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Abstract
This paper proposes a unified constitutive model for rock based on the newly modified generalized Zhang-Zhu (GZZ) crite-
rion. The constitutive model adopts a non-associated plastic flow rule and a continuous potential function that takes the three 
effective principal stresses into account. To reflect strain-softening, strain-hardening, and elastic-perfectly plastic behavior 
of rock in a unified way, a general expression is proposed to model the post-failure behavior of rock using the deviatoric 
plastic shear strain as the fundamental variable. The proposed constitutive model has been successfully implemented in a 
3D finite-difference code and validated using it to simulate the true triaxial test of two types of rocks and comparing the 
simulation results with the experimental data. Finally, a 3D numerical model based on the proposed constitutive model is 
constructed to simulate a highway rock tunnel during construction. The results show that the predicted displacements of the 
rock tunnel are in good agreement with the field measurements.
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1 Introduction

Modeling rock behavior is one of the most important 
problems in rock mechanics and rock engineering (Zhang 
2016). Much work has been carried out during the past 
decades regarding the constitutive model for rock. Singh 
(1973) proposed a constitutive model for jointed rock mass 
based on the assumption that discontinuities can be seen 
as staggered joints and the intact rock between the joints 
deforms elastically. Following the same idea, other empiri-
cal equations or flow rule functions on the joints were 
proposed to model the jointed rock mass (Gens et al. 1990; 
Cai and Horii 1992; Sitharam et al. 2001; Zandarin et al. 
2013). However, those constitutive models apply to the 
joints rather than the whole rock mass, and the assumed 
elastic behavior for the intact rock between joints can 
result in the overestimation of rock stability.

To take the rock mass as a whole, it is of great impor-
tance to consider the strength of rock mass under a true tri-
axial stress condition rather than the failure stress in only 
one specific direction. The Hoek–Brown strength criterion 
(Hoek and Brown 1980, 1988; Hoek et al. 2002) is one of 
the most popular empirical failure criteria in rock mechan-
ics due to its accuracy and wide applicability to different 
types of rock masses. However, the effective intermediate 
principal stress, �′

2
 , is ignored in the Hoek–Brown crite-

rion, which may cause inaccurate predictions under true 
triaxial stress states in practical applications. To overcome 
this limitation, many researchers have proposed 3D ver-
sions of the Hoek–Brown criterion by considering the 
effect of �′

2
 (Pan and Hudson 1988; Priest 2005, 2012; 

Zhang and Zhu 2007; Jiang et al. 2011; Zhang et al. 2013; 
Wu et al. 2018). Among those 3D criteria, the generalized 
Zhang-Zhu (GZZ) criterion (Zhang and Zhu 2007; Zhang 
2008) can reduce to the 2D Hoek–Brown criterion and has 
a simple and explicit form. To solve the non-smoothness 
and non-convexity problems of the GZZ criterion, Zhang 
et al. (2013) successfully extended the GZZ criterion to a 
version with a smooth and convex surface. However, the 
modified GZZ criterion is not in a simple, explicit form 
and a numerical iterative procedure is required for deter-
mining the aspect ratio, a parameter used by Zhang et al. 
(2013) to define the shape of the criterion in �-plane. To 
tackle the non-smoothness and non-convexity problems 
more simply, a newly modified GZZ criterion with an 
explicit formulation expressed by the three stress invari-
ants was proposed by Chen et al. (2019). In this paper, the 
newly modified GZZ criterion is adopted as the yield func-
tion for developing the unified constitutive model for rock.

The current commercial finite element (FE) and finite dif-
ference (FD) codes mainly use constitutive models based on 
the 2D Hoek–Brown criterion for rock. Although the strain 
hardening/softening behavior of soil, metal, and concrete 

can be properly considered, these codes usually only pro-
vide simple elastic-perfectly plastic constitutive models for 
rock masses (Itasca 2017; Brinkgreve et al. 2013; ABAQUS 
2015; LSTC 2017). Therefore, this paper proposes a unified 
constitutive model based on the newly modified GZZ crite-
rion, which considers not only the 3D strength but also the 
strain-softening, strain-hardening and elastic-perfectly plas-
tic behavior of rock in a general way. The proposed constitu-
tive model has been implemented in an FD code, FLAC3D, 
and validated by applying it to simulate the true triaxial test 
of two types of rocks and comparing the simulation results 
with the experimental data. Finally, the constitutive model is 
utilized to analyze a highway rock tunnel during construction 
to check its applicability to practical engineering problems.

2  Newly Modified GZZ Criterion

To provide the background information for developing the 
new constitutive model, this section briefly describes and 
discusses the Hoek–Brown criterion and the newly modified 
GZZ criterion.

The original Hoek–Brown criterion is given as (Hoek and 
Brown 1980):

where �′
1
 and �′

3
 are the maximum and minimum effective 

principal stresses, respectively; �c denotes the unconfined 
compressive strength (UCS) of the intact rock; and mi is a 
material constant for the intact rock.

For jointed rock masses, the generalized Hoek–Brown 
criterion, which takes both the fracture and rock mass condi-
tions into account, is expressed as (Hoek et al. 1992):

where mb denotes a material constant for rock masses; and a 
and s are two constants reflecting the characteristics of the 
rock masses. The three parameters can be determined by the 
empirical relations (Hoek et al. 2002):

where GSI is the geological strength index (GSI) (Hoek 
et al. 2002); and D is the disturbance factor representing the 
level of blast damage and stress relaxation to the rock mass.
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Considering that the intermediate principal stress can have 
a significant effect on the strength of rock (Mogi 1971; Pan and 
Hudson 1988), Zhang and Zhu (2007) proposed a 3D version 
of the Hoek–Brown criterion with a = 0.5. Later on, Zhang 
(2008) extended it to a generalized form for all a values:

where �oct is the octahedral shear stress and �′
m,2

 denotes the 
effective mean stress, which are determined by:

where �′
2
 is the intermediate effective principal stress. The 

generalized 3D criterion (Eq. 4) has been named the general-
ized Zhang-Zhu criterion (Priest 2012) and, to be simple, is 
called the GZZ criterion in this paper.

The GZZ criterion uses the same parameters as the 
Hoek–Brown criterion and can reduce to the Hoek–Brown 
criterion under both triaxial compression (TC) and triaxial 
extension (TE) conditions, but it is neither smooth at the TC 
or TE state nor convex at the TE state. Therefore, Zhang et al. 
(2013) adopted three smooth and convex Lode dependences 
to replace the original Lode dependence of the GZZ criterion 
to address the non-smoothness and non-convexity problems. 
The modified GZZ criterion is given as:

where J2 is the second deviatoric stress invariant defined by:

The subscripts E, H and S stand for the dependencies using 
elliptical approximation, hyperbolic expression and spatial 
mobilized plane, respectively, which are expressed by:
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For a given rock, J2,max and J2,min , in the same π plane, can 
be determined from an explicit expression if a = 0.5, but an 
iterative algorithm is needed when a ≠ 0.5 . This can result 
in difficulty in implementing the criterion in FE or FD codes.

To address the non-smoothness and non-convexity 
problems in a simpler way and with an explicit function, 
Chen et al. (2019) further modified the GZZ criterion as 
below:

where

The newly modified GZZ criterion (Chen et al. 2019) 
can be seen as a 3D version of the Hoek–Brown crite-
rion using the same parameters. Furthermore, the explicit 
expression with a smooth and convex shape in the �-plane 
makes it easier to be implemented into FE and FD codes 
than both the Hoek–Brown criterion (Hoek et al. 2002) and 
the modified GZZ criterion (Zhu et al. 2017). Therefore, 
the newly modified GZZ criterion by Chen et al. (2019) is 
adopted as the yield function for the proposed constitutive 
model.

3  Constitutive Model Based on the Newly 
Modified GZZ Criterion

3.1  Fundamentals of Plasticity and Return Mapping

In the theory of plasticity, the total strain increment can be 
decomposed into an elastic part and a plastic part (Owen 
and Hinton 1980):
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where d� is the total strain increment; d�e is the elastic strain 
increment, and d�p is the plastic strain increment. d�p does 
not occur when the stress state is within the yield surface f, 
while both d�e and d�p happen after yielding.

According to Hooke’s law, the stress increment caused by 
the elastic strain increment can be defined as:

where D is the elastic constitutive matrix with respect to 
Young’s modulus E and Poisson’s ratio � as follows:

Equation (11a) can also be written as:

which indicates that the stress increment can also be decom-
posed to an elastic part, d�e , and a plastic part, d�p.

As shown in Fig. 1, when the stress state (point A) is within 
but close to the yield curve (f = 0), a small strain increment 
may result in the initial trial stress state (point B) falling out-
side the yield surface (i.e., f ( �B) > 0). For the estimation of 
the initial trial stress state, it is assumed that no plastic strain 
occurs and thus �B can be calculated using incremental elas-
ticity as:
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(13)d� = Dd�e = D(d� − d�p) = d�e − d�p,

(14)�B = �A + Dd�.

Then a so-called plastic corrector stress increment, Δ�p , 
is needed to drag the stress state (point B) back to the yield 
surface (point C), which can be described as:

Equations (14) and (15) are the so-called return map-
ping method (Clausen and Damkilde 2008). According to 
the flow rule, the plastic strain increment can be expressed 
as:

where d� denotes the plastic multiplier and g is the poten-
tial function. When g = f  , the flow rule is associated and if 
g ≠ f  , it is non-associated.

Hence, the aforementioned plastic corrector stress 
increment can be formulated as

where Δ� is the incremental form of d� and �g
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C. For convenience and simplification consideration, point 
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infinitesimal. It should be noted that the derivation of g at B 
or C yields the same value for a liner potential function, but 
substituting �g
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��

|||D in a non-linear potential function, 
such as the Hoek–Brown criterion, can cause a radical return 
(Krieg and Krieg 1977).
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Fig. 1  Schematic diagram of return mapping method. (After Clausen 
and Damkilde 2008)
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By solving Eq. (18), the value of the plastic multiplier 
can be determined; then by substituting Δ� back into 
Eqs. (15) and (17), the final stress state at point C can be 
determined.

3.2  Constitutive Model Based on Newly Modified 
GZZ Criterion

Following the classical plasticity theory, the isotropic elastic 
behavior of the proposed constitutive model obeys Hooke’s 
law expressed by Eqs. (12a–e) and (13). Since the yield 
function, Eq. (8), contains a square root term, a negative 
value of the expression inside can lead to non-convergence 
of the constitutive model during return mapping. To solve 
the possible non-convergence problem and increase the 
speed of convergence, Eq. (8) is rewritten as:

where

Similarly, the potential function of the proposed constitu-
tive model is defined as follows:

where md is a material constant of rock. When md is equal 
to mb , the flow rule is associated; otherwise, the flow rule 
is non-associated.

To implement the return mapping algorithm, an expres-
sion for the plastic multiplier Δ� needs to be derived. As 
shown in Eq. (11b), there are six basic stress components 
involved in the updating of the stress state, which makes it 
complicated for derivation. FLAC3D determines the effec-
tive principal stresses through the getEigenInfo() function 
by solving the following equations:

The stress state of point B will first be expressed as a prin-
cipal stress tensor and then returned to point C via the return 
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mapping algorithm. Finally, the principal stresses of point C 
will be converted back to the corresponding six stress com-
ponents using the resolve() function. Therefore, the deriva-
tions below will use only the three principal stresses.

According to the flow rule and Eq. (15),
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Substitution of Eqs. (23a–c) into Eq. (17) yields,
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Since Eq. (27) is derived under the condition of an infini-
tesimal stress increment, too large an error may be induced if 
the stress increment is not small enough. Therefore, the fol-
lowing iterative algorithm is proposed for determining Δ�:

(1) Calculate an initial value of plastic multiplier Δ� , 
denoted as (Δ�)1 , from Eq. (27) and set j = 1;

(2) Calculate the updated stress state at point C:

(3) Calculate the new plastic multiplier Δ� using Newton’s 
method, denoted as (Δ�)j+1:

where

and update j : j = j + 1;
(4) Check the yield function f as follows:

where � is a prescribed convergence limit, i.e., 0.0001. 
If Eq. (31) is not satisfied, steps (2)–(4) are repeated. 
After Eq. (31) is satisfied, Δ� = (Δ�)j and the stress 
state is then calculated with Eq. (28).

3.3  General Strain‑Softening and Strain‑Hardening 
Rule

The post-failure of rock can be classified into three types: 
strain-softening, perfectly plastic and strain-hardening as 
shown in Fig. 2, with the corresponding parameters defined 
below and listed in Table 1. To characterize the three types 
of post-failures in a unified way, the deviatoric shear plastic 
strain �pq is selected as the fundamental variable and a general 
exponential function as shown in Fig. 3a is used to describe 
the evolution of the parameters in the yield function f. In the 
figure, x can be mb , s or md . For example, for mb and s, we have

(27)Δ� =
f (�B)
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|||| ≤ �,

where the subscript i and r denote the initial value and 
residual value of rock parameters mb and s; �f  is the plastic 
deviatoric strain at which the yield function would almost 
evolve to the corresponding residual state f; and �pq is the 
plastic deviatoric shear strain defined by:

(32a)mb = mbr +
(
mbi − mbr

)
e
−3

�
p
q

�f ,

(32b)s = sr +
(
si − sr

)
e
−3

�
p
q

�f ,

(33a)�
p
q = ∫ d�

p
q,

(33b)d�
p
q =

√
(d�p1−d�

p

2)
2
+(d�p2−d�

p

3)
2
+(d�p3−d�

p

1)
2

2
,

Fig. 2  Three types of post-failures of rock (the related parameters are 
listed in Table 1)

The potential function, g , shares the same parameters a 
and s as the yield function, f  . In this case, if md = mb , the 
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constitutive model is associated. Otherwise, the constitu-
tive model is non-associated. Similar to mb , the evolution 
of md is defined by:

(34)md = mdr +
(
mdi − mdr

)
e
−3

�
p
q

�g

Table 1  Material parameters 
for strain-hardening, elastic-
perfectly-plastic and strain 
softening models shown in 
Fig. 1

��
2
= �

�

3
= 15 MPa

EPP elastic-perfectly plastic, SH strain hardening, SS strain softening

Type �c (MPa) a E (GPa) � mbi mbr sbi sbr mdi mdr �f  (%) �g (%)

EPP 50 0.5 13 0.3 10 10 1 1 10 10 – –
SH 50 0.5 13 0.3 10 30.8 1 1 10 30.8 2 2
SS 50 0.5 13 0.3 10 1.13 1 0.3 10 1.13 2 2

Fig. 3  a Relation between rock parameter and plastic deviatoric shear strain; and Evolution of yield function in p∗–q–�pq space for: b strain-sof-
tening; c perfectly-plastic; and d strain-hardening
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where �g is the plastic deviatoric strain at which the potential 
function would almost evolve to its residual state.

Taking advantage of the general strain softening/hard-
ening rule, the yield curve of the proposed constitutive 
model evolves with the increase of the plastic deviatoric 
shear strain in the p*–q–�pq space as shown in Fig.  3. 
When the stress state is within the yield surface, no plas-
tic strain occurs and the yield function f0, the red curve in 
Fig. 3b–d, is defined by the initial values of the rock mate-
rial parameters. When the accumulated plastic deviatoric 
shear strain, �pq , reaches a value, say �1 in Fig. 3a, the rock 
material parameters change as shown in Fig. 3a and the 
yield surface evolves to f1s, f1p or f1h, the magenta curve in 
Fig. 3b–d depending on the type of post-failure. Finally, as 
�
p
q almost approaches �f  , the yield surface (blue curves in 

Fig. 3b–d in p*–q–�pq space would tend to the correspond-
ing residual one.

In summary, the proposed unified constitutive model con-
tains the following parameters:

• Young’s modulus E and Poisson’s ratio �.
• Unconfined compressive strength �c.
• Parameters for the initial yield function: mbi , si , a.
• Parameter for the initial potential function: mdi , si , a.
• Parameters for the residual yield function: mbr , sr , a.
• Parameters for the residual potential function: mdr , sr , a.
• Parameters for controlling the rate of softening/harden-

ing: �f  , �g.

The determination of these parameters is discussed in the 
next section.

3.4  Determination of Model Parameters

For the application of the proposed constitutive model, the 
12 parameters involved in it should be determined. The fol-
lowing describes the recommended procedure for determin-
ing the parameters of the proposed model for intact rock and 
rock mass, respectively.

3.4.1  Intact Rock

For intact rock, uniaxial (at least one) and triaxial (at least 
three) compression tests can be conducted for determining 
the parameters as follows:

(1) E, � and �c can be determined from the test results by 
following the standard procedure (Hudson and Harri-
son 1997).

(2) mbi , si , a are determined by fitting the peak strength data 
of the uniaxial and triaxial compression tests with the 
Hoek–Brown criterion with si = 1 and a = 0.5.

(3) mbr and sr are determined by fitting the residual strength 
data of the uniaxial and triaxial compression tests with 
the Hoek–Brown criterion with a = 0.5.

(4) mdi and mdr are determined based on the ratio of axial 
strain rate to lateral strain rate when the plastic strain 
takes place and when the stresses approach the final 
state from the triaxial compression tests, respectively.

(5) �f  is the plastic deviatoric shear strain at which mb and 
s approach mbr and sr . Similarly, �g is the plastic devia-
toric shear strain at which md approaches mdr . Both can 
be determined from the stress–strain relation of the tri-
axial compression tests.

3.4.2  Rock Mass

In terms of rock mass, it is difficult and even impossible 
to perform the required large-scale tests for determining 
the various parameters. In this case, the empirical methods 
based on the GSI system and typical data ranges can be 
used.

(1) E, � , �c , mbi , and si , a can be determined using the 
method based on GSI from Hoek and Brown (2018). 
The deformation modulus of can be estimated by (Hoek 
and Diederichs 2006):

or

in which, the initial GSI of the rock mass is determined by 
field observations and the disturbed factor D is estimated 
based on blast damage and stress relaxation; and Ei is the 
Young’s modulus of the intact rock. The Poisson’s ratio � can 
be determined following Gercek (2007) and Zhang (2016). 
The unconfined compressive strength �c of the intact rock 
can be obtained from the uniaxial compression test in the 
lab. And mbi , si , and a can be determined from Eqs. (3a–c) 
with known GSI and D.

(2) The residual strength parameters of the rock mass, mbr 
and sr , can also be determined from Eqs. (3a–c), but the 
residual GSI, GSIr , of the rock mass should be used. 
The GSIr can be estimated following Cai et al. (2007). 
For example, the following simple equation from Cai 
et al. (2007) can be used:

in which, GSI is the initial GSI.

(35a)Erm = 105
1−D∕2

1+exp[(75+25D−GSI)∕11]
(MPa),

(35b)Erm = Ei

{
0.02 +

1−D∕2

1+exp[(60+15D−GSI)∕11]

}
(MPa),

(36)GSIr = GSI × exp(−0.0134GSI),
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(3) As for mdi and mdr , a value within the range of 0.4–1.0 
mbi can be selected for mdi , and a typical estimation of 
mdr can be mdr = mbr.

(4) A typical value of �f  and �g should be in the range of 
1–10% (Farmer 1983; Walton et al. 2014, 2017; Zhao 
and Cai 2010).

Some of the above recommendations for determining 
the model parameters, such as the range of �f  and �g , are 
based on limited data. As more data are available, the 
range can be narrowed for specific rocks and the accuracy 
can be improved.

4  Validation of Proposed Constitutive Model

To validate the proposed constitutive model, it is imple-
mented in finite-difference code FLAC3D and applied to 
simulate the true triaxial test of two types of rocks: Mizuho 
trachyte and Beishan granite.

4.1  Mizuho Trachyte

The true triaxial test results of Mizuho trachyte (Mogi 1971), 
the 

(
��
1
− ��

3

)
 versus �1 and �3 versus �1 curves under different 

stress states are shown in Figs. 4 and 5, respectively. Based 
on the experimental 

(
��
1
− ��

3

)
 versus �1 relation, the rock can 

be considered to follow the elastic-perfectly plastic constitu-
tive model. In this case, the parameters of the constitutive 
model for simulating the true triaxial test of Mizuho trachyte 
are determined and summarized in Table 2.

The 
(
��
1
− ��

3

)
 versus �1 relations from the simulation 

under different intermediate stresses are also shown in 
Fig. 4. The good agreement of the simulation results with the 
experimental data indicates that the elastic-perfectly plastic 
constitutive model can capture the stress–strain relation of 
Mizuho trachyte well. For further comparison, Fig. 5 shows 
the �3 versus �1 relations at different intermediate effective 
stresses from both experiments and simulations. The �3 ver-
sus �1 relations from the simulation are also in quite good 
agreement with those from the experiments.

4.2  Beishan Granite

For rock, strain-softening is a very common post-failure 
mode under true triaxial stress states. In this regard, the 
true triaxial test results of Beishan granite which shows 
strain-softening (Zhang et al. 2019) are selected for veri-
fication of the proposed constitutive model. Table 3 sum-
marizes the rock parameters for the Beishan granite used 
for the numerical simulation.

Figure 6 shows the stress–strain curves from the true 
triaxial tests (Zhang et al. 2019) and those from the numer-
ical simulations at different values of �′

3
. As can be seen, 

the Beishan granite exhibits strong brittle-ductile char-
acteristics. �2 changes much less than �1 and �3 after the 
peak shear stress (during fracturing) because the failure 
(fracture) surfaces are parallel to the direction of �′

2
 (Zhang 

et al. 2019). It can also be seen that the simulation results 
are in good agreement with those from the experiments. 
The predictions from elastic-perfectly plastic models 
such as Zhu et al. (2017) are not included for comparison 

Fig. 4  Comparison of 
(
��
1
− ��

3

)
 

versus �
1
 of Mizuho trachyte 

from simulations and experi-
ments
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Fig. 5  Comparison of �
1
 versus �

3
 of Mizuho trachyte from simulations and experiments

Table 2  Material parameters for 
Mizuho trachyte

�c (MPa) a E (GPa) � mbi mbr sbi sbr mdi mdr �f  (%) �g (%)

100 0.5 25 0.27 10.55 10.55 1 1 3.485 3.485 – –

Table 3  Material parameters for 
Beishan granite

�c (MPa) a E (GPa) � mbi mbr sbi sbr mdi mdr �f  (%) �g (%)

141 0.5 54 0.27 32.02 3.03 1 0.17 16 3 3 3
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because the predicted �′
1
 would not change after failure and 

apparently cannot represent the strain-softening behavior 
of the rock. This is one of the major advantages of the 
proposed constitutive model over other perfectly plastic 
models.

5  Application of Proposed Constitutive 
Model

To further verify the applicability of the proposed constitu-
tive model in practical engineering, it is used to analyze a 
highway rock tunnel during construction in Guizhou prov-
ince, China. The tunnel is 8 km long and was constructed by 
the so-called top-heading-and-bench method. Two linings, 
one layer of plain concrete and one layer of reinforced con-
crete, were used to support the tunnel. To simplify the analy-
sis, only a 50 m long section of the tunnel at a buried depth 
of around 140 m is considered. Considering the symmetry 

and to eliminate the effect of boundaries, a numerical model 
of 75 m × 140 m × 75 m as shown in Fig. 7 is constructed. 
The bottom boundary and the four side boundaries are con-
strained in the normal direction, and an equivalent normal 
uniform loading of 1.54 MPa based on rock mass unit weight 
and buried depth is applied at the top boundary to simulate 
the overburden. The in situ horizontal stress is assumed to be 
equal to the in situ vertical stress in the analysis. 110 steps 
of construction processes, including the up and down bench 
cut, the first lining installation, the second lining installation 
and backfilling, are considered in the analysis. The length 
of each bench and the first lining is 2 m, while one section 
of the second lining and backfill is 10 m long. The material 
properties of the two linings and the backfill are summarized 
in Table 4.

The in-situ rock is sandstone and the unconfined compres-
sive strength, �c , of the intact rock is 13.2 MPa. According to 
Zhu et al. (2017), the material parameter mi can be estimated 
as 17. Using the modified geological strength index (GSI) 

Fig. 6  Comparison of effective major principal stress versus strains of Beishan granite from simulations and experiments
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Fig. 7  Numerical model of 
tunnel

Table 4  Material parameters for 
initial lining, second lining, and 
backfill

Layer Material type Density (kg/m3) E (GPa) � Thickness (m)

Initial lining Plain concrete 2.2 × 103 21 0.25 0.2
Second lining Reinforced concrete 2.5 × 103 29.5 0.25 0.4
Backfill Plain concrete 2.4 × 103 26 0.25 1.2

Table 5  Material parameters for 
rock mass around the tunnel

For strain-softening model, mbr = mdi = 0.73 , sr = 0.0001 , �f = �g = 5%

Zone Density (kg/m3) E (GPa) � �c (MPa) mb a s md

Disturbed 2.35 × 103 3.24 0.3 13.2 1.834 0.507 0.0014 1.834
Undisturbed 2.35 × 103 7.27 0.3 13.2 2.56 0.507 0.0027 2.56
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system (Sonmez and Ulusay 1999) and following Zhu et al. 
(2017), the GSI of the rock mass is 47. The tunnel was exca-
vated by the blast drilling method, which could cause some 
disturbance to the surrounding rock. Therefore, a disturbance 
factor D of 0.3 is assumed for the disturbed zone. Accord-
ing to Hoek (2012), the disturbed zone of a 10 m diameter 
tunnel could extend as much as 3 m into the rock. Since the 
simulated tunnel is 30 m and 22 m in the horizontal and 
vertical directions, the disturbed zone is assumed to extend 
9 m and 6 m from the tunnel into the rock along the horizon-
tal and vertical directions, respectively (Fig. 7). Beyond the 
disturbed zone, the disturbance factor is assigned as 0. With 
the obtained mi , GSI and D, the other parameters of the pro-
posed constitutive model can be determined by Eqs. (3a–c). 
To be simple, md is selected to be equal to mb . Since no 
information is available about the residual strength or strain-
softening properties of the rock, the elastic-perfectly plastic 
model is used. The Young’s modulus, Erm , of both the dis-
turbed and undisturbed zones are determined by (Hoek and 
Diederichs 2006). All the parameters for the rock mass are 
summarized in Table 5.

Figure 8 shows the displacement contour after excavation. 
For the roof and floor zones, the excavation would affect 
the rock mass within about one diameter from the tunnel, 
while in the horizontal direction, the excavation has much 
less influence on the surrounding rock mass. The maximum 
displacement occurs in the first section of the cut because 
this part was excavated first and affected by the whole exca-
vation process.

Fig. 8  Displacement contour 
of rock around tunnel after 
excavation

Fig. 9  Comparison of a tunnel roof displacement and b tunnel hori-
zontal convergence deformation from field measurements and simula-
tions
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Figure 9 shows the roof settlement and horizontal con-
vergence deformation from the numerical analysis. For 
comparison, the field measurements and the numerical 
results based on the original Hoek–Brown constitutive 
model and the modified GZZ constitutive model from 
Zhu et al. (2017) are also shown in the figure. As can 
be seen, the roof settlement and the horizontal conver-
gence deformation from the analysis based on the origi-
nal Hoek–Brown constitutive model are both significantly 
larger than those from the field measurements. The roof 
settlement and the horizontal convergence deformation 
from the analyses based on the modified GZZ constitu-
tive model and the proposed constitutive model, however, 
are in good agreement with those from the field measure-
ments. The slight difference between the results from the 
analysis based on the modified GZZ constitutive model 
and those based on the proposed constitutive model could 
be due to the difference in the total number of elements 
used in the analyses, the different potential functions 
adopted, and the absence of undisturbed zone in the simu-
lation of Zhu et al. (2017).

To explore the influence of strain-softening, a numeri-
cal simulation is performed using the strain-softening 
model within the disturbed zone. The residual GSI of the 
rock mass within the disturbed zone is estimated from 
Eq. (36) as 25 and mbr and sr can be further determined 
from Eqs.  (3a–c) as 0.728 and 0.0001. As for the rest 
parameters, mdi = mbi , mdr = mbr and �f = �g = 5 % fol-
lowing the recommendations in Sect. 3.3. The simulation 
results are also shown in Fig. 9. It can be seen that the 
accuracy of the predictions is slightly improved when the 
strain-softening is considered.

6  Conclusions

The major conclusions can be summarized below:

1. The unified constitutive model adopts a continuous 
potential function that takes the three effective principal 
stresses into account and a non-associated plastic flow 
rule. The three types of post-failure modes, strain-sof-
tening, strain-hardening and elastic-perfectly plastic, are 
described in a unified way using a general exponential 
expression.

2. The proposed constitutive model is implemented in a 
finite-difference code FLAC3D and used to simulate the 
true triaxial test of two types of rocks. The results indi-
cate that the proposed constitutive model can effectively 
capture the stress–strain behavior of the rock in different 
directions.

3. The proposed constitutive model is successfully used 
to analyze a highway rock tunnel during construction. 
The predicted tunnel roof displacement and horizontal 
convergence deformation are in good agreement with 
the field measurements, indicating the applicability of 
the proposed constitutive model to practical engineering 
problems.
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