dip 
angle 20°

σxx(MPa) τxy(MPa) τxz(MPa) σyy(MPa) τyz(MPa) σzz(MPa)

σxx(MPa) 4.91 − 0.00 0.00 4.03 − 1.80 18.24
τxy(MPa) 0.14 − 0.20 − 0.00 0.00 − 0.00
τxz(MPa) 0.85 0.00 − 0.00 0.00
σyy(MPa) 3.86 − 1.82 15.20
τyz(MPa) Symmetry 1.19 − 7.00
σzz(MPa) 71.78

Table 14   Covariance matrix 
(MPa2) for the stress tensor 
within the coal pillar with dip 
angle 30°

σxx(MPa) τxy(MPa) τxz(MPa) σyy(MPa) τyz(MPa) σzz(MPa)

σxx(MPa) 3.90 − 0.00 0.00 4.19 − 1.15 10.09
τxy(MPa) 0.18 − 0.25 − 0.00 0.00 − 0.00
τxz(MPa) 0.52 0.00 − 0.00 0.00
σyy(MPa) 5.76 − 2.00 11.33
τyz(MPa) Symmetry 0.96 − 2.79
σzz(MPa) 29.53

Table 15   Covariance matrix 
(MPa2) for the stress tensor 
within the coal pillar with dip 
angle 40°

σxx (MPa) τxy (MPa) τxz (MPa) σyy (MPa) τyz (MPa) σzz (MPa)

σxx (MPa) 3.37 0.00 − 0.00 4.13 − 1.51 7.02
τxy (MPa) 0.19 − 0.24 0.00 − 0.00 − 0.00
τxz (MPa) 0.38 − 0.00 0.00 − 0.00
σyy (MPa) 6.13 − 2.82 8.88
τyz (MPa) Symmetry 1.93 − 2.49
σzz (MPa) 17.18
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axis. As the dip of the coal pillars increases, the direction 
of the mean major IPS 

(

�1

)

 deviates from the vertical axis 
and shifts towards the horizontal plane. Therefore, the shear 
stress components increase within the inclined pillars.

The failure mechanism results of the inclined pillars 
obtained by the numerical simulation and tensorial statistics 
approach are well validated by the stress measurement data 
in the underground coal mines. The comparison shows that 
all the failed pillar cases are correctly identified by the tenso-
rial statistical approach, but some failed pillar cases are not 
predicted correctly by the classical statistical approach. It 
suggests that tensorial statistics is a more effective approach 
to analyse the stress state in an underground excavation. The 
procedures described in this paper can be applied to effec-
tively quantify the magnitude and the direction of the mean 
IPS 

(

�1, �2 and �3

)

 within the inclined pillars at the onset of 
failure. This study would help the researchers to characterise 
the behaviour of the inclined pillars during its failure, which 
would help to address the instability issues of the inclined 
coal pillars during the underground extraction of coal. The 
failure phenomena of the inclined coal pillar described in 
this paper and the quantification of the IPS would also help 
the researchers to determine the adequate size and the orien-
tation of the inclined coal pillar for safe and efficient mining 
of the coal inclined coal seams.

Appendix

See Tables 11, 12, 13, 14 and 15.
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