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Abstract
This paper presents a new analytical solution for deep circular tunnels in rock with consideration of disturbed zone, 3D 
strength and large strain. The rock is assumed to be elastic–brittle–plastic and governed by a 3D Hoek–Brown yield criterion. 
To take the large displacement around a tunnel into account, the large-strain theory is adopted to determine the displacement 
of rock in the plastic zone. Based on the equilibrium equation, constitutive law and large-strain theory, the governing equa-
tions for the stresses and radial displacement around the tunnel were derived and solved by using MATLAB. The proposed 
solution was validated by using it to analyze a tunnel and comparing the results with those from numerical analysis using a 
finite difference code. Finally, extensive parametric studies were performed on tunnels in both poor-quality and good-quality 
rock masses with respect to stresses and radial displacement. The results indicate that the disturbed zone and the flow rule 
both have significant effects on the stress and displacement distributions around the tunnel.
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1  Introduction

To understand the response of rock around an excavated tun-
nel and provide appropriate design for tunnel support, it is 
necessary to analyze the stress and displacement distribu-
tions around the tunnel. Cavity contraction theory has been 
widely used to analyze tunnels by considering the tunnel 
as a cylindrical cavity (Mair and Taylor 1993; Wang 1996; 
Carranza-Torres and Fairhurst 1999; Yu 2000). Early stud-
ies on cavity contraction were mostly based on the linear 
Mohr–Coulomb criterion (Florence and Schwer 1978; Ken-
nedy and Lindberg 1978). Then, the solutions for stresses 
and displacements around a tunnel were developed based 
on the original Hoek–Brown criterion with some simplify-
ing assumptions (Brown et al. 1983; Wang 1996). Carranza-
Torres and Fairhurst (1999) seem to be the first to present 
an analytical solution to the cavity contraction problem in 

the original Hoek–Brown criterion-based rock mass with-
out additional assumptions, but only the elastic–perfectly 
plastic behavior of rock mass was considered. Later, Car-
ranza-Torres (2004) updated their 1999 solution based on 
the generalized Hoek–Brown criterion. Thereafter, Sharan 
(2003, 2005, 2008) also presented solutions to the cavity 
contraction problem in an elastic–brittle–plastic rock mass 
based on both the original and generalized Hoek–Brown 
criteria. Park and Kim (2006) provided a solution to tunnel 
in an elastic–brittle–plastic rock mass, but the Mohr–Cou-
lomb criterion rather than the Hoek–Brown criterion was 
adopted as the potential function in their solution. Alonso 
et al. (2003) adopted a piecewise function to describe the 
strain-softening behavior of rock mass and presented a cor-
responding solution to the cavity contraction problem. Since 
both the Mohr–Coulomb and Hoek–Brown criteria are 2D 
strength criterion with respect to the major and minor prin-
cipal stresses, the intermediate principal stress was ignored 
in the abovementioned solutions. Wang et al. (2012) pro-
posed a more general solution to the cavity contraction 
problem in a Mohr–Coulomb criterion-based rock mass by 
considering the out-of-plane stress, but the plastic strain in 
the out-of-plane direction was simply assumed to be zero. 
More recently, to consider the large strain around a tunnel, 
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solutions based on the Mohr–Coulomb criterion were pre-
sented to analyze excavated tunnels (Park 2014; Zhang et al. 
2019).

Although many solutions have been developed for the 
rock mass around a tunnel based on the Hoek–Brown cri-
terion, none of those solutions can truly consider the 3D 
strength and the 3D plastic behavior after failure. Fur-
thermore, the small-strain theory was adopted in most 
Hoek–Brown criterion-based solutions for the calculation 
of displacement, which may overpredict the deformation 
of a tunnel with low support and large convergence (Yu 
and Houlsby 1995). To overcome those limitations, in 
this paper, a 3D version of the Hoek–Brown criterion, 
the newly modified generalized Zhang-Zhu (GZZ) cri-
terion (Chen et al. 2020), is selected to characterize the 
3D strength of rock mass, and the large-strain theory is 
applied to the plastic region near the tunnel. Since rock 
mass experiences strain softening during excavation, it 
is assumed as an elastic–brittle–plastic material. Besides, 
considering the significant influence of tunnel excavation 
on the rock mass, a disturbed zone with a disturbance 
factor D is considered. Based on those assumptions, an 
analytical solution to the cavity contraction problem in 
rock mass is developed by considering the disturbed zone, 
3D strength, and large strain of rock mass. The derived 
solution is validated by comparing the results with those 
from numerical simulations using the finite-difference 
code FLAC3D. Finally, extensive parametric studies have 
been performed on tunnels in both poor-quality and good-
quality rock masses, regarding the stress and displacement 
distributions.

2 � Rock Mass Model

The rock mass in this study is assumed to be an elastic–brit-
tle–plastic material, and the brittle behavior of the rock mass 
is controlled by the decrease in the Geological Strength 
Index (GSI). In this context, the rock mass will be governed 
first by an initial value GSIi and then a residual value GSIr 
(Fig. 1). The initial yield surface is related to GSIi and the 
residual yield surface is related to GSIr as shown in Fig. 1. 
The rock mass around a tunnel is strongly affected by the 
excavation activity, and thus a disturbed zone is included 
in the inner part of the plastic zone. A disturbance factor D 
( 0 < D ≤ 1 ) is assigned to the disturbed zone, and D = 0 is 
set for the rest of the plastic zone.

2.1 � Elastic Behavior of Rock Mass

The elastic behavior of the rock mass is assumed to obey 
Hooke’s law:

(1a)d� = Dd�e = D(d� − d�p)

(1b)� =
[
�x, �y, �z, �xy, �xz, �yz

]

(1c)D =

⎡⎢⎢⎢⎢⎢⎢⎣

a1 a2 a2
a2 a1 a2
a2 a2 a1

G

G

G

⎤⎥⎥⎥⎥⎥⎥⎦

q

p'

q

GSI = GSIi
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Residual yield function

qf
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q

Fig. 1   Simplified yield surface, stress–strain relation and brittle behavior of elastic–brittle–plastic material
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where � is the elastic constitutive matrix; E and � are 
Young’s modulus and Poisson’s ratio, respectively; and the 
superscripts e and p mean elastic and plastic, respectively.

2.2 � Yield and Potential Functions

Considering the effect of intermediate effective principal 
stress on rock behavior, Zhang and Zhu (2007) and Zhang 
(2008) extended the Hoek–Brown criterion into a 3D version 
and, to be simple, the criterion is called the GZZ criterion in 
this paper following Priest (2012). To address the smooth-
ness and nonconvexity problems of the GZZ criterion in a 
simple way, the GZZ criterion was modified by Chen et al. 
(2020) and denoted as the newly modified GZZ criterion. 

(1d)a1 = K +
4

3
G

(1e)a2 = K −
2

3
G

(1f)K =
E

3(1 − 2�)

(1g)G =
E

2(1 + �)

The newly modified GZZ criterion not only inherits the 
advantages of the Hoek–Brown criterion but also extends 
the Hoek–Brown criterion to a more general case and thus 
is adopted in this paper as the yield function, f  , as expressed 
below:

(2)

where the three transformed stress invariants I∗
1
 , I∗

2
 , and I∗

3
 

are defined by

(3a)I∗
1
= �∗

1
+ �∗

2
+ �∗

3

(3b)I∗
2
= �∗

1
�∗
2
+ �∗

2
�∗
3
+ �∗

3
�∗
1

(3c)I∗
3
= �∗

1
�∗
2
�∗
3

in which �′
1
 , �′

2
 and �′

3
 represent the effective major, interme-

diate, and minor principal stresses, respectively; mb , s and a 
are three constants for rock mass; and �c is the unconfined 
compressive strength of intact rock. The mb , s and a can be 
related to GSI by (Hoek et al. 2002)

in which D is the disturbance factor representing the level of 
blast damage and stress relaxation to the rock mass.

To simplify the derivation, all the effective principal 
stresses are normalized by �c as follows

Similarly, the newly modified GZZ criterion can be 
expressed in a dimensionless form as

(3d)�∗
1
= ��

1
+

�c

mb

s; �∗
2
= ��

2
+

�c

mb

s; �∗
3
= ��

3
+

�c

mb

s

(4a)mb = mi ⋅ exp
(
GSI − 100

28 − 14D

)

(4b)s = exp
(
GSI − 100

9 − 3D

)

(4c)a =
1

2
+

1

6

[
exp

(
−
GSI

15

)
− exp

(
−
20

3

)]

(5)∼
�i =

��
i
+

s�c

mb

�c
; i = 1,2, 3

The potential function, g , controls the post-failure behav-
ior of the rock mass. When g = f  , the flow rule is associated; 
otherwise, the flow rule is unassociated. A detailed descrip-
tion of the potential function for the unassociated case is 
provided in “Appendix”.

(6)
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1
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= 0

2.3 � Plastic Behavior of Rock Mass

The plastic strain increment is determined by (Lubliner 
1990)

where � is the plastic multiplier and (̇) denotes the rate of 
a plastic strain; e.g., 𝜀̇pr  denotes the plastic strain rate in 

(7)𝜀̇
p

ij
= 𝜆

𝜕g

𝜕𝜎�
ij
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the radial direction. � can be determined based on the so-
called consistency condition (Lubliner 1990), as detailed in 
Sect. 3.3.

2.4 � Brittle Behavior of Rock

As shown in Fig. 1, the stress state of rock mass will degrade 
to its residual value once it reaches the initial yield func-
tion. For a criterion involving only two principal stresses 
such as the Mohr–Coulomb and Hoek–Brown criteria, the 
residual stress can be easily determined, because only the 
major effective principle stress degrades when the initial 
yield function is reached. However, for a 3D strength cri-
terion, the deviatoric shear stress, q, which is a function of 
the three effective principal stresses, degrades. Therefore, 
to properly describe the brittle behavior related to the 3D 
strength criterion, two assumptions are made:

1.	 the minor effective principal stress does not change 
when the brittle behavior takes place, which is the same 
as that used for the brittle behavior of 2D strength crite-

rion-based material (Sharan 2003, 2005; Park and Kim 
2006);

2.	 both the major and intermediate effective principal 
stresses decrease when the brittle behavior takes place, 
and the relationship between the two stress components 
is determined by deformation condition, i.e., plane strain 
condition for the cylindrical cavity contraction problem 
(Wang et al. 2012; Zou et al. 2016; Singh et al 2019).

3 � Proposed Solution to Cavity Contraction 
Problem

3.1 � Cavity Contraction Problem

Figure 2 schematically shows a cylindrical cavity contraction 
problem in an infinite rock mass. The cavity (tunnel) with an 
initial radius of ra0 in a rock mass is under initial effective 
stress equal to �′

0
 . When the effective cavity pressure �′

a
 at 

the cavity wall decreases, the rock mass around the cavity 
will experience elastic deformation until the initial yielding 
occurs. If the cavity keeps on contracting, a plastic region 
will form around the cavity. The rp in the figure refers to the 

Fig. 2   Schematic diagram of 
cavity contraction problem

σ0

rra0 ra
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radius of the elastic–plastic boundary (EPB), which is origi-
nally located at the radial location of rp0 . Within the plastic 
zone, a so-called disturbed zone due to tunnel excavation and 
at a radius of d × rp ( 0 ≤ d ≤ 1 ) is considered. During the 
contraction process, an arbitrary rock particle moves inward 
from its initial radial position rx0 to the current radial posi-
tion rx and the following equilibrium equation should be 
satisfied (Yu and Rowe 1999)

where �′
r
 and ��

θ
 denote the effective radial and circumferen-

tial stresses, respectively.
To maintain consistency with the scaled criterion, the ini-

tial in situ stress and internal pressure are scaled as

Similarly, the Young’s modulus E , shear modulus G and 
the radial distance are normalized as follows:

where � is the dimensionless radial distance. In this way, the 
equilibrium Eq. (8) can be rewritten as

3.2 � Elastic Region Solution

Considering the boundary conditions of the far-field stresses, 
the radial, circumferential and out-of-plane stresses, and the 
radial displacement, at location r, can be derived as (Yu 
2000):

(8)
d��

r

dr
+

��
r
− ��

θ

r
= 0

(9a)∼
�0 =

��
0
+

s�c

mb

�c

(9b)∼
�a =

��
a
+

s�c

mb

�c

(10a)
∼

E=
E

�c

(10b)
∼

G=
G

�c
=

E

2�c(1 + �)

(10c)� =
∼
r=

r

rp

(11)d
∼
�r

d�
+

∼
�r −

∼
��

�
= 0

where �′
rp

 is the radial stress at the EPB and �′
x
 is the effective 

out-of-plane stress. So, the out-of-plane stress �′
x
  remains 

constant during the elastic stage. If �′
a
 is larger than �′

rp
 , 

no plastic region will occur; in this case, by substituting 
��
rp
= ��

a
 and rp = ra into Eq. (12), the solution for the whole 

region is determined. Equation (12) can also be expressed 
in a dimensionless form as

3.3 � Plastic Region Solution

For the Hoek–Brown criterion-based solutions, the out-of-
plane stress and strain are ignored due to the absence of the 
intermediate effective principal stress in the Hoek–Brown 
criterion. This problem can be addressed by adopting the 
newly modified GZZ criterion to describe the rock mass 
behavior. Since the deformation in the periphery of the cav-
ity (tunnel) can be large, the large-strain theory is utilized 
to define the increment of the three strain components fol-
lowing Chadwick (1959):

(12a)��
r
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0
+
(
��
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It is noted that the d�
′
r

dr
 in Eq. (8) denotes the derivation of 

�′
r
 with respect to the radial distance at a specific location, 

while (̇) in Eq. (14) describes the rate of strain and is evalu-
ated by a time variable. Since the cavity contraction problem 
is self-similar (Carranza-Torres and Fairhurst 1999), Eqs. 
(8) and (14) can be converted to differential equations in 
terms of the same similar variable by some mathematical 
manipulations. Then, a series of differential equations with 
respect to the same variable can be established as the gov-
erning equations.

To evaluate the rate of strain, the normalized radius of the 
elastic–plastic boundary, R0 , a kinematic parameter defined 
by Detournay (1986), is adopted as the time variable

Therefore, the rate of a mechanical quantity, such as 
stress, strain, and displacement, can be expressed as

Note that the kinematic parameter, R0 , can also be 
expressed by the dimensionless distance � as

By using Eq. (17), both the partial derivation with respect 
to R0 and r can now be converted to the derivation with 
respect to � via the chain rule as

Therefore, the dimensionless distance, � , can be taken 
as the similar variable to establish the governing equations 
for the cavity contraction problem. Specifically, the rates of 
radial displacement and stress components are

(14b)

𝜀̇𝜃 = −
̇[

ln

(
r
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)]
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̇[
ln
(
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r

)]
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1
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ur

r

u̇r

r
= −

1

1 −
∼
ur

𝜉

∼̇
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(14c)𝜀̇x = 0

(15)R0 =
rp
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(16)̇() =
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𝜕R0

(17)R0 =
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=

rp

r

r

ra
=

r
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1

�

(18a)̇() =
𝜕()

𝜕R0

= −
𝜉

R0

𝜕()

𝜕𝜉

(18b)
�()

�r
=

1

raR0

�()

��

(19a)

u̇r =
𝜕ur

𝜕R0

=
𝜕

(
∼
ur

r

𝜉

)

𝜕R0

= −
𝜉

R0

𝜕

(
∼
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r

𝜉

)

𝜕𝜉
= −ra𝜉

𝜕
∼
ur

𝜕𝜉
+ ra

∼
ur

Substituting Eq. (19a) back into Eq. (14), the rates of 
strain components can be rewritten as

It should be noted that the plastic strain rates in different 
directions should obey the flow rule given in Eq. (7). And 
the so-called consistency condition should be satisfied for 
the stress state on the yield surface as (Lubliner 1990)

Considering Eq. (1), flow rule, Eq. (7), and the consist-
ency condition, Eq. (21), one has

where

(19b)
∼̇
𝜎i = −

𝜉

R0

𝜕
∼
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Substituting Eq. (20) into Eq. (22a) yields

To reduce the order of the governing equation for dis-
placement, Eq. (24) can be rewritten as:

And the governing equations for the three stress com-
ponents can be determined by recasting the equilibrium 
Eqs. (11) and (22) as:
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Now, the governing equations with respect to the simi-
lar variable � for the cylindrical cavity contraction problem 
in the plastic zone are established as Eqs. (25) and (26). 
It should be noted that the governing equations are estab-
lished with the general form of the yield function f  and the 
potential function g and thus can be seen as the generalized 
formation for different 3D criteria-based cylindrical contrac-
tion solutions. Details about the derivation of the yield and 
potential functions are given in Appendix. The governing 
equations have been solved as an initial problem by using 
MATLAB. Since the rock mass in the plastic zone first 
experiences elastic deformation before yielding and then 
elastic–plastic deformation during contraction of the cavity 
(tunnel), the stress and displacement at the EPB are taken 
as the initial conditions for the governing equations in the 
plastic zone. As for the plastic zone, the parameters of the 
rock mass within and outside the disturbed zone are different 
due to the excavation effect, and stress degradation also takes 
place at the disturbed zone boundary (DZB). An iterative 
algorithm is proposed to calculate the residual stresses at 
the DZB, as detailed later.

3.4 � Elastic–Plastic Boundary Conditions

As discussed earlier, the stress and displacement conditions 
at the EPB should be taken as the initial values for the gov-
erning equations in the plastic zone. Also, both the elastic 
and plastic solutions should be applicable at the EPB. For 
a poor-quality rock mass, an elastic–perfectly plastic model 
can be used and, in this case, all the stress components 
should be continuous at the EPB. Therefore,

(26b)
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��
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where �′
rp

 can be obtained using a Newton’s method-based 
algorithm as shown in Fig. 3a.

However, a good-quality rock mass may experience a 
significant strength degradation after yielding as shown in 
Fig. 1. As stated in Sect. 2.4, only the radial stress (the minor 

(27d)∼
��p =

��
�p
+

s�c

mb

�c
=

2��
0
− ��

rp
+

s�c

mb

�c

(27e)∼
�xp =

��
0
+

s�c

mb

�c

effective principal stress) and displacement would be con-
tinuous at the EPB. Both the circumferential stress and the 
out-of-plane stress reduce to their residual values according 
to the plane strain condition (Wang et al. 2012; Zou et al. 
2016; Singh et al 2019)

or

(28)Δ�z =
1

E

[
��
xpr

− �

(
��
rp
+ ��

�pr

)
− (1 − 2�)��

0

]
= 0

(29)��
xpr

= �

(
��
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0

(a)                                                                            (b) 

Start

Calculate the initial estimation for : Set i=1,

Update the estimation for : i=i+1,

No

Final estimation for :

Set 

Yes

End

Start

Calculate the initial estimation for : Set i=1, 

=0, ; recalculate the rock 

mass parameters based on D and Eq. (4)

No

Final estimation for :

Set 

Yes

End

Update : i=i+1, Update : i=i+1,

Yes

No

Set 

Fig. 3   a Newton’s method-based algorithm for determination of radial stress and b bisection method-based algorithm for determination of resid-
ual circumferential stress at elastic–plastic boundary
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Fig. 4   Flow chart for solving 
plastic region with considera-
tion of disturbed zone Start

Initial estimations of : , 

Set: , , ,

, , 

Update , , , and by 

numerically integrating Eqs. (25) and (26); 

Stop

No                                             Yes             

Determine , , from 

Eq. (4) with GSI and D = 0

Input boundary values at EPB: , , , , , , 

GSI, D and ratio d of the damaged zone to the plastic zone, i = 1

Determine , , from 

Eq. (4) with GSI and D

Yes

No

Output , , , 

Yes                                                                No              

Table 1   Rock mass properties 
for different zones

EPP  elastic–perfectly plastic, EBP  elastic–brittle–plastic

Rock mass Elastic zone Plastic zone (undis-
turbed)

Disturbed zone Model type

Poor-quality D = 0 GSI, D = 0 GSI, D = 0 GSI, D = 0 EPP
Poor-quality D ≠ 0 GSI, D = 0 GSI, D = 0 GSI, D EPP
Good quality D = 0 GSIi, D = 0 GSIr, D = 0 GSIr, D = 0 EBP
Good quality D ≠ 0 GSIi, D = 0 GSIr, D = 0 GSIr, D EBP
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Therefore, the residual yield function can be seen as a 
function with only one variable, �′

�pr
 . A bisection method-

based algorithm is proposed to determine �′
�pr

 as shown in 
Fig. 3b. Finally, the obtained �′

�pr
 and �′

xpr
 can be used to 

replace the �′
�p

 and �′
xp

 in Eq. (27) to determine the EPB of 
the elastic–brittle–plastic response.

3.5 � Disturbed Zone Boundary Conditions

Within the disturbed zone, the disturbance factor D is in the 
range of (0, 1], and outside the disturbed zone, D = 0. Hence, 

stress degradation also takes place at the disturbed zone 
boundary (DZB). In this case, by replacing �′

rp
 , �′

�p
 and �′

xp
 

in Eq. (28) with the initial stresses �′
rB

 , �′
�B

 and �′
xB

  at the 
DZB, the residual stresses �′

rBr
 , �′

�Br
 and �′

xBr
 at the DZB can 

be determined following the same procedure as shown in 
Fig. 3b. However, the initial stresses and the normalized 
displacement �B at the DZB cannot be explicitly expressed 
due to the complex stress–displacement relation within the 
plastic zone. Therefore, an iterative algorithm as shown in 
Fig. 4 is proposed for the case when the plastic zone contains 
a disturbed zone with d < 1.

Table 2   Rock mass properties 
for verification

EPP  elastic–perfectly plastic, EBP  elastic–brittle–plastic

Model type �c
(MPa)

E

(GPa)
� mbi

(mbr)
si sr a �′

0

(MPa)
�′
a

(MPa)
Dilation angle, � (°)

EPP 30 5.5 0.25 1.7 0.0039 0.0039 0.5057 30 5 0 (Unassociated)
EBP 30 5.5 0.25 1.7 1 0.0039 0.5057 30 5 0 (Unassociated)

Fig. 5   FLAC3D model of a tun-
nel problem



1401Analytical Solution for Deep Circular Tunnels in Rock with Consideration of Disturbed zone,…

1 3

3.6 � Rock Mass Parameters in Elastic, Plastic 
and Disturbed Zones

The rock mass parameters in the various zones (elastic, plastic 
and disturbed) are different due to the excavation disturbance 
and the brittle behavior considered in the study. To be clear, 
Table 1 summarizes the parameters in each zone for both 
poor-quality and good-quality rock masses. With the GSI 
and D in Table 1, other rock mass parameters can be deter-
mined by using Eq. (4). For poor-quality rock masses, GSI 
is a constant for the whole region, while GSIi and GSIr are 
defined separately for the good-quality rock masses. Hence, 
the poor-quality rock mass can be regarded as an elastic–per-
fectly plastic material, while good-quality rock masses exhibit 
brittle properties.

4 � Validation of Proposed Solution

To validate the proposed solution for both elastic–perfectly 
plastic (EPP) and elastic–brittle–plastic (EBP) rock masses, 
a cylindrical cavity (tunnel) contraction problem studied by 
Carranza-Torres and Fairhurst (1999) is analyzed. The tun-
nel has a diameter of 10 m and is buried 400 m deep in a 
rock mass. Table 2 summarizes the rock mass properties for 
the EPP and EBP models, respectively, for both the proposed 
solution and numerical simulations. The numerical simula-
tion was conducted using finite-difference code FLAC3D 
with a user-defined constitutive model based on the newly 
modified GZZ criterion (Chen et al. 2020). Figure 5 shows 
the quarter model used for the numerical simulation. The 
model consists of 3600 elements with increasing size away 

, 
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Fig. 6   Comparison proposed analytical solution, Hoek–Brown crite-
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ponents and b distribution of normalized radial displacement around 
a tunnel in a rock mass with GSI = 50, D = 0, and at small-strain con-
dition
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Fig. 7   Comparison of the proposed analytical solution and numeri-
cal results from FLAC3D with elastic–brittle–plastic model: a dis-
tribution of normalized stress components and b distribution of 
normalized radial displacement around a tunnel in a rock mass with 
GSI = 50, D = 0, and at large-strain condition
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from the tunnel. The symmetric boundaries are restricted in 
the normal direction, while the displacement of the far-field 
boundary is set as zero. In the numerical simulation, the 
initial stress state is first applied throughout the domain, and 
then the tunnel is excavated.

Figure 6 presents the comparison between the numerical 
results, the analytical solution based on the Hoek–Brown 
criterion from Carranza-Torres and Fairhurst (1999) and 
the proposed solution for the cylindrical cavity contraction 
problem with the EPP model, all considering the small-
strain condition to keep consistency with Carranza-Torres 
and Fairhurst (1999). As can be seen, the proposed solu-
tion is in good agreement with the numerical results, which 
verifies the correctness of the proposed solution. A careful 
inspection of the proposed solution and that based on the 
Hoek–Brown criterion reveals the slight difference in the 
magnitude of radial displacements and the range of the plas-
tic zone between those two solutions. Specifically, the pro-
posed solution gives slightly smaller radial displacement but 
slightly higher circumferential stress than the Hoek–Brown 
criterion-based solution. This is because of the ignorance of 
the out-of-plane stress and the adoption of the infinitesimal 
strain theory in the Hoek–Brown criterion-based solution.

Figure 7 compares the numerical results and the proposed 
solution for the cavity contraction problem with the EBP 
model at the large-strain condition. Again, the proposed 
solution is in good agreement with the numerical results 
regarding both stresses and radial displacements.

5 � Applications

To demonstrate the applications of the proposed solution, 
it is applied to analyze two tunnels, one in a poor-quality 
rock mass and the other in a good-quality rock mass. The 
two application examples also systematically study the effect 
of main factors on the tunneling-induced ground response.

5.1 � Tunnel in Poor‑Quality Rock Mass

Following Carranza-Torres and Fairhurst (1999), a 
10-m-radius tunnel in a poor-quality rock mass at 400 m 
below the ground surface, with in situ stress of 10 MPa, is 
analyzed. The related rock mass parameters are summarized 
in Table 3. For the poor-quality rock mass, the GSI value is 
assumed to be constant during the excavation process. The 
size of the disturbed zone where the disturbance factor D is 
assigned is affected by the specific tunneling method and 
often roughly estimated (Hoek et al. 2002). For instance, 
Hedayat and Weems (2019) assumed a disturbed zone to 

Table 3   Tunnel geometry and rock mass parameters (case 1)

Radius of opening, r
0
 (m) 10

Young’s modulus, E  (GPa) 5.5 for GSI = 50
3.0 for GSI = 40
1.8 for GSI = 30

Poisson’s ratio, � 0.25
In situ stress, �

0
 (MPa) 10

GSI 50, 40 and 30
�c (MPa) 30
mi 10
D 0, 0.5 and 0.8
mb 1.68 for GSI = 50, D = 0

0.92 for GSI = 50, D = 0.5
0.51 for GSI = 50, D = 0.8
1.17 for GSI = 40, D = 0
0.82 for GSI = 30, D = 0

s 0.0039 for GSI = 50, D = 0
0.0013 for GSI = 50, D = 0.5
0.0005 for GSI = 50, D = 0.8
0.0013 for GSI = 40, D = 0
0.0004 for GSI = 30, D = 0

a 0.5057
Dilation angle, � (°) 0 (Unassociated)
Disturbed zone radius to plastic zone 

radius ratio d
0.25, 0.5 and 1
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Fig. 8   Distribution of a stresses and b radial displacement around 
tunnel in poor-quality rock mass with different GSI values, D = 0 and 
d = 1
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be half of the plastic region. In this study, to be general, the 
size of the disturbed zone is described by the disturbed zone 
radius to plastic zone radius ratio (d) as shown in Fig. 2. The 
effects of rock properties, disturbance factor D (representing 
the effect of construction), large strain, flow rule and ratio d 
are systematically studied. For the case with an unassociated 
flow rule, a dilation angle of 0° is used.

5.1.1 � Effect of GSI

Figure 8 compares the predicted stress and radial displace-
ment distributions around the tunnel in poor-quality rock mass 
with different GSI values, D = 0, d = 1, using both associated 
and unassociated flow rules, and considering both small-strain 

and large-strain conditions. As GSI increases, the radial stress 
is larger in both the plastic and elastic zones but the circum-
ferential stress is larger in the plastic zone and slightly larger 
close to the EPB and smaller in the elastic zone. As for the 
out-of-plane stress, it is larger in the plastic zone and remains 
the same in the elastic zone when GSI is larger. As expected, 
at a higher GSI, both the plastic zone size and the radial dis-
placement are smaller. The flow rules show no influence on 
the distribution of stresses, while the radial displacement 
within the plastic zone is much smaller when the unassociated 
flow rule is applied. The adoption of small strain or large stain 
does not affect the stress distribution results, but the small-
strain solution predicts slightly larger radial displacement. The 
difference between the small-strain and large-strain solutions 
regarding the radial displacement increases with smaller GSI 
or larger total displacement.

Figure 9 plots the normalized wall radial displacement 
and EPB location versus the normalized cavity pressure for 
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Fig. 9   a Wall radial displacement and b elastic–plastic boundary 
radius versus cavity pressure in poor-quality rock mass with different 
GSI values, D = 0, d = 1, and at large-strain condition

Fig. 10   Distribution of a stresses and b radial displacement around 
tunnel in poor-quality rock mass with GSI = 50, different disturbance 
factor D values and d = 1
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a tunnel in poor-quality rock mass with different GSI values, 
D = 0, d = 1, using both associated and unassociated flow 
rules, and considering large-strain condition. This figure can 
be used to estimate both the extent of the plastic zone and the 
convergence of a tunnel at different equivalent support pres-
sures denoted by the normalized cavity pressure and thus 
can serve as a design chart for tunnel engineers. Due to the 
smaller deformation modulus and lower strength, the tun-
nel convergence in a rock mass with smaller GSI increases 
much more remarkably with the decrease in the cavity pres-
sure. To control the tunnel convergence, stronger support is 
needed for a tunnel in a poor-quality rock mass with smaller 

GSI. The size of the plastic zone increases when the GSI 
is smaller or the cavity pressure is lower. The wall radial 
displacement under the associated flow rule is much larger 
than that under the unassociated flow rule, but the flow rule 
does not affect the size of the plastic zone.

5.1.2 � Effect of Disturbance Factor

To explore the effect of disturbance factor D on the tun-
neling-induced ground response, the tunnels in a rock mass 
with GSI = 50, different D values, and d = 1 are analyzed 
using both associated and unassociated rules and consider-
ing both small-strain and large-strain conditions. Figure 10 
shows the distribution of the three normalized stress compo-
nents, ��

r
∕��

0
 , ��

�
∕��

0
 and ��

x
∕��

0
 , and the normalized radial dis-

placement ur∕ra0 versus the normalized radial distance from 

Fig. 11   a Wall radial displacement and b elastic–plastic boundary 
radius versus cavity pressure in poor-quality rock mass with GSI = 50, 
different disturbance factor D, d = 1, and at large-strain condition

Fig. 12   Distribution of a stresses and b radial displacement around 
tunnel in poor-quality rock mass with GSI = 50, D = 0.8, different 
disturbed zone radius/plastic zone radius ratio d values, and at large-
strain condition
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the tunnel wall r∕ra . As clearly seen from Fig. 10a, when D 
increases, the plastic zone becomes larger. At a higher D, the 
radial stress decreases in both the plastic and elastic zones, 
while the circumferential stress decreases in the plastic zone 
and increases within the elastic zone. As for the out-of-plane 
stress, it decreases in the plastic zone and keeps constant 
within the elastic zone when D increases. It needs to be 
noted that the stresses at the specific EPB locations do not 
change with D. As for the radial displacement, as shown in 
Fig. 10b, it increases significantly, especially in the plastic 
zone, when D increases (i.e., poorer excavation method). 
The radial wall displacement (at r∕ra = 0) more than dou-
bles when D goes from 0 to 0.8. As expected, the stress 
distributions of the associated and unassociated cases are the 
same, while the radial displacement is much larger when the 
associated flow rule is applied. Hence, using a proper flow 
rule should be given particular attention in the analysis and 
design of a tunnel. Again, the adoption of small strain or 
large strain does not affect the stress distribution results, but 
the small-strain solution gives slightly larger radial displace-
ment as expected. The difference between the small-strain 
and large-strain solutions regarding the radial displacement 
increases with larger D or larger total displacement.

Figure 11 depicts the normalized wall radial displacement 
and EPB location versus the normalized cavity pressure for a 
tunnel in poor-quality rock mass with GSI = 50, different D 
values d = 1, using both associated and unassociated rules, 
and considering large-strain condition. When the cavity pres-
sure (i.e., the tunnel support) is high enough, 𝜎�

a
∕𝜎�

0
> 0.279 

in this case, no plastic zone is formed and the disturbance 
factor has no effect on the wall radial displacement because 
the disturbance factor is only assigned in the plastic zone. 
However, if the cavity pressure is not high enough and the 
plastic zone forms, a larger disturbance factor D (or poorer 
excavation method) increases the wall radial displacement 
and the effect of D becomes more significant at a smaller 
cavity pressure. This again confirms the importance of suffi-
cient cavity pressure (or tunnel support). On the other hand, 
as expected, the flow rule does not affect the linear elastic 
segment of the wall radial displacement curve but adopting 
the associated flow rule results in much larger wall radial 
displacement within the plastic zone as shown in Fig. 11a. 
When the cavity pressure is small, 𝜎�

a
∕𝜎�

0
< 0.279 in this 

case, the plastic zone is formed and the size of the plastic 
zone increases with lower cavity pressure or larger distur-
bance factor D (or poorer excavation method), as shown in 

Table 4   Tunnel geometry and 
rock mass parameters (case 2) Radius of opening, r

0
 (m) 7

Young’s modulus, E (GPa) 45 for GSIi = 75
24 for GSIi = 64.9
14 for GSIi = 55

Poisson’s ratio,� 0.25
In situ stress, �

0
 (MPa) 26

GSIi 55, 64.9 and 75
GSIr 27.8
�c (MPa) 162
mi 19
D 0, 0.5 and 0.8
mb 3.81 (initial) and 1.44 (residual) for D = 0, GSIi = 55

7.78 (initial) and 1.44 (residual) for D = 0, GSIi = 75
5.42 (initial) and 1.44 (residual) for D = 0, GSIi = 64.9
5.78 (initial) and 0.61 (residual) for D = 0.5, GSIi = 75
4.29 (initial) and 0.26 (residual) for D = 0.8, GSIi = 75

s 6.70 × 10–3 (initial) and 3.24 × 10–4 (residual) for 
D = 0, GSIi = 55

6.22 × 10–2 (initial) and 3.24 × 10–4 (residual) for 
D = 0, GSIi = 75

2.02 × 10–2 (initial) and 3.24 × 10–4 (residual) for 
D = 0, GSIi = 64.9

3.57 × 10–2 (initial) and 6.59 × 10–5 (residual) D = 0.5, 
GSIi = 75

2.26 × 10–2 (initial) and 1.77 × 10–5 (residual) for 
D = 0.8, GSIi = 75

a 0.504 (initial) and 0.5259 (residual) for GSIi = 55
0.501 (initial) and 0.5259 (residual) for GSIi = 75
0.502 (initial) and 0.5259 (residual) for GSIi = 64.9

Dilation angle, � (°) 0 (Unassociated)
Disturbed zone radius/plastic zone radius ratio d 0.25, 0.5 and 1
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Fig. 11b. Again, the flow rule has no effect on the size of 
the plastic zone.

5.1.3 � Effect of Disturbed Zone Size

Figure 12 shows the distribution of stresses and radial dis-
placement around a tunnel in a poor-quality rock mass with 
GSI = 50, D = 0.8, different disturbed zone sizes represented 
by the disturbed zone radius/plastic zone radius ratio (d), 
using both associated and unassociated rules, and consider-
ing large-strain condition. As d increases, the plastic zone 
expands, and the stresses remain the same in the disturbed 
zone and decrease within the undisturbed plastic zone. In 
the elastic zone, the radial stress decreases, the circumferen-
tial stress increases and the out-of-plane stress remains the 
same with increasing d. As expected, the radial displacement 
increases with a higher ratio d for both associated and unas-
sociated cases.

5.2 � Tunnel in Good‑Quality Rock Mass

Following Alejano et  al. (2009), a 14-m-diameter tun-
nel excavated at a depth of 1000 m in a good-quality rock 
mass is analyzed in this section. Besides using the initial 
GSI = 64.9 considered by Alejano et al. (2009), two other 
initial GSI values of 55 and 75 are also used to study the 
effect of the initial GSI. Considering the residual strength 
of the same rock mass with different initial GSI values to 
be identical, GSIr = 27.8 is assigned to all the three cases 
considered. The dilation angle for the unassociated case is 
assumed to be 0°. Three disturbed zone sizes represented 
by the disturbed zone radius/plastic zone radius ratio d are 

Fig. 13   Distribution of a stresses and b radial displacement around 
tunnel in good-quality rock mass with different GSIi values and D = 0, 
d = 1, and at large-strain condition

Fig. 14   a Wall radial displacement and b elastic–plastic boundary 
radius versus cavity pressure in good-quality rock mass with different 
GSIi values, D = 0, d = 1, and at large-strain condition
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considered in the analysis. The properties of the rock mass 
and tunnel are summarized in Table 4. In the following, only 
the results at large-strain condition are presented because the 
difference between small and large-strain solutions is almost 
negligible for good-quality rock masses.

5.2.1 � Effect of Initial GSI

Figure 13 shows the distribution of normalized stresses and 
normalized radial displacement around the tunnel with dif-
ferent initial GSI values, D = 0, d = 1, using both associated 
and unassociated flow rules, and considering large-strain 
condition. The effect of the initial GSI on the stresses and 
radial displacement is similar to that in the poor-quality rock 
mass case shown in Fig. 8, but the size of plastic zone and 
the radial displacement are both smaller and the circumfer-
ential stress at the EPB is higher due to the higher strength 

of the rock mass. As for the flow rule, just like the case in 
the poor-quality rock mass, it only affects the radial displace-
ment within the plastic zone, with the associated flow rule 
giving much larger radial displacement than the unassoci-
ated flow rule.

Figure 14 shows the normalized wall radial displacement 
and EPB location versus the normalized cavity pressure in 
good-quality rock mass with different initial GSI values, 
D = 0, d = 1, using both associated and unassociated flow 
rules, and considering the large-strain condition. The trend is 
very similar to that in the poor-quality rock mass case shown 

Fig. 15   Distribution of a stresses and b radial displacement around 
tunnel in good-quality rock mass with GSIi = 75, different disturbance 
factor D, d = 1 and at large-strain condition

Fig. 16   a Wall radial displacement and b elastic–plastic bound-
ary radius versus cavity pressure in good-quality rock mass with 
GSIi = 75, different disturbance factor D, d = 1 and at large-strain con-
dition
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in Fig. 9, except the cavity pressure at which the plastic zone 
starts to form, the size of the plastic zone and the wall radial 
displacement (tunnel convergence) are all much smaller due 
to the good quality of rock mass.

5.2.2 � Effect of Disturbance Factor

Figure 15 illustrates the normalized stress distributions and 
normalized radial displacement around the tunnel with dif-
ferent D values, d = 1, using both associated and unassoci-
ated rules, and considering large-strain condition. All the 
cases are analyzed with the initial GSI = 75. The effect of the 
disturbance factor D and flow rule on the stresses and radial 
displacement is similar to that in the poor-quality rock mass 
case shown in Fig. 10. However, due to the good quality 
of the rock mass, the size of the plastic zone and the radial 
displacement are both much smaller.

Figure 16 shows the normalized wall radial displacement 
and EPB location versus the normalized cavity pressure for 
a tunnel in good-quality rock mass with the initial GSI = 

75, different disturbance factor D values, d = 1, using both 
associated and unassociated rules, and considering large-
strain condition. The trend is very similar to that in the 
poor-quality rock mass case shown in Fig. 11. The major 
difference is that, due to the good quality of rock mass, at 
the cavity pressure at which the plastic zone starts to form, 
the size of the plastic zone and the wall radial displacement 
(tunnel convergence) are all much smaller.

5.2.3 � Effect of Disturbed Zone Size

Figure 17 shows the distribution of normalized stresses 
and radial displacement around the tunnel with GSIi= 75, 
D = 0.8, different d values, using both associated and unasso-
ciated flow rules, and considering the large-strain condition. 
The effect of the disturbed zone size represented by d is very 
similar to that in Fig. 12 for poor-quality rock mass. How-
ever, due to the higher strength of good-quality rock mass, 
the size of the plastic zone and the radial displacement value 
are both much smaller and the effect of the disturbed zone is 
smaller compared with that for the poor-quality rock mass.

6 � Conclusion

A new analytical solution for deep circular tunnels in rock 
is developed by using the newly modified GZZ criterion and 
considering the effects of disturbed zone, 3D strength and 
large strain of the rock mass around the tunnel. The pro-
posed solution is validated by comparing it with the numeri-
cal results obtained from simulations using finite-difference 
code FLAC3D. Finally, extensive parametric studies are per-
formed by using the proposed solution to analyze tunnels in 
both poor-quality and good-quality rock masses. The follow-
ing conclusions can be drawn based on the study:

1.	 Ignoring the intermediate principal stress could overpre-
dict the plastic zone and the radial displacement of the 
ground.

2.	 While the flow rule does not affect the stress distribution 
and the size of the plastic zone, the radial displacement 
predicted using the associated flow rule could be much 
larger than that using the unassociated flow rule with 
a dilation angle of 0◦ . Hence, it is important to use a 
proper flow rule in the analysis and design of a tunnel.

3.	 The GSI, disturbance factor D (related to construction 
method) and disturbed zone radius/plastic zone radius 
ratio d all have significant effects on the stress distribu-
tion, the size of the plastic zone and the radial displace-
ment. It is therefore important to determine the right 
GSI, D and d for the analysis and design of a tunnel.

4.	 The cavity pressure (tunnel support) has a significant 
effect on the size of the plastic zone and the radial dis-

Fig. 17   Distribution of a stresses and b radial displacement around 
tunnel in good-quality rock mass with GSIi = 75, D = 0.8, different 
disturbed zone radius/plastic zone radius ratios d and at large-strain 
condition



1409Analytical Solution for Deep Circular Tunnels in Rock with Consideration of Disturbed zone,…

1 3

placement when the cavity pressure is smaller than the 
one at which the plastic zone starts to form. The cav-
ity pressure at which the plastic zone starts to form is 
closely related to the rock mass quality; the one for a 
good-quality rock mass could be much smaller than that 
for a poor-quality rock mass.

Appendix

Derivatives of Yield Function and Potential Function

For the consistency condition, Eq. (21), the derivatives in 
the three directions can be given as
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Ĩ∗
2
− 9Ĩ∗
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Equations for Iterative Algorithms

For the cylindrical cavity contraction problem, the yield 
function in terms of �rp can be simplified as
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