
Vol.:(0123456789)1 3

Rock Mechanics and Rock Engineering (2021) 54:2513–2531 
https://doi.org/10.1007/s00603-021-02377-3

ORIGINAL PAPER

FracProp: Stochastic Fracture Propagation Model

Mohammad Abdulla1 · Rita L. Sousa2  · Ignazio Arzuaga3 · Omar AlDajani3 · Bruno Goncalves da Silva4 · 
Herbert H. Einstein3

Received: 22 May 2020 / Accepted: 13 January 2021 / Published online: 1 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021

Abstract
This paper presents a geometric, mechanics-based, stochastic model—FracProp—that was developed to predict fracture 
initiation and propagation in rock. FracProp is capable of quantifying uncertainties associated with the point of fracture 
initiation and direction of fracture propagation. The current version of FracProp uses compounded probability distributions 
that are continuously fitted based on mechanical principles (stress distribution and material properties). The model assumes 
that fracture initiation and propagation depend on the stress profiles around the fracture (flaw) tip in a rock block subjected 
to vertical, horizontal, and internal loading. To develop the model, we studied the mechanics of a rock block containing one 
single flaw (pre-existing opening) with the Finite Element (FE) software ABAQUS. Stress profiles obtained in the modeling 
were used with the model’s probabilistic processes to dynamically simulate (model) crack/fracture propagation. FracProp 
was validated with the results of experiments under various loading conditions done at the Massachusetts Institute of Tech-
nology (MIT) geomechanics laboratory.

Keywords Rock fracturing · Stochastic modeling · Crack propagation · Hybrid modeling

1  Background

The study of fracture initiation and propagation is very 
important in rock mechanics and engineering. It is essential 
for the understanding how rock masses behave when sub-
jected to loading that affects natural and engineered struc-
tures, such as tunnels and foundations as well as hydrau-
lic fracturing in the context of hydrocarbon extraction and 
Enhanced Geothermal System (EGS) e.g. Tester (2006).

The mechanics of initiation and propagation of newly cre-
ated and existing fractures have been studied extensively but 
more work is required for complete understanding. Field 
data are difficult to obtain and interpret, thus laboratory test-
ing and numerical modeling play a major role in understand-
ing fracturing in rocks.

Since the early 1900s, many researchers developed cri-
teria to describe the initiation and propagation of cracks in 
brittle materials. Griffith (1921, 1924) was the first to under-
stand that the presence of cracks in brittle materials led to 
the decrease of their tensile strength and used Inglis’ (1913) 
mathematical linear elastic solution for the stress field sur-
rounding an ellipse.

Since then, many other researchers have developed cri-
teria based on stress, strain, and energy fields around a flaw 
tip to describe the initiation and propagation of cracks in 
brittle materials (e.g. Erdogan and Sih 1963; Rice 1968; Sih 
1974). Many of these have been implemented in Boundary 
Element (BE) codes (e.g. Chan 1986; Bobet 1997 and 2000; 
Shen and Stephansson 1993; Vásárhelyi and Bobet 2000; 
Isaksson and Ståhle 2002) and in Finite Element (FE) codes 
(e.g. Ingraffea and Heuze 1980; Reyes 1991; Gonçalves da 
Silva 2009; Gonçalves da Silva and Einstein 2013). Other 
implementations and methods to simulate crack propaga-
tion include hybrid experimental–numerical methods (e.g. 
Kobayashi 1999; Yu and Kobayashi 1994; Guo and Kob-
ayashi 1995), Extended Finite Element models (XFEM) (e.g. 
Fagerström and Larsson 2008; Xu and Yuan 2011; Liu et al. 
2011) and peridynamics (e.g. Agwai et al. 2011 and Silling 
and Askari 2005).
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In this paper, we propose a hybrid mechanics-based prob-
abilistic model to simulate fracture initiation and propaga-
tion. The advantages of the method include the incorporation 
of uncertainties, both of the initiation point and of the propa-
gation direction of the fracture. The model has also a fast-
computational speed, making it ideal to be incorporated in 
existing Discrete Fracture Networks (DFNs) to model artifi-
cially and naturally induced fractures (e.g. Geofrac, Ivanova 
et al. 2014; EllipFrac, Abdulla 2018; Fracman, Dershowitz 
1998).

2  FracProp Assumptions

Initial assumptions concerning the fracturing phenomenon 
were made so that the model is tractable and computation-
ally efficient. For modeling fracture initiation and propaga-
tion, two types of assumptions are made, namely, material-
related and fracture-related. The major assumptions are 
detailed below.

Material-related assumptions:

(a)Homogeneous material: this implies that the rock 
material possesses spatially uniform mechanical prop-
erties, specifically Young’s modulus and Poisson’s ratio 
(methods for measuring the homogeneity of rock masses 
are found in Kulatilake et al. 1990, 1997 and Fiechter 
2004).
(b)Linear elastic material: This assumption allows one 
to use the principles of superposition to calculate the 
stresses for any desired loading conditions.

Fracture-related assumptions:

(c)Stepwise propagation: the fracture propagates in quasi-
continuous steps of deterministic length.
(d)Fracture tip shape is assumed to be semicircular with 
a deterministic radius. This applies to the existing fracture 
and to each fracture propagation step.
Fracture initiation point is assumed to be at the tip of the 
fracture and to follow a von Mises distribution.
(e)Fracture initiation criterion: fracture is assumed to 
initiate if the maximum major principal stress exceeds a 
threshold, specifically the tensile strength of the material 
( Γrock ) [convention: tensile stresses are positive].
(f)Fracture propagation direction: the propagation direc-
tion is assumed to be perpendicular to the major principal 
direction and to follow a von Mises distribution.
(g)Markovian propagation memory: the next propagation 
step depends solely on the current propagation step.

Note that the convention used in this paper is tensile 
stresses are positive and compression stresses negative.

Figure 1 shows a schematic of the stepwise propagation 
in FracProp.

3  FracProp Methodology

Fracture initiation and propagation in FracProp depend on 
the stress profiles around the fracture tip in a rock block sub-
jected to vertical, horizontal and/or internal loading with a 
single pre-existing fracture (i.e. pre-existing flaw). To obtain 
the required stress profiles, a mechanics database was built 
using ABAQUS simulations of rock blocks containing one 
single flaw with different inclination angles ( �f  ) and sub-
jected to a unit load for vertical (VL) horizontal (HL) and 

Fig. 1  Schematic of the 
FracProp stepwise fracture 
propagation. Note that the prop-
agation (at each step) occurs 
only if 𝜎Imax > Γrock (maximum 
principal stress is greater than 
the tensile strength of the rock)
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internal fluid pressure (WP) loading (see Fig. 2), which are 
applied individually to build a database of stress profiles 
that can be used to obtain any desired loading condition 
using superposition. This follows the process developed by 
Gonçalves da Silva (2009) and Gonçalves da Silva and Ein-
stein (2013). The database of stress profiles will be detailed 
Sect. 4.

The database is used to obtain the stress profiles around 
the tip, which are used in a fitting process of the two von 
Mises distributions that model the initiation and propagation 
direction sequentially. Sampling from these distributions 
results in potentially different realizations of the fracture 
initiation and propagation path along the rock allowing one 
to capture uncertainties associated with the fracturing pro-
cess (i.e. the fact that if several samples are tested under the 
same conditions different fractures patterns are observed). 
More specifically, for a given load, using the database and 
assuming linear elasticity and using the principle of super-
position, the normal and shear stress profiles around the tip 
of a flaw are calculated for any desired loading condition. 
The database contains normal and shear stresses for unit 
loading under vertical, horizontal and internal water pres-
sure conditions. The extension from single individual unit 
loading into combined generic-valued loading is straight-
forward due to the linear elastic assumption (see Fig. 2). 
Once the stress profiles for a desired load are obtained, the 
major principal stresses around the tip are calculated. The 
point at which the major principal stress is maximized is 
used as the mean of the von Mises distribution for initia-
tion, from where samples will be drawn and considered as 
the initiation point. At the initiation point, the state of stress 
is obtained from the mechanics database, and the principal 
directions are calculated. The second von Mises distribu-
tion—propagation direction distribution, is then fitted such 
that its mean is perpendicular to the major principal stress 

(sign-convention used: positive for tension and negative for 
compression). Consequently, a sample direction is drawn 
from this distribution and a propagation step is imposed, 
and the fracture geometry is updated. This process contin-
ues until the stoppage criteria are met. The stoppage criteria 
are: (a) the maximum principal stress is less than the tensile 
strength of the material ( Γrock ) or (b) the fracture path ends 
outside the rock block, i.e. complete separation.

The FracProp’s methodology outlined above is now 
detailed below. It involves a preparation step (step 0), which 
consists of the development of the database of stress profiles, 
followed by a set of iterative steps.

3.1  Step 0 (Preparation Step): Building a Database 
of Stress Profiles of Unit Loads (Wp = 1, VL = 1, 
HL = 1) (MPa)

To develop the model, we started by studying the fractur-
ing process of a flaw (in a rock specimen) when subjected 
to internal hydraulic pressure, and vertical and horizontal 
external stresses (leading to the initiation and propagation 
of new cracks). We did this with a finite element model, 
using ABAQUS. We model the MIT experimental tests 
(used to validate FracProp), which were done on 5 cm by 
10 cm specimens with a 1 cm long flaw in the center, with 
varying orientations �f  , subjected to unit internal pressure 
( WP ), vertical load ( VL ) and horizontal load ( HL ), separately, 
to build a database of stress profiles around the flaw (see 
Sect. 4). Based on the ABAQUS simulations’ results, we can 
simulate any desired loading conditions using the principle 
of superposition. This step follows the work of Gonçalves 
da Silva 2009 and Gonçalves da Silva and Einstein 2014. 
Figure 2 shows a schematic of the MIT test specimen. In 
the figure, one can see how the simulation results of the 
individual unit loads ( VL = 1MPa,HL = 1MPa,WP = 1MPa ) 

Fig. 2  Schematic of ABAQUS model used to simulate the MIT 
experimental tests. We simulated tests of rock blocks subject to unit 
load for different flaw inclinations �f  . These correspond to the three 

models on the right. The figure also shows how the unit loads can be 
combined to simulate any desired loading
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are used to obtain the results for any desired combined load, 
through superposition due to the assumption of elasticity.

Once the database was developed, the following set of 
iterative steps (step 1 to step 8) is used to model and generate 
several realizations for the fracture initiation and propaga-
tion patterns.

3.2  Step 1: Determining the Normal and Shear 
Stress Profiles around the Flaw Tip for a Given 
Load (Wp, VL, HL)

Given a particular load ( WP , VL , HL ), and a particular flaw 
orientation �f  , normal and shear stress profiles around the 
flaw tip are obtained from the database of the stress profiles 
(developed in the preparation step 0) using the principle of 
superposition. Figure 3 illustrates how FracProp uses the 
database of unit load stress profiles to determine the stress 
profiles for any desired load.

3.3  Step 2: Determining the Principal Stresses 
and Directions Around the Flaw Tip

Based on the normal and shear stress profiles calculated 
in step 1, the principal stresses (magnitude and direction) 
around the flaw tip are calculated.

3.4  Step 3: Checking if the Fracture Initiation 
Occurs

If the maximum major principal stress is greater than a 
pre-defined tensile strength threshold ( Γrock ), then, fracture 
initiation occurs. Otherwise, no initiation occurs, and the 
simulation stops.

3.5  Step 4: Modeling the Fracture Initiation Point 
(Primary Stochastic Process)

If the criterion in step 3 is satisfied, then initiation starts. 
The point of initiation is assumed to be the point at the tip 
where the major principal stress is maximized. This point is 
then used to define/fit the von Mises distribution for fracture 
initiation, i.e. the point (its value) will become the mean 
parameter of the von Mises distribution that models the frac-
ture initiation in FracProp.

3.6  Step 5: Sampling a Fracture Initiation Point

A fracture initiation point is sampled from the von Mises 
distribution defined/fitted in step 4. This is done to represent 
the uncertainties associated with the initiation point such as 
spatial variability of material properties.

3.7  Step 6: Modeling the Fracture Propagation 
Direction (Secondary Stochastic Process)

The principal directions are calculated at the sampled initia-
tion point (in step 5) and the secondary stochastic process is 
then started using the minor principal direction as the mean 
of the von Mises distribution that models the direction of 
fracture propagation.

3.8  Step 7: Sampling the Fracture Propagation 
Orientation

A propagation direction is sampled from the von Mises dis-
tribution for propagation direction defined in step 6.

Fig. 3  Schematic of how FracProp uses the mechanics database to 
determine the state of stress around the tip of the flaw for any desired 
loading condition. The inputs are the loading conditions ( WP , VL , HL ) 
and the flaw inclination �f  . FracProp searches for the state of stress 
profiles generated by the unit loads for the input flaw inclination, and 

then, through superposition (given the elasticity assumption), gener-
ates the stress profiles around the tip for the input loading conditions. 
In addition, FracProp allows one to obtain the state of stress at any 
point along the stress path, which is helpful when considering the von 
Mises distribution sampling
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3.9  Step 8: Fracture Propagation

A fracture propagation step is imposed using the propaga-
tion direction sampled in step 7 in combination with the user 
defined step length l, and the fracture geometry is updated.

Steps 1–8 are repeated while the stoppage criteria are not 
met. These criteria are:

a. The maximum principal stress is less than the tensile 
strength of the material ( Γrock).

b. The fracture path ends outside the rock block, i.e. com-
plete separation.

Figure 4 shows the methodology used by FracProp and 
how the database of stress profiles interacts with the algo-
rithms of the model, numbered as per the order of the cor-
responding step. Figure 5 shows the stepwise process of 
FracProp.

4  Database of Stress Profiles

To develop the model, we started by studying the fractur-
ing process of a flaw (in a rock specimen) when subjected 
to internal hydraulic pressure, vertical and horizontal stress 
(leading to the initiation and propagation of new cracks). 
For this, we built a finite element model, using ABAQUS, of 
the MIT tests using 5 by 10 cm specimen with a 1 cm long 
flaw with an aperture of 0.1 cm with varying orientations, 
subjected to a unit internal pressure, a unit vertical load and 
a unit horizontal load, separately. This is done so that we can 
simulate any desired loading condition using the principle 
of superposition. Stress profiles were created for the test 
specimen shown in Fig. 6.

The boundary conditions of the model are as follows:

1. The left-hand-side edge is fixed in the x direction. i.e. 
U1 = 0 in ABAQUS terminology.

2. The bottom edge is fixed in the y direction. i.e. U2 = 0 
in ABAQUS terminology.

A total number of 273 cases were simulated as described 
in Table 1. This covers the integer inclination angles, �f  
∈ [0◦;90◦] . The profiles for the remaining inclinations, i.e. 

Fig. 4  Methodology used by FracProp. This figure shows how the database interacts with the algorithms in FracProp to model fracture initiation 
and propagation. This process will be further detailed in the next sections. VM: von Mises; PDF: probability distribution function
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for range �f ∈ [91◦;360◦) can be obtained from the results 
of the simulations with inclination angles of �f  ∈ [0◦;90◦] . 
Table 2 shows how the results of the simulations for �f  
∈ [0◦;90◦] can be used to determine the stress profiles for 
the remaining flaw inclination angles �f .

Figure 7 shows three examples which demonstrate how 
the stress profiles of = �f{120°, 240°, 300°} can be obtained 
from the stress profiles of �f=60 o following the rules pre-
sented in Table 2.

The performance of FracProp was compared with the 
results of lab experiments conducted on gypsum rocks 
(detailed later in Sect. 6); thus, the database was developed 
using the mechanical properties of gypsum listed in Table 3.

Fig. 5  Stepwise process for fracture propagation: (1) input param-
eters are the loading conditions ( WP , VL , HL ) and the flaw inclination 
�f  , (2) state of stress around the fracture tip is determined using the 
mechanics database, (3) determine the angle � for which the princi-
pal stress �I is maximum. The value of this angle is used to calibrate 
the first stochastic process: fracture initiation, from which a value is 

sampled to obtain the initiation point p̂ , (4) find the state of stress 
at point p̂ and determine the maximum principal direction �1 . This 
value is used to start the second stochastic process: fracture propa-
gation, from which a propagation direction �̂ is sampled, (5) a step 
propagation with length l and direction �̂ is imposed

Fig. 6  ABAQUS model of MIT test specimen

Table 1  ABAQUS experiments inclination angles �f  and loading con-
ditions

Load �f No. of 
simula-
tions

Vertical Loading VL {0°, 1°, 2°,…90°} 91
Horizontal Loading HL {0°, 1°, 2°,…90°} 91
Water Pressure WP {0°, 1°, 2°,…90°} 91
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The normal and shear stress profiles are extracted along 
the semicircular path centered around the center of the flaw 
tip that is 1.03 times the radius r of the tip as shown in Fig. 8. 
The value of 1.03 r was chosen based on preceding work 

by Gonçalves da Silva (2009) and Gonçalves da Silva and 
Einstein (2014).

An example of a stress profile for a flaw with an incli-
nation angle �f = 45° subjected to a unit internal pressure 
( WP = 1MPa ) is presented in Figs. 9 and 10. Figure 9 pre-
sents the distribution of stresses ( x component, �x ) from 
ABAQUS ( S11 in ABAQUS is �x , the horizontal stress). 
Figure 10 shows the stress profiles for �x , for different flaw 
inclinations �f  , along the pre-defined path in red in Fig. 9 
and defined in Fig. 8. One can observe in Fig. 10 that for a 
flaw angle �f  of 0, i.e. for a vertical flaw the �x stress profile 
is symmetric with two maxima at � = 60° and � = − 60°. 
As the angle �f  changes from 0° to 90°, the stress profile has 
only one maximum value for �x , which shifts from � = − 
60°, at �f  = 0° (vertical flaw) to � = 0° at �f  = 90° (hori-
zontal flaw). All stress profiles ( xx, yy and xy components, 
i.e. �x, �y and �xy , respectively) resulting from simulations 
with different flaw orientations �f  were stored in a database 
and indexed by the corresponding inclination angle �f  and 
loading condition so that they are programmatically easily 
accessible by the stochastic processes of FracProp.

The ABAQUS model is elastic and, therefore, for any 
combination of vertical, horizontal, and/or internal pressure, 
the combined stress profiles can be calculated using super-
position. Figure 11 shows the normal ( �x , �y ) and shear ( �xy) 
stress profiles for a load of HL = 1MPa , VL = 4.5MPa and 
WP = 6.72MPa . These are the loading values used in one 

Table 2  Process to obtain the normal stress and shear stress profiles 
for �f ∈ [ 91◦;360◦ ]: Y = flip(X) returns array Y  of the same size as X , 
but with the order of the elements reversed

Case Profiles relations to �f ∈ [0, 90◦]

Quarter 1: �f ∈ [0◦, 90◦] Directly from ABAQUS simulations 
 �x(�f )
 �y(�f )
 �xy(�f )

Quarter 2: �f ∈ (90◦, 180◦]

 �x(�f ) flip(�x(180◦ − �f ))

 �y(�f ) flip(�y(180◦ − �f ))

 �xy(�f ) −flip(�xy(180◦ − �f ))

Quarter 3: �f ∈ (180◦, 270◦]

 �x(�f ) �x(�f − 180◦)

 �y(�f ) �y(�f − 180◦)

 �xy(�f ) �xy(�f − 180◦)

Quarter 4: �f ∈ (270◦, 360◦]

 �x(�f ) flip(�x(360◦ − �f ))

 �y(�f ) flip(�y(360◦ − �f ))

 �xy(�f ) −flip(�xy(360◦ − �f ))

Fig. 7  Normal and shear stressed at different inclination angles: 60° vs. 120°, 60° vs. 240°, and 60° vs. 300°
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of the experiments conducted at MIT, which was used for 
validating the model (See Sect. 6). The calculated major and 
minor principal stresses, �I and �II , and the maximum shear 
stress, �max are shown in Fig. 12.

F o r  t h e  c a s e  o f  c o m b i n e d  l o a d i n g 
HL = 1MPa,VL = 4.5MPa,WP = 6.72MPa , Fig. 13 relates 
the angle �∗ , which corresponds to the point at which the 

major principal stress �I is maximized, to the flaw inclina-
tion angle �f  . Note that �∗ denotes the angle that maximizes 
the major principal stress at the tip path given a specific 
inclination angle as mathematically described in Eq. (4) in 
Sect. 5. This value is used as the mean of the von Mises 
distribution for initiation in the first stochastic process of 
FracProp. One can observe that for �f = 0◦ , i.e. a horizon-
tal flaw, the expected point at which fracture might initi-
ate is 60° clockwise with respect to the horizontal (see 
Fig. 14). Inspecting Fig. 13, one can notice that the pattern 
for �f = [0◦, 180◦] is almost an exact replica of the pattern 
observed for �f = (180◦, 360◦) . This is understandable as a 
0°-inclined flaw is like a 180°-inclined flaw; simply the flaw 
is flipped and so is the described pattern. The relations in 
Fig. 13 have a stair-like appearance. We believe that this is 
due to the FE discretization resolution of the model used and 
that a smoother increase is expected with a higher resolution 
of the FE discretization.

Figure  14 shows the expected initiation point and 
principal directions at that point, for a single flaw with 
different inclination angles �f  for the combined load 
VL = 4.5MPa;HL = 1MPa;WP = 6.72MPa . The initiation 
points deviate from the midpoint of the flaw tip due to the 
existence of the horizontal and vertical loads.

5  FracProp Model: Stochastic Process 
and Algorithms

The preceding sections described the basic concepts under-
lying FracProp, which are now used to explain the compu-
tational details.

5.1  Stochastic Processes: von Mises Probability 
Distribution

FracProp is a stochastic geometric mechanics-based model. 
It uses two compounded stochastic processes to model 
fracture initiation and propagation. Both processes use von 
Mises probability distributions to model the fracture initia-
tion point and the fracture propagation orientation.

The directional probability distribution function (PDF) 
of the von Mises distribution is used to stochastically model 
directions in 2-D space. It has been used in several fields of 
applications such as bioinformatics (Mardia et al. 2008) and 
seasonality of disease onset (Gao et al. 2006) to name a few.

A direction in 2-D space is defined by one angle, as for 
example � , and this angle is the random variable in the 
von Mises distribution. The circular random variable, � is 
assumed to follow a von Mises distribution if its PDF is 
given by Eq. (1).

Table 3  Mechanical properties 
of gypsum used in the 
ABAQUS modeling

Property Value

Young’s modulus 6 GPa
Poisson ratio 0.28

Fig. 8  Semicircular path used to extract stress profiles around the 
flaw tip in the ABAQUS model and angle � sign convention. � is 
used to indicate the points along the circular path of 1.03r radius, �f  is 
the inclination angle of the fracture (step)

Fig. 9  Simulated stress ( �x ) distribution around a flaw tip for inclina-
tion �f  = 45° and pre-defined path (in red). Note that S11 in ABAQUS 
is �x
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where:
(1)

f (𝜓|𝜇0, 𝜅) =
1

2𝜋I0(𝜅)
e𝜅 cos(𝜓−𝜇0),𝜓 ∈ [−𝜋,𝜋], 𝜅 > 0,𝜇0 ∈ [−𝜋,𝜋]

�0—the mean direction � , i.e. E[�] = �0

�—concentration parameter.
I0(�)—modified Bessel function of order zero as defined 

in Eq. (2).

Fig. 10  Stress profile ( �x ) for 
different flaw tip inclinations 
along the pre-defined path in 
Fig. 9. The sign convention for 
angle � is presented in Fig. 8

Fig. 11  Normal ( �x , �y ) and shear stress ( �xy ) profiles for one single flaw with �f ∈ {0°, 30°, 45°, 60°, 90°} subject to the combined loading of 
HL = 1MPa,VL = 4.5MPa,WP = 6.72MPa
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As one can observe from Eq. (1), the von Mises distribu-
tion is defined by two parameters: the mean direction, �0 and 

(2)I0(�) =

∞∑
r=0

1

r!2

(
1

2
�
)2r the concentration parameter, � . �0 represents the most likely, 

or expected, direction, while � describes how wide the distri-
bution is. A simpler interpretation for � is that it represents 
the reciprocal of the variance. That is, the higher the value 
of � , the narrower (more certain) the distribution is.

Fig. 12  Major and minor principal stresses and maximum shear stress profiles for one single flaw with �f  ∈ {0°, 30°, 45°, 60°, 90°} subject to the 
combined loading of HL = 1MPa,VL = 4.5MPa,WP = 6.72MPa

Fig. 13  �∗ vs.�f  for 
a combined load 
HL = 1MPa,VL = 4.5MPa,WP = 6.72MPa
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Figure 15 plots the von Mises PDF defined in Eq. (1) 
for different values of the concentration parameter � and 
a mean direction �o=0. Note that for � = 0 , the von Mises 
distribution becomes similar to the uniform distribution in 
the range [−�;�].

5.2  Primary Stochastic Process: Modeling Fracture 
Initiation Point

FracProp assumes that the initiation point is limited to the 
tip (represented by a half-circle in Fig. 16) of the fracture 
and that it follows a von Mises distribution. In addition, it 

Fig. 14  Expected initiation point and principal directions for a single flaw with different inclination angles �f  subjected to combined load 
VL = 4.5MPa;HL = 1MPa;WP = 6.72MPa (sign-convention used: positive for tension and negative for compression)

Fig. 15  von Mises PDF in 
Eq. (1) for different values of 
the concentration parameter � 
and a mean direction �o = 0

Fig. 16  Initiation point notation in polar format (c center of the flaw 
tip, r radius of the flaw tip, p initiation point)



2524 M. Abdulla et al.

1 3

is assumed that the expected initiation point is the point at 
which, the major principal stress is maximized, which can 
be obtained using the database described in Sect. 4. To rep-
resent any initiation candidate point, i.e. p , on the fracture 
tip, the polar notation is used. That is, any point on the semi-
circular path is represented by the angle � and the length, 
r , which is the radius of the semicircular tip as shown in 
Fig. 16. The coordinates of p are calculated by the follow-
ing equation:

The expected initiation point is represented by the cor-
responding angle �∗ which is obtained from the database 
described in Sect. 4 based on the flaw inclination angle and 
the loading conditions. �∗ is mathematically defined as in 
the following equation:

where
�∗ is the angle that corresponds to the expected initiation 

point.
�I(�) is the major principal stress profile along the path 

of interest.
The value of �∗, obtained through Eq. (4), is then used as 

an input in the primary stochastic process, more specifically, 
the initiation von Mises distribution is fitted with the mean 
μ0 = �∗ and with a user defined concentration parameter 
κ1 which is based on material properties (the greater the 
homogeneity of the material, the greater κ1 ). In this paper, 
we assume a homogeneous material (gypsum), and there-
fore a high value of κ1 is used. Then, a directional angle, �̂ 
is sampled from the von Mises distribution and is used to 
represent the initiation point in the current propagation step. 
Algorithm 1 shows the pseudo code for generating the initia-
tion point at any fracture propagation step. This corresponds 
to steps 4 and 5 in Sect. 3.

Algorithm 1 Obtaining initiation point at any propagation step, r is 
the radius of the flaw tip or the radius of the tip of the propagation 
step

Determine VL,HL,Wp, �1

For the ith propagation step, find �(i)
f

Use the database to get:

�
(i)

I
= F

(
VL,HL,Wp, �

(i)

f

)

�∗
= arg max�

{
�
(i)

I
(�)

}
Fit von Mises PDF: f

Ψ

(
�|�o = �∗, �1

)
Sample �̂� ∼ f

Ψ

(
𝜓|𝜇o = 𝜓∗, 𝜅1

)
Calculate initiation point: p

(i) =
[
r cos(�̂�) r sin(�̂�)

]

(3)p = [r ⋅ cos(�) r ⋅ sin(�)]
T

(4)� ∗= argmax
�∈Ψ

{�I(�)}|�f

It should be mentioned that to impose a fracture propaga-
tion step i (i.e. define the �(i)

f
) , two pieces of information 

should be provided: 1. the initiation point, generated by the 
primary stochastic process (pseudo-algorithm 1) detailed in 
this Sect. 2. the propagation direction or orientation which 
is addressed in the following section.

5.3  Secondary Stochastic Process: Modeling 
Propagation Direction

The expected propagation direction is assumed to be per-
pendicular to the major principal direction (sign convention: 
positive for tension and negative for compression). Given an 
inclination angle ( �f  ), loading conditions and the sampled 
initiation point, p , the state of stress at that point ( p ) can be 
obtained from the database described in Sect. 4.

Specifically, given the inclination angle ( �f  ) of a flaw, 
loading conditions and the sampled initiation point, p , the 
state of stress at that point ( p ) is calculated and stored in the 
form of a 2 × 2 matrix as in the following equation:

where:
Spi—state of stress at point p on the tip of the flaw in the 

ith step.
�
(p(i))
x  , �(p(i))

y —normal stresses in the x and y directions, 
respectively, at point p at the tip of the flaw ith step.

�
(p(i))
xy —shear stress at point p at the tip of the flaw in the 

ith step.
From the matrix in Eq. (5), the principal directions, major 

and minor, are obtained using singular value decomposition 
(SVD) (Wunch 2006) to calculate the eigenvalues �1 and �2 
and the corresponding eigenvectors v1 and v2. Assuming 
�1 ≥ �2 , then, v1 is the major principal directional vector, 
and v2 is the minor principal directional vector. Conse-
quently, the expected propagation direction is perpendicular 
to the directional vector v1, equivalently, along the v2 direc-
tional vector. These directional vectors can be represented 
by the following equation:

where
�—directional vector of interest.
�v—the angle corresponding to the direction vector � 

measured from the x axis.
In FracProp, the propagation direction is represented 

in terms of the propagation angle, i.e. Ωv is the random 
angle describing the propagation direction. To model this, 
the von Mises distribution, with the PDF in Eq. 1, is used. 

(5)Spi =

[
�
(p(i))
x �

(p(i))
xy

�
(p(i))
xy �

(p(i))
y

]

(6)� =
[
�x �y

]T
→ �v = tan−1

(
�y

�x

)
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Algorithm 2 shows the pseudo code that is used to obtain the 
fracture propagation direction for the i th propagation step.

Algorithm 2 Obtaining propagation direction

Determine VL,HL,Wp, �2, �
(i−1)

f
 and step length l

Use Algorithm 1 to get current propagation point, pi−1
Use the database to obtain state of stress matrix at the selected 

initiation point, i.e. Spi−1
Calculate the eigenvectors and eigenvalues of Spi−1 : 
�1, �2, �1, �2, �1 ≥ �2

Calculate the mean propagation directional angle, �∗
= tan−1

(
�2y

�2x

)

Calibrate a von Mises PDF: fΩ
(
�|�o = �∗, �2

)

Sample a propagation directional angle, �̂� ∼ f
Ω

(
𝜔|𝜇o = 𝜔∗, 𝜅2

)

Propagate according to the sampled angle such that the fracture 
propagates from pi−1 to pi such that:

pi = pi−1 + l
[
cos(�̂�) sin(�̂�)

]T
Calculate the new inclination angle: 𝜃(i)

f
= �̂�

Algorithm 2 is used to model the fracture propagation 
direction stochastically. The parameter �2 controls the uncer-
tainty in the propagation direction. Low values of �2 lead to 
high uncertainty and vice versa.

The overall model and how the components described in 
the previous sections come together are explained in more 
detail below.

5.4  Overall Model

In this section, we explain how FracProp uses its two com-
ponents—mechanics database and the stochastic processes 
(based on the von Mises distribution)—to stochastically 
model fracture initiation and propagation.

Figure 17 shows the flowchart of the FracProp model. The 
inputs for the model are listed below.

1. Loading conditions: VL;HL;WP.
2. Initiation and propagation concentration parameters �1 

and �2, respectively.
3. Material tensile strength Γrock in MPa.
4. Initial flaw dimensions: lo and wo for length and width 

(aperture), respectively.
5. Initial flaw inclination angle �(1)

f

6. Initial flaw tip center c1.
7. Fracture propagation steps dimensions: l and w for 

length and width (aperture), respectively.
The initial flaw has semicircular tip that has a width 

(aperture) w which is equal to twice the radius of the tip 
( 2r)—see Fig. (6)—and so does each of the propagation 
step. In FracProp, each propagation step has semicircular 
tip with the same width as the initial flaw. Though, FracProp 
is equipped with the mathematical capabilities to adapt to 
any width (aperture) as calculated in the following equation:

where
w0—width (aperture), of the initial flaw.
w—assumed width of the propagating crack (propaga-

tion step).
r1—radius of the tip of the initial flaw.
rifor i > 1—radius of the tip of each propagating crack 

(propagation step), which is assumed to be constant in this 
work for all propagation steps (In this work, we assume that 
ri =

wo

2
,∃i = 1,2…).

FracProp starts by calculating the major principal stress 
around the tip of the fracture using the inclination angle �f  , 
mechanics database, and principles of superposition. Ini-
tiation and propagation of a new fracture are determined 
depending on the maximum major principal stress compared 
to the tensile strength of the rock. If the maximum principal 
stress is greater than the tensile strength of the material, then 
the initiation/propagation takes place. The von Mises distri-
bution for fracture initiation is obtained with the calculated 
mean ( �∗

i
 ) and using the input concentration parameter ( �1 ). 

Then, a sample initiation point is drawn from this von Mises 
distribution, i.e. �̂i (the i—index denotes the ith step), which 
determines the point where the propagation step starts. Since 
�̂i is an angle, the coordinates of the initiation point are cal-
culated using linear algebra by extending the vector initiat-
ing from the center of the flaw tip of the ith step ( ci ) along 
the �̂i angle with step length ri as in the following equation:1

The state of stress Spi at the calculated point pi is deter-
mined based on its location with respect to the fracture tip 
from the mechanics database.

The eigenvalues ( �1,2 ) and eigenvectors ( �1,2 ) are then 
found for the corresponding stress state Spi . The �1,2 cor-
respond to the principal stresses, �1,2 correspond to the 
principal directions. Assuming �1 ≥ �2 , then, �1, �2 are the 
major and minor principal directions, respectively, since the 
analysis is in 2D, and the expected propagation direction is 
perpendicular to �1 (i.e. along �2 ). To find the expected prop-
agation angle ( �∗ ) from the vector �2 =

[
v2x v2y

]T , Eq. (9) 
is used where the i index denotes the propagation step.

(7)ri =

⎧
⎪⎨⎪⎩

w0

2
i = 1

w

2
i > 1

(8)pi = ci + ri[cos �̂�i sin �̂�i]
T

1 The center of the tip of the ith propagation step is ci . Any point on 
the semicircular path is mathematically described based on the center 
coordinates ( ci ), radius ( ri ) and angle ( ̂�i ) as in Eq. (8). This equation 
is used extensively in FracProp to transform polar coordinates to Car-
tesian coordinates (See Fig. 16).
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Fig. 17  FracProp model flow-
chart
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The fracture propagation direction angle, �∗

i
 , is used as 

the mean of the von Mises distribution (as discussed previ-
ously in Sect. 5.2), in addition to the concentration param-
eter �2 specified by the user. A sample direction angle, �̂i , is 
drawn from the fitted distribution. This angle is the propa-
gation angle for the ith step. In addition, a propagation step 
of length l is imposed from the ci along �̂i as in Eq. (10) 
yielding into the new center ( ci+1).

where ci is the center of the flaw tip at the i th step 
(Fig. 16).

Once the propagation step is imposed, the inclination 
angle �(i)

f
 is updated as the propagation direction �̂i as shown 

in Eq. (11).

This process continues until the maximum major princi-
pal stress is either no longer larger than the tensile strength 
of the material ( Γrock ) or until the fracture completely sepa-
rates the rock block.

To quantify the uncertainties associated with fracture 
initiation and propagation, FracProp uses the Monte Carlo 
technique, i.e. the procedure in Fig. 17 is repeated several 
times yielding several realizations of the initiation and 
propagation.

It is important to discuss the effect of the length of each 
propagation step on the final fracture pattern: currently, 
FracProp assumes deterministic propagation step length 
, which is provided by the user. To select this value, one 
should understand that the smaller the value ofl , the larger 
the number of steps of propagation and the more “continu-
ous” the propagation pattern looks like. Nonetheless, this is 
associated with higher computational expenses and hence, 
a balance should be sought between the desire to have con-
tinuous fracture pattern and the available computational 
resources.

Finally, it is important to point out that the von Mises 
distributions for initiation and propagation are not independ-
ent. That is, the fracture propagation direction—controlled 
by the fracture propagation von Mises distribution (second-
ary stochastic process)—depends on the sampled initiation 
point from the first von Mises distribution (primary stochas-
tic process, which models the fracture initiation), as the state 
of stress at this point determines the mean of the fracture 
propagation von Mises distribution.

(9)�∗

i
= tan−1

⎛
⎜⎜⎝
v
(i)

2y

v
(i)

2x

⎞
⎟⎟⎠

(10)ci+1 = ci + l
[
sin �̂�i cos �̂�i

]T

(11)𝜃
(i+1)

f
= �̂�i

6  Model Validation

To validate FracProp, we performed laboratory experiments 
at MIT. The experimental setup, developed by the MIT 
rock mechanics group, allows one to observe and record 
the fracturing processes with high-speed and high-resolu-
tion photography. With it, one can, for instance, distinguish 
tensile and shear cracking in detail. In addition, the flow 
of the hydraulic fracturing fluid can be observed including 
aspects such as fluid lag or lead. Acoustic emissions are 
also recorded as the tests are performed. Tests are done on 
prismatic specimens with pre-existing flaw(s) under uniaxial 
and biaxial external loads and pressurization of the flaw(s). 
Figure 18 shows a schematic of the principle of the experi-
mentation at MIT, while the overall experimental setup is 
shown in Fig. 19. It should be mentioned that the concentra-
tion parameter, � , for both von Mises distributions is set to 
25 (see Eq. 2 to check how � affects von Mises distribution).

Two experiments were compared:

7  Comparison 1

The model results were compared with a hydraulic fracture 
test on gypsum specimens with biaxial loading 
(  VL = 4.5MPa;HL = 1MPa  )  a n d  f l aw  p r e s s u r e 
(WP = 6.72MPa) . The flaw inclination angle was �(1)

f
= 90◦ . 

The results of the simulation and the lab results are shown 
in Fig. 20 in which the stochastic nature of FracProp is well 
illustrated in the 10-simulation case (on the right).

8  Comparison 2

This experiment was a dry fracture test on gypsum speci-
mens with uniaxial loading conditions ( VL = 4.5MPa ). Fig-
ure 21 shows the results of one run of the model for a verti-
cal stress of 30MPa (on the left). The same figure, on the 
right, shows 10 runs of the model for the same conditions. 
The model results compare well with the experiments by 
Wong (2008) (center of Fig. 21).

We also compared the performance of FracProp with one 
of the most widely used commercial DEM software—UDEC 
from Itasca. The results are shown in Fig. 22. The results 
show similar fracture patterns; however, FracProp takes a 
fraction of the time to run when compared with UDEC, i.e. 
few seconds vs. 3.5 h.
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9  Conclusions

In this paper, we introduced FracProp, a model and software 
for stochastic modeling of fracture propagation. FracProp 
assumes that fractures initiate on the tip of the fracture, with 
the expected initiation point being the point where the major 
principal stress is maximized. The expected propagation 

direction is assumed to be perpendicular to the major princi-
pal direction (tension). This is repeated in a stepwise process 
with the next fracture (crack) propagating at the tip of the 
preceding one. Two sources of uncertainties are addressed in 
this model: (1) uncertainties associated with initiation point 
and (2) uncertainties associated with propagation direction. 
To model fracture initiation and propagation, FracProp 

Fig. 18  Principle of the experimentation at MIT

Fig. 19  Photo of testing equip-
ment, high-resolution and high-
speed cameras and acoustic 
emissions equipment (Morgan 
2015)
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Fig. 20  FracProp simulations and MIT lab experiment for the combined loading case VL = 4.5MPa;HL = 1MPa;WP = 6.72MPa

Fig. 21  FracProp simulations and MIT lab experiment for loading case VL = 30MPa;HL = 0MPa;WP = 0MPa
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uses two compounded stochastic processes based on the 
Von Mises distribution. To obtain the mean of these two 
distributions, extensive mechanics simulations were con-
ducted in ABAQUS, with the aim of obtaining the normal 
and shear stress profiles for flaws subjected to different indi-
vidual loading conditions with different inclination angles. 
The results of these simulations were arranged in the form 
of a database. FracProp uses this database to dynamically 
retrieve normal and shear stress profiles. Using superposi-
tion, FracProp calculates the total normal and shear stresses 
for any combined loading case and the corresponding major 
principal stresses. Also, it fits the two von Mises distribu-
tions (for initiation and propagation) accordingly at each 
step of the propagation. Monte Carlo simulation is used to 
provide several realizations of the potential fracture pat-
terns. FracProp was validated with laboratory experiments 
from MIT, one for hydraulic fracturing with biaxial external 
stress (with injected fluid, vertical and horizontal loading) 
and one for a uniaxial test both conducted on gypsum speci-
mens. The results of the model were in good agreement with 
the test results. Since FracProp adopts the assumption that 
fractures are expected to initiate on the tip where the major 
principal stress is maximized, it cannot—in its current ver-
sion—model anti-wing cracks, nonetheless, FracProp can be 

improved to do so by considering shear stresses contribution 
to fracture initiation and propagation.
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