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Abstract
An improved understanding of pillar strength and pillar failure mechanisms is required to optimize tabular mine layout 
designs. The paper describes the application of a limit equilibrium model for pillar failure analysis. It is shown that the model 
is capable of reproducing a hardening or softening response for uniformly compressed strip or square pillars. The stress–strain 
behavior depends on three non-dimensional parameters Q, M and β. Q represents the ratio of the limit failed uniaxial strength 
to the intact material strength, M is the ratio of the failed limit strength envelope slope to the intact strength envelope slope 
and β is proportional to the pillar width to height ratio. The model is implemented in a displacement discontinuity solution 
scheme using unstructured triangular elements to allow irregular plan-view pillar shapes and mining step increments to be 
represented. The seam-parallel confining stress distribution in the fracture zone is determined using a fast marching solution 
algorithm. A case study of an experimental pillar extraction site in a platinum mine is presented to illustrate the capability 
of the model to simulate the evolution of pillar failure as pillar extraction proceeds. Good qualitative agreement to observed 
failure trends are obtained but the detailed calibration of the model parameters remains a challenge. Further work is required 
to enhance the representation of pillar edge spalling processes.

Keywords Pillar failure · Limit equilibrium model · Fast marching method · Tabular mine layout · Triangular elements

1 Introduction

A number of shallow coal or hard rock mines employ pillar 
mining systems as a strategy for roof failure control (Van der 
Merwe and Madden 2010; Ryder and Jager 2002). In certain 
platinum mine layouts, pillars are designed to "crush" in 
a stable manner as they become loaded in the panel back 
area (Du Plessis and Malan 2015). The correct sizing of pil-
lars demands some knowledge of the pillar strength and the 
overall layout stress distribution. It is particularly important 
to understand the impact of the layout extraction pattern on 
the effective regional “stiffness” of the rock mass around 
each pillar and to assess the macroscopic response of the 
overburden region as mining progresses.

Two broad strategies may be followed to achieve a satis-
factory pillar layout design. The traditional approach is to 
employ empirically determined pillar strength formulas to 
select the pillar dimensions (see, e.g., Lunder and Pakalnis 

1997; Martin and Maybee 2000; Gonzalez-Nicieza et al. 
2006; Watson et al. 2008; Esterhuizen et al. 2011). This 
approach can lead to conservative designs in which pil-
lars are over-sized with a corresponding reduction in the 
overall mine life and profitability and are not directly useful 
in exploring evolutionary stress distribution trends as min-
ing progresses. Large scale pillar collapses have also been 
observed in mines, where empirical pillar strength formulas 
could not account for the effect of weak partings on pillar 
strength (Malan and Napier 2011; Esterhuizen et al. 2019). 
The second strategy is to model relatively detailed layout 
configurations which include a precise representation of the 
local plan view of the layout geometry and to analyse multi-
ple mining scenarios and extraction sequences to select opti-
mal pillar sizes and barrier pillar spacing. The displacement 
discontinuity boundary element method provides a useful 
representation of laterally extensive tabular mine layouts and 
has been extensively employed in the design of coal, gold 
and platinum mining operations (Plewman el al. 1969; Deist 
el al. 1972; Crouch and Starfield 1983; Salamon 1964; Ryder 
and Napier 1985; Heasley 1998). The main drawback of this 
technique is the neglect of the detailed excavation stress dis-
tribution in the normal direction to the mining horizon near 
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excavation edges. This difficulty can be addressed by devis-
ing simplified local models of the excavation edge failure 
region boundary conditions which are suitably coupled to 
the host displacement discontinuity solution mesh.

The present paper explores the use of a simple limit equi-
librium model of the edge failure zone using an unstructured 
triangular element mesh to represent the generally irregu-
lar pillar and excavation shapes. The major computational 
requirement is to solve the seam-parallel confining stress 
distribution and to identify the location of the fracture 
zone edge. The so-called “fast marching” or “fast sweep-
ing” technique developed by (see Osher and Sethian 1988; 
Sethian 1999) has been described by Napier (2016) and by 
Napier and Malan (2018) for the solution of longwall tabular 
excavations using square element grids. The present paper 
describes the extension of this approach to the solution of 
triangular element mesh tessellations with specific emphasis 
on the solution of pillar layout problems. Analytic models of 
the failure of a strip pillar and a square pillar are presented 
initially to illustrate the behavior of the limit model. These 
models are then compared to the predicted response of the 
average pillar stress that is calculated using the fast marching 
technique. The preliminary calibration of the model against 
observed stress and pillar deformation observations obtained 
from an underground field study is described in the final 
section.

2  Fast Marching Solution 
for the Seam‑Parallel Confining Stress 
in an Unstructured Triangular Element 
Mesh

As mining progresses the edges of hard rock or coal mining 
excavations are generally fractured. If it is assumed that the 
fracture zone is in a state of mobile equilibrium and that the 
vertical extent of this fracture zone is bounded by stratified 
geological features such as parting planes or other layering, 
it is possible to construct a differential force balance for the 
average seam-parallel and seam-normal tractions that obeys 
a relationship of the form:

where H is the fracture zone height normal to the excavation 
horizon, ∇�s(P) is the gradient vector of the average seam-
parallel confining stress �s at point P in the excavation plane 
and �n is the seam-normal compressive traction component 
at point P. �I is the friction coefficient at the upper and lower 
interface discontinuity contacts separating the fractured 
material from the outer region of intact rock. Equation (1) 
is a more general form of a class of limit equilibrium models 
that have been proposed previously to describe the failure of 

(1)H||∇�s(P)|| = 2�I�n(P)

coal pillars utilizing the confined core concept suggested by 
Wilson (1972). This concept has been employed notably by 
(Barron (1984), Barron and Pen (1992)) to develop analytic 
descriptions of pillar stress profiles. A detailed critique of 
this approach discussing some of the important limitations 
has been presented by Salamon (1992). The form of the limit 
model given by Eq. (1) allows for general orientations of 
the seam-parallel confining stress gradient in the fracture 
zone (Napier (2016), Napier and Malan (2018)). The only 
constitutive parameter representing the interface behavior 
is the effective friction coefficient, �I . More elaborate inter-
face conditions are not investigated here. The mechanical 
response implied by this model in defining the fracture zone 
extent and the overall response of simplified pillar shapes to 
uniform pillar compression is investigated in Sect. 3. Some 
illustrations of actual pillar damage and layout response are 
given in Sect. 6.

The seam-normal compressive traction component �n at 
point P is determined by a limit equilibrium strength rela-
tionship �n = f (�s) which, in the present case, is assumed to 
be a simple linear function:

where �c(P) and m(P) are the local strength envelope inter-
cept and slope parameters at point P. In the present analysis 
it is assumed as well that the ratio � = �c(P)∕m(P) is con-
stant at all points P. In this case, Eq. (1) can be expressed 
in the form

by introducing the transformed solution variable U given by

The solution to the eikonal Eq. (3) can be obtained on an 
unstructured triangular element mesh using the so-called 
“fast marching” algorithm as described, for example, by 
Osher and Sethian (1988), Kimmel and Sethian (1998) and 
Sethian (1999). The most direct approach is to obtain the 
solution at the covering displacement discontinuity triangu-
lar element vertices. However, the displacement discontinu-
ity solution of mine layout problems is usually determined at 
one or more collocation points that are located within each 
element. In the simplest case, a single collocation point is 
located at the center of each element and the discontinuity 
value is assumed to be constant within each element. To 
accommodate this case, an alternative triangular fast march-
ing solution grid is constructed which includes both the dis-
continuity element center points and the element vertices. 
The structure of this triangular mesh is illustrated in Fig. 1 
for a portion of an irregular shaped pillar. The basic discon-
tinuity element edges are plotted as solid lines. The edges of 
the fast marching solution mesh are shown as broken lines 

(2)�n(P) = �c(P) + m(P)�s(P)

(3)|∇U| = 2�Im(P)∕H

(4)U = ln
[
� + �s

]
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and are seen to have vertices which correspond to both the 
parent element mesh centers (triangular shaped markers) and 
to the parent mesh vertices (circular shaped markers).

The transformed seam-parallel confining stress vari-
able U can be found by applying the fast marching solution 
algorithm with the boundary condition of �s = 0 at the edge 
vertices of the solution grid mesh (see Fig. 1). The local 
gradient direction at an edge vertex is assumed to be per-
pendicular to the edge tangent or to bisect the angle formed 
by successive edge segments in the case of a corner vertex 
such as C in Fig. 1. A fixed boundary condition value is 
also assigned at the centers of each edge element (for exam-
ple, point D in Fig. 1). In these cases it is assumed that 
the confining stress gradient direction is perpendicular to 
the adjacent element edge at the excavation boundary. For 
example, the boundary value for �s at point D is determined 
by integrating Eq. (3) in the direction perpendicular to edge 
EF in Fig. 1 assuming that �s = 0 on EF. If the perpendicular 
distance from EF to D is equal to d it can be shown from 
Eq. (3) that

A general layout analysis will require the solution of the 
displacement discontinuity values for a series of excavation 
mining steps. The limiting seam-parallel and seam-normal 
stress values arising at each element collocation point PC 

(5)�s(d) = (�c∕m)[exp(2�Imd∕H) − 1]

are evaluated by solving Eq. (3) at the start of each solu-
tion stage using the fast marching solution technique. The 
fast marching algorithm constructs this solution in a series 
of steps by examining all designated “trial” vertices that 
are adjacent to “known” assigned solution values (Kimmel 
and Sethian 1998; Sethian 1999). A typical trial vertex is 
depicted at vertex C in Fig. 2. The trial vertex is surrounded 
by one or more triangles such as ABC in Fig. 2. If the values 
of the solution variable U in Eq. (3) are known at the points 
A and B then the solution variable at point C can be evalu-
ated to match the specified right hand side value defined in 
Eq. (3). This process is repeated for all sectors surround-
ing each trial vertex. The overall minimum trial value U∗ 
is then designated to have a “known” status. This proce-
dure is repeated until all solution vertices reach a “known” 
status. The main advantage of the fast marching procedure 
(Sethian 1999) is that the computational cost is proportional 
to N logN , where N is the number of vertices in the solution 
mesh. In the present case, this does not add an appreciable 
computational cost to the overall iterative solution time for 
a given mine layout.

Once the limiting seam-parallel and seam-normal stress 
values have been determined it is possible to establish the 
displacement discontinuity solution values at each colloca-
tion point using a suitable iterative strategy. The displace-
ment discontinuity solution for extensive tabular layouts can 
be found efficiently using an iterative hierarchical influence 
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“lumping” scheme as described, for example, by Napier and 
Malan (2007). In the present case each collocation point is 
examined in turn within an iteration cycle and the seam-
normal stress value is evaluated assuming that no failure 
has occurred at the point. This value is then compared to 
the assumed intact strength value �∗

n
 at the point PC given by

where �i
c
 and mi are specified intact strength intercept and 

slope parameters and �s(PC) is the limit equilibrium solution 
value for the seam-parallel confining stress. The intact status 
at point PC is maintained if no failure is deemed to occur. 
If failure does occur the displacement discontinuity solu-
tion value Δun(PC) is selected to yield a seam-normal stress 
value corresponding to the required limit value �n(PC) . The 
iteration cycles are repeated until a defined error tolerance 
in the solution values is satisfied.

As an example, consider an irregular pillar shape as 
shown in Fig. 3. The pillar is tessellated using triangu-
lar displacement discontinuity elements and is embedded 
in a small rectangular mined region extending from local 
Cartesian coordinates (− 4, − 3) to (14, 12). The specific 

(6)�∗
n
= �i

c
+ mi�s(PC)
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C

Fig. 2  Schematic layout of triangular solution mesh surrounding a 
trial vertex located at point C. Line AB represents a typical neighbour 
sector edge
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failure zone and the locally 
assigned gradient contour direc-
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parameters that are used in the analysis are summarized in 
Table 1. The resulting failed region and the level set gradi-
ent contour tangent directions at each element collocation 
point are shown in Fig. 3. Complete failure occurs in the 
triangular region ABC and the extent of the intact core 
region is evident (see points depicted by triangular shaped 
markers). It is noted as well that the local edge gradient 
direction at points A and D is resolved according to the 
nearest excavation edge segment which yield a resolution 
that is limited by the assigned tessellation mesh size.

3  Analytic Model of Pillar Failure

3.1  Strip Pillar Model

The stress–strain response of the limit equilibrium model 
description of platinum mine crush pillars or coal mine 
panel and barrier pillars is controlled by a number of critical 
parameters. It is important to gain some insight into the role 
of these parameters in determining the average stress–strain 
response of a pillar with a given pillar shape (specifically, 
the contrast between strip pillars, square pillars and irregular 
shaped pillars) and the behavior of the model as the pillar 
width to height ratio is varied. In addition, it is necessary 
to assess whether the simple limit model structure that has 
been proposed should be amended in cases, where the pillar 
width, W, becomes small compared to the height, H (e.g., 
W/H < 2).

Consider, initially, the case of a long strip pillar having 
a width, W = 2a , with a central intact elastic core region 
of width W0 = 2a0 as depicted in Fig. 4 and assume that a 
uniform compression is applied across the pillar. Let a local 
coordinate x designate the distance from the center of the 
pillar. The stress distribution in the fractured edge zone is 
then given by the one-dimensional version of Eq. (3) which 
can be seen to be expressed as

(7)
�n(x) = �c + m�s(x) = �c exp(2�Im(a − x)∕H), a0 ≤ x ≤ a

Table 1  Parameters used to illustrate structured and unstructured 
mesh solutions of the reef-parallel stress distribution in a pillar region

Parameter Value

Intact strength intercept, σc
i 73.0 MPa

Intact strength slope, mi 7.0
Residual strength intercept, σc 46.0 MPa
Residual strength slope, m 4.6
Effective seam height, H 3.0 m
Intact rock Young’s modulus, E 70,000.0 MPa
Intact rock Poisson’s ratio, ν 0.2
Fracture zone interface friction angle,�

I
20°

Field stress normal to excavation plane 60.0 MPa

Fig. 4  Conceptual stress profile 
across a uniformly compressed 
strip pillar having an intact 
elastic core region
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where �s(x) and �n(x) are, respectively, the average seam-par-
allel and the seam-normal stress components at position x. 
�c and m are the residual limit equilibrium strength envelope 
parameters and �I is the friction coefficient at the interface 
between the fractured material and the bounding intact rock. 
H is the effective height of the pillar.

Assume that the average stress �E

n
 in the central core of 

the pillar is given by a linear elastic relationship of the form:

where ES is the effective pillar material modulus and � is 
the average pillar strain. The maximum strain that can be 
sustained by the pillar will depend on the extent of the edge 
fracture zone and on the intact rock strength properties. 
Assume that the intact core strength envelope is given by 
�i
c
+ mi�s(a0) , where �i

c
 and mi are the intact rock uniaxial 

strength and slope parameters, respectively, and �s(a0) is 
the seam-parallel confining stress at the edge of the central 
intact region. The pillar strain can then be inferred to be 
given by

The seam-parallel stress �s(a0) can be deduced from Eq. (7) 
to be

Let �A

n
 be the average stress in the fractured region adjacent 

to the intact core. By integrating Eq. (7) it can be shown that

The average stress �n across the whole pillar is then given 
by the weighted expression

Combining Eqs. (7) to (11), it is possible to use Eq. (12) 
to infer a relationship between the average pillar stress and 
strain. To simplify this expression, it is useful to define the 
dimensionless width to height ratio parameter � to be

and to define the non-dimensional strength parameter ratios

It is envisaged in this analysis that M ≤ 1 and that Q ≤ 1 . In 
addition, define the scaled edge fracture zone length � to be

(8)�
E

n
= ES�

(9)ES� = �i
c
+ mi�s(a0)

(10)�s(a0) = (�c∕m) [exp(2�Im(a − a0)∕H]

(11)(a − a0)�
A

n
=

�cH

2�Im

{
exp[2�Im(a − a0)∕H] − 1

}

(12)a�n = a0�
E

n
+ (a − a0)�

A

n

(13)� = 2�Ima∕H = �ImW∕H

(14)M = m∕mi and Q = �c∕�
i
c

(15)� = 1 − (a0∕a)

The parameter ϕ may be viewed alternatively as a form of 
"damage" variable which ranges from � = 0 (intact pillar) 
to � = 1 when the pillar core is completely fractured. If the 
strain across the pillar is increased from zero, the pillar will 
remain intact until the pillar stress reaches the postulated 
intact uniaxial strength �i

c
 . At this point, let the average 

strain be �0 , where

The scaled pillar strain � and the scaled average pillar stress 
A are now defined to be

Substituting these dimensionless parameters into Eqs. (9) 
and (10), yields the expression

The scaled average pillar stress A can be inferred from 
Eq. (12) to be

Finally, solving Eq. (19) for � and substituting this result into 
Eq. (20) yields the scaled strip pillar average stress–strain 
relationship in the form

It is important to note that when 0 ≤ � ≤ 1 , A = � and the 
pillar stress–strain relationship is elastic. The fracture zone 
extent, reflected by the parameter � , increases steadily when 
𝜒 > 1 and the pillar is completely fractured when � = 1 . 
Defining the scaled strain value � = �∗ and scaled average 
pillar stress A = A∗ when � = 1 , it can be seen from Eqs. 
(19) and (20) that

The slope of the scaled average strip pillar stress relation 
(21) is given by

The average pillar load will decrease at the onset of pillar 
failure, when � = 1 , if A�(1) < 0 . This occurs if the scaled 
width to height parameter � is smaller than a critical value 
given by

(16)ES�0 = �i
c

(17)� = �∕�0

(18)and A = �n∕�
i
c

(19)� = 1 + (Q∕M)[e�� − 1]

(20)A = (1 − �)� + Q[e�� − 1]∕�

(21)

A = � −
�

�
ln [1 + (M∕Q)(� − 1)] + (M∕�)(� − 1);� ≥ 1

(22)�∗ = 1 + (Q∕M)[e� − 1]

(23)and A∗ = Q[e� − 1]∕�

(24)

A�(�) = 1 +
M

�
−

�

�[� + (Q∕M) − 1]
−

1

�
ln
[
1 + (M∕Q)(� − 1)

]
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3.2  Square Pillar Model

Consider a square pillar with an overall width W = 2a and 
with a central core region of width W0 = 2a0 , as depicted in 
Fig. 5. For constant limit strength parameters �c and m the 
seam-normal stress at a point in the pillar is determined by 
the closest distance from the point to the edge of the pillar. 
The pillar behavior is assumed to be symmetric in the four 
triangular regions depicted by the dashed lines in Fig. 5. The 
normal stress at a distance x – a from the nearest edge is given 
by Eq. (7) and the average stress �A

n
 in the fractured region is 

determined from

The scaled average pillar stress is expressed by a weighted 
combination of the average stress in the core region and the 
surrounding fractured region according to the relationship

(25)𝛽 < (M∕Q)(1 − Q)

(26)(a2 − a2
0
)�

A

n
= 2

a

∫
a0

x�n(x)dx

(27)A =
�n

�i
c

=
(a0
a

)2 �E
n

�i
c

+

[
1 −

(a0
a

)2
]
�A
n

�i
c

Employing the same dimensionless quantities defined for the 
strip pillar analysis and evaluating Eq. (26), it can be shown 
that Eq. (27) can be expressed as

where the scaled fracture zone length parameter � is given 
by

The scaled strain value � = �∗ that arises when the intact 
core is completely fractured occurs when � = 1 . In this case 
�∗ is again given by Eq. (22) and, from Eq. (28),

The condition for immediate softening of the pillar once 
failure is initiated at � = 1 is given by

It is also of interest to note that the slope of the scaled aver-
age square pillar stress given by Eq. (22) can be expressed as 
a function of the edge damage fraction � in the form

(28)
A = (1 − �)2� + (2Q∕�2)

{
[1 + (1 − �)�]e�� − � − 1

}

(29)� = (1∕�) ln[1 + (M∕Q)(� − 1)]

(30)A∗ = (2Q∕�2)
{
e� − � − 1

}

(31)𝛽 < (2M∕Q)(1 − Q)

(32)

A�(�) =
(1 − �)M

�Q

{
Q

[
2 +

(1 − �)�

M

]
− 2e−�� −

2Q

M

(
1 − e−��

)}

Fig. 5  Square pillar plan view 
with the intact core region area 
equal to 4a2

0
 and the overall pil-

lar area equal to 4a2
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where � depends implicitly on � through Eq. (29). It is 
observed from Eq.  (32) that when � = 1 , � = �∗ and 
A�(�∗) = 0.

4  Critical Parameter Values Controlling 
Square Pillar Stress–Strain Behavior

The condition provided by Eq. (31) for immediate softening 
(load reduction) at the onset of square pillar failure can be 
expressed alternatively as

where Q is the scaled uniaxial strength ratio parameter (see 
Eq. (14)). This condition can be contrasted to the constraint 
that the final average pillar stress A∗ is greater than the aver-
age pillar stress at the onset of failure. It can be seen from 
Eq. (32) that A∗ > 1 provided

Equations (33) and (34) provide limiting bounds on the 
range of the parameter Q, expressed as functions of M and 
β, which determine either the initial softening or harden-
ing behavior of the average pillar stress and the residual 
softened or hardened state when the central core is com-
pletely fractured. These relations are depicted graphically in 
Fig. 6. Equation (34) is plotted as the thick line marked as 
the “residual softening boundary”. Equation (33) is plotted 

(33)Q < 1∕[1 + (𝛽∕2M)]

(34)Q >
𝛽2

2(e𝛽 − 𝛽 − 1)

as a series of curves in Fig. 6 with the parameter M set to 
the values 0.2, 0.4, 0.6, 0.8 and 1.0, respectively. Figure 6, 
therefore, enables the general pillar response to be predicted 
for a given choice of values of Q, M and β. To illustrate this, 
consider the particular case, where M = 0.4 and where Q 
and β correspond to the marked points A, B, C, D and E in 
Fig. 7. The specific parameter values and the expected pillar 
behavior is summarized in Table 2.

The scaled average pillar stress values for the four points 
A, B, C and D are plotted as a function of the scaled strain 
values in Fig. 8 and confirm the predicted behavior that is 
inferred from Fig. 7 and summarized in Table 2. Similar 
stress–strain response curves can be plotted for a strip pil-
lar with the same scaled parameter values that are used for 
points A, B, C and D. It is observed that the average pillar 
stress values for cases B, C and D are significantly larger 
than for the square pillar. Strip pillar softening occurs also 
for case A at the onset of pillar failure. It should be noted 
that the initial softening condition given by Eq. (25) differs 
from the condition for a square pillar given by Eq. (31).

It is important to note as well that in all cases, where 
the initial stress–strain response slope is positive (i.e., when 
A�(1) > 0 ), the peak pillar stress will always exceed the 
residual stress when the pillar core is completely failed (i.e., 
there will always exist a local maximum value Â of A in the 
range 1 < 𝜒 < 𝜒∗ such that Â > 1).

It is of interest to note as well the special case defined by 
point E in Fig. 7 and summarized in the last line of Table 2. 
In this case, it is predicted that the residual strength of the 
square pillar will be greater than the initial failure strength 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Un
ia

xi
al

 s
tr

en
gt

h 
ra

tio
, Q

M = 0.2
M = 0.4
M = 0.6
M = 0.8
M = 1.0
Residual softening boundary

Scaled W:H ratio, β

M = 1.0

M = 0.2

Residual 
hardening

Residual softening

Fig. 6  Critical region boundaries for square pillar residual softening or hardening



79A Limit Equilibrium Model of Tabular Mine Pillar Failure  

1 3

but that there is a small initial load decrease in the average 
pillar stress value at the onset of failure.

5  Comparison of the Fast Marching Solution 
to the Analytic Model for A Square Pillar

In this section the analytic square pillar solution is com-
pared to the crush zone extent that is found when using the 
fast marching scheme for two particular cases. In the first 
case, the numerical solution was applied to a square pillar 
with a width of 9.0 m and with the height parameter set 
to 2.0 m. The pillar was tessellated using 580 triangular 
elements and successive uniform compression strain steps 
were applied to the pillar. The applied compression is used 
to infer the intact stress magnitude from the assumed elas-
tic modulus of the pillar. This stress can be compared to 

the failure condition implied by Eq. (6) at each collocation 
point PC . If the compressive displacement discontinuity 
component is designated by Dn the element is assumed 
to fail if.

where the seam-normal elastic compressive stiffness kS is 
given by.

The seam-normal stress value of the failed point is 
assigned the limit value �n(PC) if failure occurs at point 
PC . The average pillar stress values corresponding to a 
series of applied pillar compression values are compared 
to the analytic square pillar solution in Fig. 9. The assumed 
parameter values are included in the figure legend. The 
numerically computed average pillar stress values can be 
seen to be in good agreement with the analytic solution.

A second test was performed to evaluate the average pil-
lar response when post peak pillar softening occurs. In this 
case, it was postulated that the peak pillar stress was equal 
to �i

c
 and that the initial post peak softening slope has a 

specified value −kPP
S

 . Utilizing Eq. (32) for the scaled ini-
tial slope A�(1) of the average pillar stress–strain relation-
ship and the definitions of the dimensionless parameters M
,Q and � it can be shown that the specification of the value 
of kPP

S
 can be accommodated by imposing the following 

constraint on the pillar parameter values;

(35)kSDn ≥ �i
c
+ mi�s(PC)

(36)kS = ES∕H
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Table 2  Parameter values and expected pillar behavior corresponding 
to points A, B, C, D and E in Fig. 7

Point Q β M Initial slope, A’(1) Final stress, A*

A 0.20 2.0 0.4 Negative Softened (< 1)
B 0.28571 2.0 0.4 Zero Softened (< 1)
C 0.40 2.0 0.4 Positive Hardened (> 1)
D 0.60 2.0 0.4 Positive Hardened (> 1)
E 0.05 7.0 0.4 Negative Hardened (> 1)
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For example, choosing appropriate parameters in Eq. (37) 
allows a rough calibration of the pillar response to be made 
based on available field observations of the post peak pillar 
compression slope (see, for example, Wagner 1974). For 
example, selecting kS = kPP

S
= 2000 MPa/m, �i

c
= 12.0 MPa, 

�c = 2.8 MPa, mi = 6 and �I = tan(20◦) ≈ 0.36397 requires 
that W∕H ≈ 3∕2 for Eq. (37) to be satisfied. Figure 10 shows 
the simulated average stress response values for the case, 
where W = 3.0 m and H = 2.0 m compared to the analytic 
solution given by Eq. (28). The pillar was again tessellated 
using 580 triangular displacement discontinuity elements. 
Figure 10 shows good agreement between the numerically 
computed values and the analytic solution.

6  Field Study of Pillar Extraction

This section illustrates the application of the limit equilib-
rium model to a large-scale bord and pillar layout problem. 
An experimental pillar mining section was established in a 
platinum mine in the Eastern Bushveld Complex of South 
Africa. The mine is located near the town of Lydenburg and 

(37)W∕H −
2[(�i

c
∕�c) − 1]

�Imi[1 + (kPP
S
∕kS)]

= 0
it exploits the tabular UG2 chromitite seam. The experimen-
tal section at the mine was established by mine personnel 
in an attempt to determine pillar strength more accurately. 
The pillar sizes at the mine were originally designed using 
the empirical Hedley and Grant power-law strength formula 
(Hedley and Grant 1972). This approach is currently con-
sidered to be too conservative for most of the shallow South 
African platinum mines. Ryder and Jager (2002) comment 
that this empirical formulation was adopted in the platinum 
mines as no data on local pillar behavior was available to 
derive strength formulae.

The experiment consisted of instrumenting a central 
pillar in an old mining area and progressively mining the 
pillars surrounding this pillar until failure of the central 
pillar occurred. Figure 11 illustrates the layout in this area. 
The designed pillar sizes were 9 m × 7 m and the bords 
were 8 m wide. This gives a theoretical extraction ratio of 
75.3%. Small element sizes (average size ≈ 0.45  m2) were 
used to minimize the effect of mesh size on the behav-
ior of the limit equilibrium element simulations (Malan 
and Napier 2018). The total number of displacement dis-
continuity elements used to represent the area shown in 
Fig. 11 was 36 317. The actual extraction ratio could be 
calculated from the mesh as 76.6%. This illustrates good 
pillar cutting discipline as it is often difficult to maintain 
the designed pillar sizes in hard rock mines. The extraction 
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ratio, depth (275 m) and estimated average overburden 
density (3000 kg/m3) gives an average pillar stress of 
36 MPa using tributary area theory calculations.

For computational efficiency, only the 25 pillars of inter-
est in the center of the excavation were allowed to fail, while 
the outer pillars were simulated as “rigid” pillars that were 
not allowed to deform. In terms of the mining sequence, 

Fig. 11  a Layout of the experimental pillar mining area of a shallow 
bord and platinum mine. This diagram represents the size of the area 
simulated with dimensions of 136 m × 145 m. The pillars highlighted 
in blue, where gradually reduced in size to increase the load acting 

on the central pillar. b The final geometry of the central pillars when 
the experiment was stopped. The instrumented pillar is indicated as 
pillar A

Fig. 12  Sequence of mining of the pillars: a reduction in size of pillar A to approximately 6.7 m × 3.6 m, b mining of the first ring of pillars, c 
mining of the second ring of pillars. This diagram illustrates the final geometry
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the central pillar was first reduced in size and then the adja-
cent two rings of pillars were gradually mined following the 
sequence shown in Fig. 12. The mining proceeded slowly 
and the experiment lasted from January 2018 to December 
2019.

The depth of the excavation was 275 m and as the dip 
of the reef was small. Garza-Cruz et al (2019) have dis-
cussed the effect of shear stresses on pillar stability, but this 
is not considered in the present case study for the approxi-
mately horizontal seam. The average density of the rock 
was assumed to be 3000 kg/m3 and the mining height was 
approximately 2.5 m. The calibration of the limit equilib-
rium parameters listed in Table 1 is difficult for actual pillar 
mining examples. The calibration given below was based on 
a number of trial and error simulations that are compared to 
the actual underground observations to guide the process. 
A parameter sensitivity study was conducted after a set of 
parameters was obtained which gave results that appeared 
to match the observations. It should be emphasized that the 
purpose of this modelling was to investigate the potential 
of the limit equilibrium failure model for the simulation 
of large scale, irregular shaped pillar failure problems and 
not to obtain precise calibration of all the parameters. The 
observations that were used to guide the calibration process 
were as follows.

The uniaxial compressive strength of the chromitite reef, 
as tested in the laboratory, varies from 137 to 197 MPa. 
The actual pillar edges are not homogenous and a pyrox-
enite waste band is present in the UG2 reef in this area (see 
Fig. 13). Weak partings are also present, and therefore, the 

large scale in situ uniaxial strength of the rock will be sub-
stantially lower than the laboratory strength. In situ tests on 
large rock specimens (Bieniawski and Van Heerden 1975) 
are not available in the present case. Laboratory shear tests 
on parting planes gave friction angles ranging from 32° to 
35º.

It was observed that the pillars appeared to be stable 
before the mining of the pillars commenced and almost no 
fracturing or scaling was present at the edges of the pillars. 
As the outer pillars were reduced in size, the fracturing on 
these pillars increased and, at the final step, the smallest 
pillars were completely fractured (for example, pillar B illus-
trated in Fig. 14a).

Surprisingly, the instrumented central pillar (pillar A in 
Fig. 11b) showed only limited scaling as the stress gradually 
increased and by the end of the experiment this pillar was 
still mostly intact (Fig. 14b). The final width of this pillar 
was less than 4 m and the nominal mining height was 2.5 m. 
A decision was taken by the mine to terminate the experi-
ment at this stage owing to the safety risk of the large spans 
and the adjacent failing pillars. The reason for the unexpect-
edly good final condition of pillar A is not clear.

A number of simulations were conducted to investigate 
the effect of the various parameters on the simulated pillar 
response. A list of these parameters is given in Table 3. It 
was assumed that Young’s modulus was 70 000 MPa and 
Poisson’s ratio was 0.2 for the intact rock. Using a min-
ing depth of 275 m and an assumed vertical stress gradient 
of 0.03 MPa/m the virgin stress normal to the excavation 
plane was 8.25 MPa. The dip of the reef was assumed to be 

Fig. 13  Photographs illustrating the complex composition of the pil-
lar material. a The darker rock is the chromitite and the lighter mate-
rial is pyroxenite. b Some of pillars have a weak contact between the 

chromitite and pyroxenite, resulting in a failure mechanism reminis-
cent of the simplified limit equilibrium model
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0º. In Table 3, the parameters M, Q and β were calculated 
using Eqs. (13) and (14). The expected final stress condition 
shown in the table is for a failed square pillar and was deter-
mined using Eq. (33). Note that most of the calibration runs 
predict immediate softening (load reduction) at the onset of 
pillar failure. Calibration run 14, with high strength values, 
was included as a benchmark to calculate the pillar stresses 
if no failure occurs.

Table 4 illustrates some of the results from the simula-
tions. This shows the failure behavior of pillars A, B, C 
and D (see Fig. 11b) for the parameters listed in Table 3. 
The approximate final dimensions of these pillars are A 
(6.7 m × 3.6 m), B (8.9 m × 1.7 m), C (9.6 m × 4.6 m) and 
D (7.6 m × 5.4 m). Pillar A is the central instrumented pil-
lar and Pillar B is a slender crush pillar in the first ring of 

mined pillars. The average pillar stress (APS) (see Napier 
and Malan 2011) for each pillar is given in the table.

From the results in Table 4, pillar B (see Fig.  11b.) 
crushes completely for most of the calibration runs as 
observed. This is to be expected owing to the small width 
of this pillar (1.7 m). The final APS for pillar B is substan-
tially reduced compared to the case, where the pillars remain 
intact (calibration run 14). It is of interest to note that for 
the pillars with a width close to 5 m or exceeding 5 m (pil-
lars C and D), almost no reduction in APS occurs, even for 
substantial fracturing of the pillar edges (calibration run 11). 
Calibration runs 2 and 3 appear to match the underground 
observations best with pillar B completely crushed, only 
moderate failure for pillar A and almost no damage for the 
larger pillars such as C and D. These specific calibration 

Fig. 14  a Typical failure of the small pillars (e.g., pillar B in 
Fig. 11b) surrounding the central pillar. The core of these pillars were 
fractured. b The instrumented pillar A photographed at the time when 

the experiment was terminated. The pillar was painted white as a vis-
ual indication of scaling of the sidewalls. Note the closure instrument 
in the foreground in the photograph on the left
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runs assumes a reasonable estimate for the in situ uniaxial 
strength of the pillar material of 60–70 MPa.

The failure of the pillars in the model for calibration 
run 2 is shown in Fig. 15. Note that the smallest pillars are 
completely fractured and pillar A still has an intact core. 
The model nevertheless seems to indicate a larger extent of 
fracturing in this central pillar compared to that observed 
underground (Fig. 14).

The measured and simulated increase in the closure at 
a number of points (see Fig. 11b) is shown in Fig. 16. The 
simulated closure is slightly less than the measured closure 
and displays a similar trend to the observed closure values. 
The observed and simulated increase in closure was the 
greatest for the two closure stations C2 and C3 that are the 
closest to the instrumented pillar (see Fig. 11b).

The simulated increase in average pillar stress for pillar 
A is shown in Fig. 17. This increase is the greatest for the 
case (calibration run 14), where no pillar failure occurred 
but is significantly lower for calibration run 2, where pillar 
failure occurs (see also Fig. 15). Stress measurements were 
conducted by the mine in the hangingwall above pillar A 
and a calculated peak average pillar stress of approximately 
160 MPa was reported to the authors. There is a large dis-
crepancy between this measured value and the simulated 
values presented in Fig. 17. The suggested pillar strength 
of 160 MPa exceeds the typical laboratory strength value of 
UG2 chromitite (137 MPa to 197 MPa) and is also counter-
intuitive for a pillar with a width to height ratio of less than 
1.6. Further work is required to confirm the hangingwall 
stress levels in these platinum mines.

Based on these preliminary results, it appears that the 
limit equilibrium model can provide a good qualitative 

Fig. 15  The simulated failure in 
the pillars after the last mining 
step (calibration run 2). The 
dots indicate the failed elements

AB

C

D
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replication of the observed pillar damage trends and stope 
closure values as pillar extraction or pillar formation pro-
ceeds. The use of an unstructured triangular element mesh 
enables the simulation of irregular pillar shapes and mining 
steps. The study does illustrate the difficulty in obtaining 
exact replications of actual pillar deformation modes. In par-
ticular, further development of an enhanced model for the 
edge spalling zone is warranted.

7  Conclusions

A fast marching method is described to solve the confining 
seam-parallel stress in a simplified model of the fracture 
zone in narrow seam or reef deposits with particular empha-
sis on the solution of pillar mining problems. The method 
is implemented specifically in a displacement discontinuity 
boundary element context that is amenable to the solution 
of large-scale tabular layout problems. The fast marching 

0

2

4

6

8

10

12

14
Cl

os
ur

e 
(m

m
)

Stope C1 Stope C2 Stope C3 Stope C4

0

1

2

3

4

5

6

7

8

9

10

Cl
os

ur
e 

(m
m

)

C1 C2 C3 C4

(a) (b)

Fig. 16  Measured a and simulated b increase in closure at the four measurement positions (see Fig. 11b)

Fig. 17  Measured and simulated 
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algorithm is implemented using a triangular element solu-
tion mesh that covers both the centers and vertices of the 
triangular boundary element mesh. The boundary element 
mesh itself provides a flexible description of irregular plan-
view pillar shapes and mining sequences.

The excavation edge failure zone is modelled using a limit 
equilibrium representation of the seam-parallel and seam-
normal stress values. The behavior of this model is examined 
analytically for the special cases of a uniformly compressed 
strip pillar and square pillar. The analytic stress–strain 
response is demonstrated to depend on three non-dimen-
sional parameters Q, M and β. Parameter Q represents the 
ratio of the limit failed uniaxial strength to the intact mate-
rial strength and M is the ratio of the failed limit strength 
envelope slope to the intact strength envelope slope. Param-
eter β is proportional to the pillar width to height ratio. Pillar 
size scale effects are not considered. The analysis allows 
both pillar softening and hardening responses to be repre-
sented depending on the choice of the parameters Q, M and 
β. The analytic model is used as well to verify the numerical 
values that are calculated using the fast marching algorithm 
for the case of a uniformly compressed square pillar.

Results from a field study of pillar extraction in a shallow 
platinum mine are presented and have been used to gauge 
the viability of the proposed model. It is demonstrated that 
the model can provide a satisfactory qualitative replication 
of the observed pillar damage evolution and observed trends 
in the seam closure as the pillar extraction mining steps were 
carried out. It is noted as well that some effort is required to 
guide the correct choice of model parameters.

Future work is planned to enhance the current model 
to include a transition zone region near excavation edges 
which can improve the representation of brittle edge spalling 
effects. This addition should facilitate the simulation of 
hard rock time-dependent crush pillar or coal pillar scaling 
effects. Additional investigations of multiple mining horizon 
problems and stiff reef-parallel layer representations will be 
pursued.
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