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Abstract
The fracture-induced electromagnetic radiation (FEMR) method is a promising geophysical method for the monitoring 
and early warning of coal-rock burst disasters. At present, the time-series characteristics of FEMR data are primarily used 
for rock burst monitoring and early warning. However, these rock burst precursor signal identification and hazard warning 
methods need further development. The progress made in the field of deep learning provides a new method for the identifi-
cation of rock burst warning signals and the realization of intelligent early warning. In this paper, based on a deep learning 
algorithm, a method for identifying rock burst precursor FEMR signals is proposed. Based on bidirectional long short-term 
memory recurrent neural networks, this method trains and validates the model by analyzing a large number of normal FEMR 
signals and rock burst FEMR precursor signals. The input of the model is the FEMR data sequence, and the corresponding 
output is the hazard identification result. Upon the completion of training and validation, the model can perform automatic/
intelligent shock hazard precursor signal recognition and quickly and accurately provide rock burst hazard early warning 
without requiring parameter adjustment and manual intervention. The results obtained showed that the rock burst precursor 
signal recognition method based on the recurrent neural network responds well to the rock burst hazard and can capture 
information regarding impact hazards in advance. Therefore, it is of great significance with regard to accurate rock burst 
monitoring and early warning.

Keywords  Rock burst · Fracture-induced electromagnetic radiation · Monitoring and early warning · Deep learning · 
Intelligence

List of symbols
Ht	� The hidden variable at time step, t
Φ	� The hidden layer activation function
Xt	� The input at time step, t

Wxh	� The hidden layer weight parameter at time step, 
t

Ht−1	� The hidden variable at time step, t − 1
Whh	� The hidden layer weight parameter at time step, 

t − 1
bh	� The hidden layer deviation parameter
Ot	� At the output layer at time step, t
Whq	� The weight parameters of the output layer
bq	� The deviation parameters of the output layer
LSTM	� Long short-term memory
It	� The input gate at time step, t
Ft	� The forget gate at time step, t
Ot	� The output gate at time step, t
Ct´	� The candidate memory cells
Ct	� The memory cell
��⃗Ht	� The forward hidden state
�⃖��Ht	� The reverse hidden state

MXNet	� Deep learning library chosen by Amazon
API	� Application programming interface
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Gluon	� Open source deep learning library
GPU	� Graphics processing unit
FEMR	� FRAC​TUR​E-induced electromagnetic radiation
RNN	� Recurrent neural network
Adam	� A method for stochastic optimization, that 

the name is derived from adaptive moment 
estimation

Softmax	� Logistic regression model

1  Introduction

A rock burst disaster is a phenomenon whereby the elas-
tic deformation potential energy that has accumulated in 
coal and rock masses located close to excavation spaces or 
roadways is suddenly and violently released under certain 
conditions. It is one of the major safety hazards associated 
with deep well minsssses, and it often leads to serious per-
sonnel casualties as well as property damage (He et al. 2010; 
Mansurov 2001). Therefore, obtaining advanced informa-
tion on its occurrence is essential. Such information will 
facilitate early warning, which can effectively bring about 
a decrease in the associated damage. The fracture-induced 
electromagnetic radiation (FEMR) method is a typical geo-
physical monitoring method. The generation mechanism, 
characteristics, and propagation features of FEMR from coal 
rocks have been investigated (Baddari et al. 2011; Carpinteri 
et al. 2012; Freund and Sornette 2007; Frid and Vozoff 2005; 
Potirakis et al. 2019a). Additionally, the evaluation index, 
precursor law, monitoring system, data processing method, 
and software associated with rock burst FEMR monitoring 
and early warning have also been investigated in several 
studies (Bahat et al. 2002; Contoyiannis et al. 2016; Das 
et al. 2020; Frid et al. 2003). Recently, remote monitoring 
and early warning methods as well as automatic interfer-
ence signal identification and filtering methods have been 
developed, and comprehensive early warning guidelines 
have been established (Qiu et al. 2018; Wang et al. 2011, 
2009). Thus, the FEMR monitoring process is convenient, 
the monitoring data are continuous, and the response to pre-
cursory rock burst information as well as early warning is 
effective (Kumar et al. 2017; Lacidogna et al. 2011; Potirakis 
et al. 2019b). However, existing rock burst FEMR and early 
warning analyses often rely heavily on manual procedures, 
which makes the identification of precursory anomalies dif-
ficult (Fukui et al. 2005; Liu and Wang 2018). Additionally, 
the accuracy and timeliness of the impact hazard identifica-
tion still need further improvement.

With improvements in computing power as well as the 
explosive growth of data volume, significant progress has 
been made in the algorithms and applications of various 
deep learning models (Bassam et al. 2010; LeCun et al. 
2015; Schmidhuber 2015). Deep learning has facilitated 

the realization of major breakthroughs in computer vision 
(Karimpouli and Tahmasebi 2019; Krizhevsky et al. 2017; 
Smirnov et al. 2014; Xiong and Zuo 2016), natural language 
processing (Kombrink et al. 2011; Lee 2000; Mikolov et al. 
2010), and other fields (Shelhamer et al. 2017; Srivastava 
et al. 2014). In geophysics, the most common applications 
of deep learning lies in seismic data processing and auto-
mation (Sun et al. 2020; Wrona et al. 2018). Besides, deep 
learning has also been applied in other geophysical methods 
like convolutional neural networks (CNNs). CNNs, which 
can not only denoise images (Zhang et al. 2017), but also 
effectively remove random noise, boast stronger denoising 
capabilities compared with conventional denoising algo-
rithms (Yu et al. 2019). Deep learning can also be applied 
to various complex seismic scattering wavefield inversion, 
lithology identification, fluid identification in the pores of 
sandstone reservoirs, and reservoir prediction (Spichak and 
Popova 2000; Sun et al. 2020).

Long short-term memory recurrent neural networks 
(LSTM-RNNs), which are extensively used in the field of 
natural language processing, provide new insights for time-
series data processing (Donahue et al. 2017; Greff et al. 
2017). Unlike CNNs which can effectively process spatial 
information, RNNs are designed for better processing of 
temporal information. They use hidden states to store his-
torical information and combine current inputs to determine 
current outputs (Palangi et al. 2016; Sudakov et al. 2019; 
Zhao et al. 2017). RNNs are often used to process sequence 
data such as a paragraph of text or sound. Given that FEMR 
data belong to a typical time-series data, its processing using 
RNNs can lead to the realization of intelligent rock burst 
monitoring and early warning.

In this study, the principles related to RNNs were 
expounded, and the method employed to identify rock burst 
precursor FEMR signals was described. Additionally, the 
early warning effect of the rock burst hazard was investigated 
in combination with an actual case.

2 � Relevant Principles of RNNs

2.1 � RNNs with Hidden States

As shown in Fig. 1, when the input data show a time cor-
relation, the hidden variable at time step, t, is Ht, the hidden 
layer activation function is Φ, the input at time step, t, is 
Xt, the hidden layer weight parameter at time step, t, is Wxh, 
the hidden variable at time step, t − 1, is Ht−1, the hidden 
layer weight parameter at time step, t − 1, is Whh and the 
hidden layer deviation parameter is bh. Ht was calculated by 
combining the input, Xt and the hidden state, Ht−1 into the 
fully connected layer with activation function, Φ, as follows:
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Hidden variables are also known as hidden states. Since 
Ht−1 was used in the calculation of Ht, it implied that the calcu-
lation is cyclic, and such a network that uses cyclic calculation 
is referred to as a cyclic neural network. The calculation of the 
output, Ot, at the output layer at time step, t, was as follows:

The parameters of the RNN include the weight (Wxh and 
Whh) and deviation (bh) parameters of the hidden layer, and 
the weight (Whq) and deviation (bq) parameters of the output 
layer. There was no increase in the number of parameters, and 
to determine the hidden state, Ht+1, Ht was employed and fed 
into the fully connected output layer at time step, t (LeCun 
et al. 2015).

2.2 � LSTM

To address the problem of gradient attenuation or gradient 
explosion that is common with RNNs and capture the connec-
tions between data with large spans of time step distances, a 
gated RNN model has been proposed. For example, the well-
known LSTM-RNN, into which input gates, forget gates, out-
put gates, and memory cells have been introduced to record 
data (Lee 2000).

As shown in Fig. 2, the input into the LSTM gate was input 
Xt and the hidden state, Ht−1. The output was calculated from 
the fully connected layer that is characterized by a sigmoid 
activation function. The input gate, It, the forget gate, Ft, and 
the output gate, Ot, at time step, t, were calculated as follows:

(1)Ht = Φ(XtWxh + Ht−1Whh + bh)

(2)Ot = HtWhq + bq

(3)It = �(XtWxi + Ht−1Whi + bi)

(4)Ft = �(XtWxf + Ht−1Whf + bf )

(5)Ot = �(XtWxo + Ht−1Who
+ b

o
)

where Wxi, Wxf, Wxo, Whi, Whf, and Who are weight param-
eters, while bi, bf, and bo are deviation parameters.

LSTM, which uses the tanh function as the activation 
function, requires candidate memory cells, C′

t
 , which at time 

step, t, were calculated as follows:

where Wxc and Whc are the weight parameters, while bc is the 
deviation parameter.

The calculation of the memory cell, Ct, was as follows:

Additionally, the hidden state, Ht, was calculated as 
follows:

By combining the data in the memory cell, Ct−1, and the 
candidate memory cell, Ct´, the memory cell, Ct, controlled 
the flow of data through the input gate, It, and the forget 
gate, Ft. The input gate, It, controlled how the input, Xt, 
entered the memory cell, Ct, through the candidate memory 
cells, Ct´, and the forget gate, Ft, controlled how data in the 
memory cell, Ct−1, entered the time step, t. If the forget gate, 
Ft, was always ~ 1 and the input gate, It, was ~ 0, the past 
memory cells were retained and passed onto the current time 
step (Kombrink et al. 2011).

2.3 � Bidirectional RNNs

In the previous RNN model, data flow from front to back 
through the hidden states, and the state of the current 
time step can also be determined using the state of the 
subsequent time step (Mikolov et al. 2010). For example, 
when identifying a batch of signal data, the previous data 
may be modified according to the latter data. Bidirec-
tional RNNs process data by adding hidden layers that 

(6)C�

t
= tan h(XtWxc + Ht−1Whc + bc)

(7)Ct = Ft ⊙ Ct−1 + It ⊙ C�

t

(8)Ht = Ot ⊙ tan h(Ct)

Fig. 1   A RNN with a hidden state

Fig. 2   Computation of the hidden state (the multiplication was ele-
mentwise)
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flow from back to front. Figure 3 shows the architecture 
of a bidirectional RNN with a single hidden layer.

Given that the activation function of the input, Xt, and 
the hidden layer is Φ at a time step, t, let the forward hid-
den state in the bidirectional RNN be ��⃗Ht and the reverse 
hidden state be �⃖�Ht . Thus the forward hidden and reverse 
hidden states were calculated as follows:

where Wxh
(f), Whh

(f), Wxh
(b), and Whh

(b) are the weight param-
eters, while bh

(f) and bh
(b) are the deviation parameters.

The output layer output, Ot, was calculated as follows:

Here, Whq and bq are the weight and deviation param-
eters of the output layer of the model, respectively.

3 � Method of identifying rock burst FEMR 
precursor signals

3.1 � Framework of the Method of Identifying FEMR 
Rock Burst Precursory Signals

As shown in Fig. 4, the rock burst FEMR precursor sig-
nals are identified in accordance with four major steps, 
namely FEMR data collection, FEMR data pre-process-
ing, intelligent rock burst precursor signal identification, 
and early warning of rock burst danger.

(9)��⃗Ht = Φ

(

XtW
(f )

xh
+ ��⃗Ht−1W

(f )

hh
+ b

(f )

h

)

(10)�⃖�Ht = Φ

(

XtW
(b)

xh
+ �⃖�Ht+1W

(b)

hh
+ b

(b)

h

)

(11)Ot = HtWhq + bq

3.2 � 2.2 Procedures for Identifying the Rock Burst 
FEMR Precursor Signals

1.	 FEMR Data Collection: The FEMR data were col-
lected at 20-s intervals using a coal-rock dynamic dis-
aster acoustic and electrical monitoring system (Qiu 
et al. 2018; Wang et al. 2011, 2009) installed at 30 m 
along the groove on the west working face of the Daan-
shan Coal Mine. The KBD7 FEMR sensor (Wang et al. 
2011), which maintains a 30-m distance from the work-
ing facing, moves with the advancement of the working 
face. The data were transmitted to the ground server via 
the FEMR sensor, the monitoring substation, and the 
industrial ring network switch. Thereafter, it is transmit-
ted via the internet in real time to the laboratory server.

2.	 FEMR Data Pre-Processing: The FEMR data were 
pre-processed using an averaging method, and hourly 
data were used as the arithmetic mean value in chrono-
logical order. Thereafter, the set of all arithmetic mean 
values was used as the FEMR data set. The averaging 
method (Liu and Wang 2018) is advantageous, because 
it offers the possibility of eliminating a large part of 
the interference data while effectively preserving the 
integrity of the original data. Considering the extremely 
large number of data (all the FEMR data collected from 

Fig. 3   Architecture of a bidirectional RNN

Fig. 4   Framework of the method of identifying rock burst FEMR pre-
cursor signals
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May, 2015 to July, 2018) used by the RNN model, the 
averaging method was adopted to pre-process these 
data, because this method has two advantages. First, it 
eliminates the interference in FEMR data. Second, it 
compresses the FEMR data and thereby promotes the 
efficiency of calculations performed by the model. With 
the aid of this method, the model can capture the con-
nections between the FEMR signals over a longer time 
span, thereby recognizing the signals more accurately.

3.	 Intelligent Identification of Rock Burst Precur-
sor Signal: The intelligent rock burst precursor signal 
identification method uses a bidirectional RNN model 
(Fig. 5) to analyze a large number of normal FEMR sig-
nals and rock burst FEMR precursor signals so as to 
quickly and accurately identify the danger in the signals. 
The establishment of the RNN model is to use the bidi-
rectional RNN framework in Fig. 3, where the hidden 
state is recorded by the LSTM unit in Fig. 2. The bidi-
rectional RNN processes data through the bidirectional 
flow of hidden state, and the LSTM unit introduces input 
gates, forget gates, output gates, and memory cells to 
better record the hidden state. The forward calculation 
of the forward hidden state ��⃗Ht and the reverse hidden 
state �⃖�Ht in the RNN model is shown in formulas (9) and 
(10), and the specific calculation of the hidden state Ht 
is shown in formula (8). The output of the output layer 
is shown in formula (11). To create the RNN model, 
MXNet and advanced API-Gluon were used (Wang et al. 
2018). Thereafter, the model was trained on the GPU for 
supervised learning (Shi et al. 2018).

1.	 Production of Data Sets: To train an effective RNN 
model, a large and diverse data set should be provided 
for the model. At present, there has been no public 
training set applicable to the FEMR data from coal and 
rock, and it is rather difficult to establish a coal and rock 
FEMR training set for three reasons: First, the complex 

underground mining environment increases the difficulty 
in signal acquisition. (2) The marking of training sam-
ples requires considerable labor. (3) Private companies 
do not share FEMR data.

	   After a long period of on-site collection and manual 
labeling, we have completed the production of origi-
nal training, validation, and test data sets. Among the 
FEMR data from Daanshan Coal Mine, 60%, 20%, and 
20% were used as the three sets, respectively. Based on 
on-site records of the dangerous situation, the FEMR 
training and validation data sets collected during meas-
urements at the Daanshan Coal Mine were marked 
as “normal” or “dangerous”. (Each data set marked 
“normal” contained 200 time-series FEMR data under 
normal or interference conditions, and each marked 
“dangerous” contained all the FEMR precursor data 
monitored for each rock burst.) The three data sets of the 
Daanshan Coal Mine are shown in Fig. 6 where various 
interference conditions including drilling, roof support, 
guns taken, cables, electrical equipment, sensors, etc. 
have been marked. These interference signals, caused by 
the work of the working face and personnel activities, 
are intense and increase suddenly. They are marked as 
“normal” due to their obvious interference characteris-
tics. After a long period of on-site collection, we have 
collected abundant rock burst FEMR precursor data, and 
increased the number and proportion of samples with 
“dangerous” labels through repeated sampling and ran-
dom promotion of disturbances in the precursor data[]. 
In this way, the ratios of positive and negative samples 
in the three data sets are balanced. Finally, we obtained 
a new data set based on the original data set. Among the 
15,647 training samples in the new data set, 6000 are 
“dangerous” signal samples, and the rest are “normal” 
signal samples. Among the 5230 validation samples, 
2000 are “dangerous” signal samples. The number of 

Fig. 5   Bidirectional RNN 
model
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Fig. 6   a–d Original data of 
FEMR training set. e–f Original 
data of FEMR validation set. 
g, h Original data of FEMR 
test set
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test samples is 5000, and they are randomly selected. 
Typical cases are shown in Figs. 7 and 8.

	   All the data in the three sets are from the west working 
face of the Daanshan Coal Mine. Despite their identi-
cal distribution, they are independent of each other. The 
training set is used to fit the parameters in the network. 
The validation set is used to adjust the hyperparameters. 
The test set is used to test the performance of the trained 
network. As the number of collected data grows, the 
training set will contain more and more data covering 
various interference conditions, and the training effect 
will be improved. In this way, the model can respond 
well to all kinds of interference and become generalized.

2.	 Creation, Training, and Testing the Models: By read-
ing the training data set, creating data iterators, adopt-
ing bidirectional LSTM, and outputting classification 
results, the complete bidirectional LSTM-RNN model 
was defined, after which the model was trained and the 
prediction function was defined. After training, data in 

the validation set were read; the RNN model param-
eters were adjusted; the RNN model was optimized. The 
optimized hyperparameters are as follows: the learning 
rate is 0.01; the epoch is 300; the optimization method 
is Adam; the loss function is softmax cross entropy; 
and the number of depth layers is 9. The training and 
validation losses are shown in Fig. 9. The training and 
validation losses are both small after 300 epochs, which 
is indicative of an excellent fitting effect. In the case 
described here, the training process takes about 4 h. 
Finally, the FEMR signal sequence was fed into the 
RNN model to judge whether the signal sequence pos-
sessed rock burst danger. The recognition speed of the 
model on the GPU is very fast (0.02 s on average), which 
is feasible for large-scale data sets.

3.	 Early warning of rock burst danger: The precursor 
signal recognition results and the development trend 
of FEMR signals were analyzed comprehensively. If 
the result of the intelligent rock burst prediction was 
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“danger” and the FEMR signal exhibited a tendency to 
increase, then it could be judged that there was rock 
burst danger. In this case, the danger information would 
be sent.

4 � Examples of Early Warning of Rock Burst

After optimizing the RNN model, the results of the identifi-
cation of the intelligent rock burst danger precursor signals 
based on the FEMR test data set for the Daanshan Coal Mine 
are shown in Fig. 10. On the west working face of the Daan-
shan Coal Mine, from February 19, 2018, the intensity of 
the FEMR signal began to increase gradually. By February 
23, the signal fluctuated dramatically, exceeding the warn-
ing threshold, and this intense FEMR signal persisted until 
February 25, on which a level 2.1 rock burst occurred. Input-
ting the FEMR signal sequence from February 19 to 25 into 
the RNN model, the recognition results shown in Fig. 11a 
were obtained (the shaded part in the figure represents the 
FEMR danger signal). The identification result of the precur-
sor signal was consistent with the label marked “danger” as 
well as the on-site impact pressure record, suggesting that 
the parameters considered for the RNN model are pretty 
reasonable.

From June 21, 2018, the FEMR signal showed a grow-
ing trend, and by June 24, the signal had surged notably. 
Using the RNN model, the rock burst danger was identified 
from June 21 to 24, and a hazard warning was issued. The 
recognition result is shown in Fig. 11b (the shaded part in 
the figure represents the hazard FEMR signal). From June 
23 to 25, the west working face of the Daanshan Coal Mine 
showed an obvious rock pressure as well as an increased 

resistance to support. In the evening of June 25, measures 
were taken to stop production and release pressure, leading 
to a significant decrease in the strength of the FEMR sig-
nal. However, from June 28, its intensity began to increase 
intermittently, and by July 11, it fluctuated sharply. The 
RNN model identified the rock burst danger from July 5 
to 11, and a hazard warning was issued. The recognition 
result is shown in Fig. 11c (the shaded part in the fig-
ure represents the FEMR danger signal). From July 11 
to 14, the west working face of the Daanshan Coal Mine 
again showed an increased resistance to support. The mine 
underwent pressure relief blasting measures in the early 
hours of July 14, and the FEMR signal dropped signifi-
cantly and regained stability, eliminating the rock burst 
danger.

In summary, the early rock burst prediction results 
based on the FEMR precursor signal recognition method 
for rock burst matched well with the drill cuttings, mine 
pressure appearance, and pressure relief records on the 
west working face of the Daanshan Coal Mine. Informa-
tion on the rock burst danger could be captured in advance.
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Fig. 9   Comparison between the training loss and the validation loss 
of RNN model
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5 � Discussion

5.1 � Is the Precursor Signal Recognition Method 
Based on RNNs Better than the Traditional 
Method?

The traditional FEMR precursor signal identification method 
generally collects the FEMR signals, and manually analyzes 
their time sequence characteristics and amplitude character-
istics (Qiu et al. 2018; Wang et al. 2009). It is of low timeli-
ness and accuracy and is dependent on experience. Although 
its judgment result generally agrees with the on-site record, 
it may make some wrong judgments under certain circum-
stances. For example, it tends to make mistakes when identi-
fying the precursor signals under the interference of drilling 
and roof support or the precursor signals below the critical 
value, thus affecting the judgment of rock burst danger.

Compared with the traditional one, the FEMR precur-
sor signal recognition method introduced in this paper does 
not require manual analysis of FEMR signal data, and the 
trained RNN model is automated (without requiring param-
eter adjustment) and efficient on the GPU. The RNN model 
can identify the two non-supercritical rock burst hazards 
in Fig. 10, because it is good at capturing the relationship 
between FEMR signals within a long span. By storing long-
term FEMR signal growth in hidden states, the accuracy of 
rock burst FEMR precursor signal identification is enhanced. 
Besides, in the real data set, the model can realize automatic/
intelligent recognition without manual intervention, thus 

saving labor and time and meanwhile reducing ambiguity. 
In the case described here, the training process takes about 
4 h, which may be considered time-consuming. The recogni-
tion speed of the model on the GPU is very fast (0.02 s on 
average), which is feasible for large-scale data sets. Moreo-
ver, with the more data collected, the identification effect 
becomes better, so do the timeliness and accuracy of the 
model, which is conducive to the identification of rock burst 
danger.

6 � Conclusions

1.	 In this study, a method for identifying rock burst FEMR 
precursor signals, primarily composed of FEMR data 
collection, FEMR data pre-processing, intelligent rock 
burst precursory signal recognition, and rock burst early 
warning, was proposed. With this method, it was pos-
sible to comprehensively analyze the development trend 
of FEMR signals. The method can realize automatic, 
efficient, and intelligent identification of rock burst 
precursor signal without requiring manual interven-
tion. Based on the intelligent precursory danger signal 
recognition results, the intelligent early warning of the 
dangerous situation of rock burst was achieved.

2.	 The results of the application of the model to on-site 
early warning showed that it responds well to the occur-
rence of rock bursts, and can capture information on 
rock burst hazards in advance.

Fig. 11   Recognition result of 
intelligent rock burst precursory 
signal

(a)

(b)

(c)
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