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Abstract
Many macrocracks are usually generated during the fracturing of rocks. Elucidating the spatial distribution of cracks provides 
the basis for understanding crack nucleation and fracture formation in rock mechanics. Considering either a single microcrack 
or all the microcracks provides a limited interpretation of rock mass failure that is often induced by different macrocracks. 
Here we recognize macrocracks based on a three-dimensional (3D) crack model, implemented using an unsupervised machine 
learning algorithm and microcrack coordinates. This approach recognized microcracks that coalesce to form a macrocrack 
in three dimensions. Rock fracturing was performed using a triaxial loading test, and the coordinate data were obtained via 
the acoustic emission (AE) technique. The results show that the main macrocracks are distributed throughout the whole 
granite specimen, and smaller macrocracks form near the unloading surface. The AE-recognized crack pattern was found 
to be consistent with the actual cracks. The adaptability of the proposed method and the potential research and applications 
were discussed. This approach provides a means to understand the formation and distribution of rock fractures.
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List of Symbols
�1	� Vertical stress (MPa)
�2	� Horizontal stress (MPa)
�3	� Horizontal stress on the unloading surface 

(MPa)
p(x) , P(x)	� The probability distribution function of x
x,xi	� Microcrack coordinates expressed in matrix 

form
� , E(x)	� The expectation of x
� , Cov(x)	� The covariance matrix of vector x
m	� The number of single crack models
Nj	� The jth single crack model
�j	� The combined coefficient of the jth single 

crack model
�	� The convergence condition
L(�) , L(�)

�

	� The log of the likelihood function of P(x)

�(i, j)	� The posterior probability of �j
�	� The shorthand for parameters of P(x)

1  Introduction

Subject to external loads, the defects and microcracks pre-
existing inside the rock are activated and propagated, gen-
erating new cracks in both micro- and macro-scale, and 
the resulting damage eventually leads to failure, even cata-
strophic hazards (Hoek and Martin 2014). Therefore, under-
standing the spatial distribution of different cracks inside the 
rock mass is not only a fundamental study of rock failure, but 
also a promotion way to evaluate the geotechnical disasters.

In previous studies, the patterns of crack formation and 
distribution were deeply investigated by scholars from 
the failure type of crack characteristics, and attributed the 
characteristic parameters to different crack types, such as 
uniaxial compression test (Dong et al. 2018), Brazilian 
splitting test (Zhang et al. 2020), and three-point-bend frac-
ture test (Granger et al. 2007). However, only one macro-
crack was usually obtained in these experimental results. 
These researchers did not consider the multi-cracked fail-
ure of on-site stress environments. In practice, the cracks 
formed in rock engineering are discretely distributed on 
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the microscopically and mixedly distributed on the macro-
scopically, from the near-surface to the interior (Baud et al. 
2017; Liu et al. 2015; Wang et al. 2019a). However, these 
loading tests usually form one major macrocrack after rock 
failure, which limits the consideration of the independent of 
different macrocracks. In contrast, the true triaxial loading 
simulates the occurrence of real rock hazard through differ-
ent stress loading paths, and evaluates the damage results in 
different areas of the loading surface, which is more consist-
ent with the on-site failure (He et al. 2012; Li et al. 2015). 
Studies of multi-cracked failure have substantially aided in 
elucidating detailed rock damage and mechanical behavior 
in the complex stress environment (Liu et al. 2015; Nasseri 
et al. 2014; Ning et al. 2018). To investigate the propaga-
tion and formation of multiple cracks that appeared on the 
surface, a three-point bending test was carried out on a con-
crete beam with a length of 9 m and a height of 1.5 m, it 
was found that only one-third new cracks were created by 
the preexisting cracks, and microcracks disappeared from 
Fracture 1 when Fracture 2 formed (Katsaga et al. 2007). 
These studies have deepened the understanding of the com-
plex fracture of rocks. Therefore, studying the selected crack 
of multi-cracked failure is of great significance for further 
understanding of rock engineering hazards.

As we know, after the defects are activated, the energy 
generated by the microcracks is released in the form of 
elastic waves and propagates in rock materials, causing 
acoustic emission (AE) (Michlmayr et al. 2012). As the 
distribution of AE source localization has been thoroughly 
verified by various technologies, such as computed tomog-
raphy scanning (Benson et al. 2007), fluorescent liquid 
(Naoi et al. 2018), and optical crack inspection (Zang et al. 
2000), the spatiotemporal evolution of AE events reflects 
internal fractures during rock failure, and the digital data 
from AE monitoring provide a basis for analyzing the mac-
rocracks (Creager 2019; Grosse et al. 2004; Perol et al. 
2018; Rouet-Leduc et al. 2018). The majority of realized 
cracks or fractures that follow the microcrack distribution 
has been assessed by AE or seismic monitoring (Bunger 
et al. 2015; Feng et al. 2015; Moradian et al. 2016; Ruck 
et al. 2017). In the field microseismic research, microc-
rack monitoring results for up to 3 months showed that the 
high-density areas of microcracks appeared clustered in 
both front view and side view (Yabe et al. 2015; Zhao et al. 
2018). Besides, a hydraulic fracturing test was carried out 
in a laboratory at 414 m depth underground, the micro-
crack locations were analyzed by a Kernel density esti-
mator, which exhibited a potential elliptical distribution 
on two-dimensional sections (López-Comino et al. 2017). 
Moreover, a 3D Kernel function was also adopted to esti-
mate AE location data through time (4D data) that were 
collected from a granite boulder for more than 3 years; 
it visualizes the spatiotemporal change of a macroscopic 

crack (Hohl et al. 2018). The results of the three-dimen-
sional spatial distribution of microcracks corresponding 
to multiple macrocracks show a very promising potential 
for optimization studies on cracks. However, further theo-
retical explanations and applications are needed for the 
research on crack recognition of multi-cracked failure.

The spatial distribution of the mixed fractures or cracks 
is difficult to distinguish and characterize. Because, even in 
the case where only several macrocracks are found after rock 
failure, thousands of ubiquitous AE event coordinates will 
be collected by the monitoring system (Bunger et al. 2015; 
Feng et al. 2015; Katsaga et al. 2007; Li et al. 2018; Liu et al. 
2015; Nasseri et al. 2014; Zhang et al. 2018). Besides, the 
coordinate dataset finally obtained is relatively incomplete. 
Not only because there are cracks that weaken and block the 
propagation of the signal wave (Moradian et al. 2016), but 
also some microcrack signals are artificially excluded when 
the threshold was set to reduce the effects of the ambient 
noise (Wang 2018; Wang et al. 2019b). It is likely that some 
very small signals representing microcracks go unrecorded 
and unidentified herein (Baud et al. 2017; Faillettaz et al. 
2016; Meier et al. 2019; Rouet-Leduc et al. 2017). There-
fore, the chaotic and incomplete dataset results in an obstacle 
to the analysis of crack distribution by traditional methods.

Facing the problem, machine learning algorithm exhibits 
the potential to extract knowledge from big data (Collobert 
et al. 2011; Hinton et al. 2012; Krizhevsky et al. 2017; Shin 
et al. 2016), and has already shown promise in performing 
a wide range of geotechnical tasks (Creager 2019; Rouet-
Leduc et al. 2018), including signal detection (Bi et al. 2019; 
Hibert et al. 2017; Meier et al. 2019; Meyer et al. 2019; 
Rouet-Leduc et al. 2019), hypocentre and AE source loca-
tion (Hensman et al. 2010; Perol et al. 2018). However, few 
studies have documented or attempted to analyse the spatial 
distribution of multiple macrocracks, especially in the case 
of staggered cracks (Lei et al. 2000; Manthei 2019; Ruck 
et al. 2017; Yabe et al. 2015). Therefore, for the problem 
the multi-macrocrack recognition task faces, machine learn-
ing algorithms have great potential to recognize cracks that 
appear to be ubiquitously distributed.

In this study, the true triaxial loading test was performed 
to simulate the complex failure of rocks in the real envi-
ronment. AE data were obtained during the formation of 
multiple cracks in granite specimens. Based on the results 
of previous studies, the three-dimensional spatial distribu-
tion hypothesis of microcrack was proposed, and the single 
macrocrack model and the three-dimensional crack recog-
nition model (3-DCRM) of AE were given. An unsuper-
vised machine learning algorithm was adopted to realize the 
cracks recognition utilizing the microcrack coordinate data-
sets. The results showed that the recognized three-dimen-
sional cracks were consistent with the real crack distribution 
of multi-cracked failure results. These results reveal the 3D 
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distribution pattern of cracks, and provide a reference for 
AE/microseismic monitoring in rock engineering hazard.

2 � Materials and Methods

2.1 � Experiment and Materials

In this experiment, a computer-controlled electro-hydraulic 
servo rock triaxial testing machine (Chaoyang Test Instru-
ments Co., Changchun, China) and an AE testing system 
(PCI-2, Physical Acoustics Company Co., New Jersey, USA) 
were adopted to implement the function of stress loading 
and AE signal collection, respectively. Loading time, stress, 
and strain data can be precisely and automatically obtained 
by the rock triaxial testing machine. The AE testing system 
consists of AE sensors, preamplifiers, cables, the host com-
puter, and AEwin software. AE signals could be collected 
by the AE testing system in real time via its 6 channels and 
18-bit analogue-to-digital converter.

In this experiment, five granite specimens were adopted 
for rock fracture testing under tunnel excavation conditions. 
The specimens were taken from the same granite sample, 
which has a dense texture with white veins. The sensors 
close to the specimen will be affected if the larger size speci-
men fails under higher stress and throws out rock debris. The 
smaller the specimen size, the lower the relative accuracy 
of the signal. Therefore, the specimen was processed into a 

cube with side lengths of 200 mm for more effective signals. 
After grinding, the flatness of each section was less than 
0.02 mm, and the axial deviation did not exceed 0.25°. The 
rock triaxial testing machine and the AE testing system were 
synchronously operated to record the mechanical parameters 
and AE signals in real time. The loading path was designed 
to have three stages, following previous research (He et al. 
2012; Li et al. 2015). The loading path is shown in Fig. 1. In 
stage I, a set of pressure thresholds was set to simulate the 
original stress where the specimens were located. We simpli-
fied the stress state by setting σ1 to 15 MPa, and σ2 and σ3 to 
10 MPa, according to the field stress test. The loading speeds 
of σ1, σ2, and σ3 were set to 0.03 MPa/s, 0.02 MPa/s, and 
0.02 MPa/s, respectively. In stage II, the stress was main-
tained in all three directions for 5 min. Then σ3 was suddenly 
released. In stage III, the maintained stress σ2 was constant. 
Displacement control was adopted to keep the specimen sta-
ble for unidirectional loading in the σ3 direction. The load-
ing speed of σ1 was set to 0.2 MPa/s until the specimen was 
destroyed.

This cube is a schematic diagram of the granite specimen. 
Three differently coloured arrows pointing to the surfaces 
represent three different loading directions. The black arrow 
represents the vertical stress �1 , and the red and blue arrows 
represent horizontal stress �2 and stress �3 , respectively. 
The background noise was recorded after the test, and the 
acquisition threshold was 40 dB to eliminate the interfer-
ence of external noises during the experiments; the sampling 

Fig. 1   The loading path



896	 C. Wang et al.

1 3

frequency of the sensor was set to 1 MHz, and the amplifica-
tion was set to 40 dB. Six sensors were used to monitor and 
collect AE signals in this experiment. The sensors and the 
gaskets were smeared with Vaseline and the sensors were 
sealed with plasticine. Figure 2 shows the layout of the sen-
sors. In addition, a lead-off test was performed to confirm 
that all six channels could steadily receive the AE signal 
before the experiment.

It is the schematic diagram of AE sensor layout on a gran-
ite specimen that corresponds to the cube of Fig. 1. The 

where the vector x is the microcrack coordinates expressed 
in matrix form. Note that p(x) obeys N(x|�,�) . The vec-
tor � =

(
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))T  . � is a covariance 
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where Var(x) = Cov(x, x).
As mentioned above, more than one crack was found in 

each damaged rock specimen. The monitored AE signals 
were generated by multiple macrocracks rather than one. 
Therefore, when dealing with complex failure, these micro-
cracks were considered to obey a combined distribution in 
three dimensions. In this study, the combined distribution 
was assumed to be a linear superposition of multiple single 
macrocrack models, and they could be written as the Gauss-
ian mixture model (Celik and Tjahjadi 2012) in the form
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Fig. 2   AE sensor layout (unit mm)

specimen is a cube with a side length of 200 mm. The red 
dots on the specimen surfaces represent the AE sensors. The 
surface facing us is the unloading surface, and an AE sensor 
was placed on its opposite surface, which was subjected to 
horizontal loading, stress �3 . The surface on which four sen-
sors are arranged and its opposite surface were subjected to 
vertical loading, stress �1 . The remaining two surfaces were 
subjected to horizontal loading, stress �2.

2.2 � Theoretical Basis

A microscopic crack is usually projected as an ellipse for 
theoretical analysis in a two-dimensional plane (Balland 
et al. 2018; Zhu 2009). For three-dimensional space, the 
microscopic crack can be assumed as an ellipsoid. To further 
understand the macrocrack, many studies have investigated 
rock fractures from microcracks and obtained their spatial 
distribution with AE events (Chang and Lee 2004; Hou 
et al. 2018; Li et al. 2018; Naoi et al. 2018; Nasseri et al. 
2014; Zhao et al. 2018). It was found that the microcracks 
corresponding to a macrocrack were densely distributed in 
the middle and sparsely distributed at both ends (Li et al. 
2018; Ruck et al. 2017; Zhang et al. 2018), which conform 
to the shape of an ellipsoid in three-dimensional space too. 
Therefore, it is to be assumed that the spatial distribution of 
microcracks generated by a macrocrack is an ellipsoid in this 
research. In addition, the shape of the probability density 
function of the single Gaussian distribution in three dimen-
sions conforms to the spatial characteristics of the ellipsoid, 
which can be represented as a single macrocrack. Therefore, 
the single Gaussian distribution model is adopted to analyse 
the microcracks of a single macrocrack in this study.

For the three-dimensional coordinate vector x, the dis-
tribution of the single macrocrack is represented by a mul-
tivariate Gaussian distribution model. Therefore, the single 
macrocrack model takes the form
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where m is the number of single macrocrack models, 
Nj

(
x|�j,�j

)
 is the jth single macrocrack model, and �j is the 

combined coefficient of the jth single macrocrack model, 
where 

∑m

j=1
�j = 1 and 0 ≤ �j ≤ 1.

Substituting the three-dimensional single macrocrack 
model into the combined macrocrack model, the 3-DCRM 
was obtained as

The expectation–maximization algorithm (Dempster 
et al. 1977) was adopted to estimate the parameters in the 
3-DCRM. From Eq. (3), the log of the likelihood function 
is given by

E step. According to Bayesian theory, for xi , the prob-
ability that it belongs to the jth single Gaussian model can 
be expressed by the posterior probability of �j as

M step. Setting the derivatives of Eq. (5) with respect to 
�j to zero, Eq. (7) was obtained as

Equation (8) was rearranged from Eq. (7):
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we can deduce Eq. (9) as follows:
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The macrocrack model parameters corresponding to the 
microcracks can be obtained in the iterative calculation, 
such as �j , �j , and �j . These parameters are used to con-
firm the attribution of microcracks, which together form 
different macrocracks. When the log-likelihood function of 
the combined model converges, the optimal parameters are 
obtained. The convergence condition is shown in Eq. (13), 
and � = 1 × 10−5 in this article.

3 � Results

The real cracks and the monitored microcracks are shown in 
Part A and Part B of Fig. 3, respectively. The macrocracks 
were recognized (Part C of Fig. 3) by the expectation–maxi-
mization algorithm that calculates the coordinates of micro-
cracks based on the distribution pattern of AE events.

Figure 3a–e represents the labels of the granite speci-
mens, from specimen B1 to specimen B5. Part A shows the 
fractured specimens after triaxial compression. One of the 
surfaces is under unloading conditions, and there are more 
small cracks in the vicinity of that surface. Different angles 
were selected for five specimens to show the cracks that 
formed. Part B shows the 3D distribution of the microcracks 
monitored by AE technology, and each red sphere represents 
a microcrack. The X–Z plane at Y = 0 is the unloading sur-
face. Part C refers to crack recognition results. Microcracks 
belonging to different macrocracks are distinguished by dif-
ferent colours. Each recognized macrocrack is represented 
by an ellipsoidal contour of the same colour as the microc-
racks. These recognized macrocracks are marked in Part A 
with the same colour.

In Fig. 3a, the upper-right corner of the specimen expe-
rienced a fracture during triaxial compression (Part A) and 
microcracks were detected at the same location, resulting in 
1022 microcrack coordinates (Part B). It is impractical to 
calculate either the number of macrocracks or to deduce the 
mechanism that formed those cracks via conventional meth-
ods. However, through crack recognition, each macrocrack 
that formed was marked in different colours and is shown in 
Part C. Among the four recognized macrocracks, the blue 
ellipsoid that is almost vertically inclined and the red ellip-
soid that is slightly skewed to the left are the main fractures 
and further cause the failure of specimen B1 in Fig. 3a. The 
recognized purple ellipsoid in the upper part of specimen 
B1 is oriented approximately horizontally. The number of 

(12)�j =
Nj

N
.

(13)
|||L(𝜃) − L(𝜃)

� ||| < 𝜀.
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Fig. 3   Microcrack distribution of fractured specimens and crack recognition results
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microcracks attributed to the green ellipsoid is less than 10% 
of all the microcracks, and there is no obvious observation 
of a corresponding macrocrack in the specimen.

For specimen B2 (Fig. 3b), a number of macrocracks can 
be identified visually, some of which are approximately verti-
cally oriented near the unloading surface. The location of the 
microcracks in part B shows that the microcracks are mainly 
clustered in the middle and left side of specimen B2. Part C 
shows that four macrocracks were identified in crack recogni-
tion. The blue ellipsoid (attributed to 27.6% of the number of 
microcracks) represents the vertically oriented macrocracks 
on the left side of specimen B2 adjacent to the unload surface. 
The red ellipsoid (13%) extends from the top right to the mid-
dle bottom through specimen B2, corresponding to the mac-
rocrack on the right side of specimen B2. A black macrocrack 
(45.8%) was recognized to the upper left of the center of the 
specimen. In fact, the white background behind specimen B2 
can be seen through the black ellipsoid. This illustrates that the 
material on the upper left side of the back has fallen off, cor-
responding to the green ellipsoid that is approximately axially 
oriented and located at the backside of specimen B2.

As shown in Fig. 3c, d, 299 (part C in Fig. 3c) and 162 
(part C in Fig. 3d) microcracks were detected in specimens B3 
(Fig. 3c) and B4 (Fig. 3d), respectively. The number of micro-
crack coordinates is relatively small compared that of other 
specimens. As shown in Fig. 3c, the specimen was highly dam-
aged, and there were more cracks near the unloading surface. 
In part C of specimen B3, the black macrocrack representing 
the large crack at the edge of the fracture that penetrates the 
whole specimen can be attributed to most of the microcrack 
coordinates. In addition, a red ellipsoid located at the intersec-
tion of three cracks was recognized in the upper part of the 
specimen. Figure 3d shows two recognized macrocracks of 
specimen B4. The three-dimensional crack recognition algo-
rithm generated a red ellipsoid (part C) with 15 microcrack 
coordinates, which corresponds to several vertically oriented 
small cracks near the unloading surface. Other coordinates 
were recognized that formed one crack at the intersection of 
the white joint and the crack on the right side, which was hori-
zontally oriented and vertically penetrated the specimen.

In Fig. 3e, a large number of microcracks (5871) clustered 
in the very left of the specimen (part B). Their spatial distri-
butions fit well with the actual fractures that formed in speci-
men B5 (part A). Part C is the result of crack recognition, and 
the locations of the microcracks were removed to improve the 
visualization. According to Part A of Fig. 3e, two macrocracks, 
denoted in red and black ellipsoids, are the main macrocracks 
(48.4%) that form the fracture; the red ellipsoid (22.3%) is 
located in the centre of the specimen, while the black ellipsoid 
(26.1%) dip 45° and cuts through the whole specimen. The 
blue ellipsoid is located in the upper left part of the specimen, 
and the green ellipsoid (35.4%) is located in the left front part 
of the specimen but extends backward. Therefore, two cracks 

intersect at the upper left corner to form a fracture zone on the 
left side of the specimen. A relatively small purple ellipsoid 
(12%) is recognized in the lower back part of the specimen.

4 � Discussion

4.1 � Connections Between Microscopic 
and Macroscopic Crack Patterns

The majority of previous studies on cracks have focused on 
the characteristics of all the microcracks (Bunger et al. 2015; 
Feng et al. 2015; Moradian et al. 2016). Additionally, tens 
and thousands of microcracks often constitute more than one 
macrocrack (Baud et al. 2017; Liu et al. 2015; Wang et al. 
2019a), and each macrocrack contributes differently to the 
failure or fracture of a rock (Li et al. 2018; Nasseri et al. 
2014). Therefore, explaining rock failure is limited by the 
analysis of either the overall microcracks or an individual 
microcrack (Baud et al. 2017; Feng et al. 2015). As shown 
in Fig. 3, the proposed 3-DCRM overcomes this problem by 
considering a number of microcracks as several macrocracks 
in a distribution pattern. In this way, the microscopic and 
macroscopic fracture patterns are closely linked. The macro-
crack distribution (random and intersecting) was realized by 
the presented crack recognition method using microcracks. 
The characteristics of macrocracks under complex fracturing 
failure were obtained, such as the crack quantity, locations, 
directions, sizes, and proportions. From the perspective of 
the accurate and refined study of rock failure, this research 
provides a new approach to further understand the propaga-
tion of a crack and the development of rock fracturing, such 
as crack size analysis of the fracture zone (Granger et al. 
2007) and the mechanical behavior of a single macrocrack 
(Katsaga et al. 2007) in rock mechanics, and the stability 
of potential cracks regions and rockburst prediction in rock 
engineering (Wang 2018). Complying with the conventional 
consideration of visual observation and understanding the 
distribution of cracks, the relationship between macrocracks 
is assumed to be a linear combination in this study.

The spatial coordinates from acoustic emission events 
provided the basic data for the 3D crack recognition, and 
only such data were utilized. The parameters such as the 
energy and amplitude of the acoustic emission events should 
also be considered in the recognition of cracks in future 
research. For example, the types of cracks can be classi-
fied with the rise time, amplitude, and average frequency. 
Microcracks with high energy may result in larger cracks 
(Moradian et al. 2016). High-energy microcracks can lead to 
greater deformation due to their energy level and thus gener-
ate even larger macrocracks. Adding different AE parame-
ters, the distribution of crack at higher dimensional promotes 
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the understanding of crack classification and accuracy. But 
these factors have not been considered in spatial distribution. 
To explore the existence of non-linear combination relation-
ships, adding more AE parameters in the 3D crack model 
is suggested for further investigation in high dimensions.

4.2 � Advantages of 3‑DCRM Adaptability

The recognition results in Fig. 3 demonstrate the advantages 
of the 3-DCRM in terms of the adaptability of the num-
ber of samples, data volume range, the analysis of random 
microcrack distributions, and the display of random multiple 
macrocracks. It is a tool for analysing the formation of rock 
failure and fracture with macrocracks because the monitored 
microcrack data is normally produced in a large quantity and 
at a high resolution.

The adopted crack recognition algorithm is an unsuper-
vised machine learning algorithm. It does not require sam-
ples to train and learn the characteristics like a supervised 
machine learning algorithm. Therefore, there is no direct 
relationship between the accuracy of the unsupervised 
learning results and the number and size of samples. They 
are directly related to hypothetical relationships. There is a 
comparison of ten commonly used unsupervised algorithms 
by Scikit-learn (Scikit-Learn Developers 2020), namely 
K-Means, Affinity propagation, Mean-shift, Spectral cluster-
ing, Ward hierarchical clustering, Agglomerative clustering, 
Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN), Ordering Points To Identify the Clustering 
Structure, Gaussian mixtures, and Birch. In the results: (1) 
when there is a significant distance between clusters, all the 
ten algorithms accurately recognize the targets. (2) When the 
clusters are close to each other, only DBSCAN and Gaussian 
mixtures give the correct results. (3) When there is a crosso-
ver between clusters, Gaussian mixture model is more accu-
rate than the DBSCAN model. Comparable results may be 
obtained in other models through parameter adjustment. (4) 
When it comes to a group of chaotic points, there are some 
algorithms that give different results; however, only Gauss-
ian mixture model shows the core of multivariate Gaussian 
distribution, which presents an ellipsoid in 3D. This key 
point is highly consistent with the proposed hypothesis.

Usually, the shape and size of the recognized results are 
based on the hypothetical theory and the distribution range 
of samples. The hypothesis in this paper determines that the 
shape of the crack is an ellipsoid. Compared with the non-
fixed shape hypothesis, the proposed hypothesis has better 
regularity. To consider morphological variation, 3-DCRM 
shows good adaptability to the spatial distribution of data. 
First, the shape of the macrocrack is determined as an ellip-
soid by the hypothetical theory. What’s more, by adjusting 
the parameters, ellipsoids with different sizes and shapes can 
be obtained, ranging from approximately thin cylinders to 

spheres to discs. Therefore, good adaptability in the variation 
in spatial distribution was found in the ellipsoid, which gives 
it advantages in representing the macrocrack compared to the 
representation provided by a sphere or cube. Most of the mac-
rocracks were recognized successfully in this research. How-
ever, it is worth mentioning that in some cases, the profiles of 
cracks are complex (Feng et al. 2015), such as a fault surface 
with subparallel cracks (Nasseri et al. 2014), or irregular or 
discontinuous fracture surface with several branching fracture 
surfaces (Katsaga et al. 2007). This method would recognize 
such features as one macrocrack (e.g., part C in specimen 
B2) or a combination of several macrocracks. Besides, several 
abnormal microcracks may be collected far away from the 
cluster area. Therefore, to improve the accuracy of shape and 
size, it is suggested to further optimize the recognized cracks 
from the perspective of space and shape.

After comparing the amount of microcrack data moni-
tored in the five specimens, the recognition task will face 
the challenges and the requirements of dealing with changes 
in the amount of coordinate data. According to the relevant 
literature, there are approximately hundreds of microcracks 
in a cubic rock specimen with a side length of 300 mm (Li 
et al. 2018), while more than ten thousand microcracks can be 
found in a standard cylindrical specimen (Φ50 mm × 100 mm) 
(Zhang et al. 2018). In this research, under the same experi-
mental conditions and instrumental settings, 5871 coordinates 
were obtained in specimen B5 while only 299 and 162 coor-
dinates were obtained in specimens B3 and B4, respectively. 
This result is discussed and explained in the following para-
graphs. In the case of relatively large quantities of microc-
racks, the proposed method successfully recognized five 
cracks with different distributions, and these cracks coincided 
well with the experimental observations of the macrocracks. 
With regard to the relatively small quantities of coordinates, 
the present crack recognition method still generated trustwor-
thy results for the crack distribution of specimens B3 and B4. 
The recognition results indicate that the proposed method has 
an advantage in terms of the data volume requirements, rang-
ing from 162 to 5,874 microcrack coordinates.

4.3 � Incomplete Dataset of Microcrack Coordinates

Theoretically, microcracks expand during a loading proce-
dure and a number of them ultimately merge to form one 
or multiple observable macrocracks (Katsaga et al. 2007; 
Ruck et al. 2017). However, sometimes the expansion or 
quantity of the coalesced microcracks is insufficient to form 
a macrocrack during artificial loading. It is different from 
the ideal situation where all microcracks are collected. Tak-
ing specimen B1 as an example (Fig. 3a), the crack denoted 
in the green ellipsoid is treated as a potential macrocrack. 
The green and purple ellipsoids linked on the left side of 
the specimen to form a fracture at the upper surface of the 
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specimen. In contrast, the penetration of cracks especially 
macrocracks will affect the propagation of AE signals, 
which causes fewer microcrack coordinates to be collected 
in the dataset (Li et al. 2018; Moradian et al. 2016; Zhang 
et al. 2018), such as in part C in specimen B3, as shown in 
Fig. 3c. As for specimen B4 in Fig. 3d, it is considered to 
be the results of the actions of the crack initiation position, 
direction, and speed. Only a group of horizontally distrib-
uted microcracks was monitored in the middle of the corre-
sponding macrocrack on the right side. The crack initiation 
position is in the middle of the macrocrack, but the crack 
fracture speed along the cracking direction is very fast. The 
large macrocrack formed instantaneously hinder the propa-
gation of other signals, so the microcracks cannot be located. 
Although macrocracks have been recognized in this article, 
such influences must be considered to improve the accuracy 
of the results. It is a part of the reason why the artificial 
number setting is adopted in this research. As shown in 
Fig. 3c, the result of two cracks set for specimen B3 shows 
a good explanation for rock failure, even though the results 
of three cracks have better visual results. In future research, 
it is recommended to adopt the most recent technology of 
microcrack localization to improve the detection accuracy 
and acquire a more complete microcrack dataset.

Moreover, some microcrack signals may be artificially 
excluded in AE experiments, when the threshold is set to 
filter out a specific range of signals for reducing the effect 
of ambient noise, such as voices and machine noise (Wang 
2018; Wang et al. 2019b). It is likely that some small sig-
nals representing microcracks go unrecorded and are thus 
unidentified herein (Baud et al. 2017; Faillettaz et al. 2016; 
Meier et al. 2019; Rouet-Leduc et al. 2017).

4.4 � Crack Number and Threshold

Unsupervised algorithms are usually subjected to several 
parameters; the most common parameters are the threshold 
and the number of targets. The settings of the number of 
cracks and the threshold are required before crack recogni-
tion. It is worth mentioning that in computing, the calcula-
tion of each additional crack and the increase in accuracy 
will greatly increase the computational workload and cal-
culation time. However, in this exploratory study of crack 
distribution patterns in rock mechanics and engineering, 
based on the discussion in the previous sections, the pursuit 
of accuracy is more of mathematically significant. Therefore, 
it is appropriate to select a moderate accuracy that will not 
cause deviations to the main area of the recognized crack, 
but shows potentially fault tolerance of the cracks space. 
In the end, the convergence threshold in this research is 
selected. The main area of the macrocrack remains stable 
and the accuracy can be guaranteed at this level.

Moreover, the background work we have conducted 
shows that small cracks (less than 10%) would overlap if 
the number of macrocracks are large. They will not only 
interfere with the results, but also result in poor visualiza-
tion for crack recognition. For specimen B5 (Fig. 3e), 5781 
microcrack coordinates were obtained and the number of 
cracks was required as input. On the one hand, potentially 
recognizable macrocracks would be ignored if this number 
is set too small. In this study, the crack number setting tests 
indicated that if the number of macrocracks is set to less 
than four, the smaller crack in the upper left corner will not 
be recognized. On the other hand, if the number of cracks 
is set to more than five, the workload increases exponen-
tially for each additional crack and more macrocraks will be 
distributed across corresponding to the original macrocrack 
position. With some cracks overlapping, it is computation-
ally inappropriate to recognize the cracks in a fixed size 
area. Therefore, five cracks were considered for B5. Due to 
the small volume of data, specimen B4 (Fig. 3d) displayed 
a good recognition result with a crack number of two. If 
the crack number of B4 was set to four, the black ellipsoid 
would decompose into three smaller parallel macrocracks 
very close to each other. Therefore, they were considered 
to be one crack in the result. For the same reason, two mac-
rocracks were generated for specimen B3 (Fig. 3c). On the 
one hand, if the number of cracks was set to four or more, 
the generated cracks would overlap, and show less efficiency 
than the results of setting two cracks. On the other hand, 
if the number of cracks is less than four, for specimen B2 
(Fig. 3b), a large crack will not be recognized. The explana-
tion of the detailed cracks is limited, and the effectiveness 
of the proposed method cannot be demonstrated. Following 
the implementation of such tests with different numbers of 
crack, it was suggested to choose five or less as the number 
of cracks for crack recognition under similar conditions.

The currently employed crack recognition algorithm 
requires human analysis to define the number of cracks. Such 
interference can be critical to the results because people may 
have different opinions on the mechanism of crack genera-
tion. However, manual analysis is also an important basis 
for judging the recognition results. Thus, considering the 
correspondence between the number of target macrocracks 
and real macrocracks, a function to automatically define the 
number of target macrocracks should be further investigated 
on the approximate inference algorithm.

5 � Conclusion

In conclusion, we present a crack recognition model for 
rocks based on the spatial distribution of microcracks that 
formed primarily along the throughgoing fracture under tri-
axial compression conditions. In doing so, we reconcile rock 
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fracture observations and rock mechanics analysis results 
with an unsupervised machine learning algorithm for the 
complex 3D spatial distribution characterization of micro-
cracks, as it has critical implications for crack recognition, 
rock fracture analysis, and seismic hazard. The results are 
as follows:

1.	 Using the proposed crack distribution hypothesis, the 
crack recognition results were obtained under the tri-
axial compression. They coincide well with the experi-
mental observations of random macrocracks. The differ-
ences between the recognition results and experiments 
were explained. The proposed hypothesis can be used 
to recognize and analyse multiple macrocracks based 
on microcracks.

2.	 Ten unsupervised machine learning algorithms were 
used for comparison. As a result, only the proposed 
method explains the crack distribution hypothesis 
well. Therefore, it is considered to be the most suitable 
method for the theoretical hypothesis.

3.	 The crack recognition method shows no requirements 
on the number of samples, and it has good adaptability 
to the data volume, the microcrack data sets range from 
162 to 5874.

4.	 These research results connect the microcracks and 
the macrocracks and deepen the understanding of rock 
failure at multiple macrocracks. This research provides 
a meaningful method to explore the formation of mul-
tiple macrocracks at once. The detailed formation can 
be widely adopted by rock mechanics and engineering, 
such as mechanical behavior interpretation and rockburst 
prediction.
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