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Abstract
Microseismic technology has widely been used in many rock engineering applications to shield workers from engineer-
ing hazards and monitor underground construction. To avoid the heavy workloads imposed by the manual recognition of 
many microseismic signals, this study proposes a new end-to-end training network architecture to automatically identify 
microseismic events. A dataset including not only easily identifiable microseismic signals but also barely distinguishable 
nontypical data has been collected from a practical rock engineering project for training and testing the network model. 
The applicability of various networks for this task is discussed to select the best method for microseismic recognition. We 
modify the residual skip connections to make them more suitable for the signal classification task. Then, the novel depthwise 
spatial and channel attention (DSCA) module is proposed. This module can autonomously learn how to weight information 
with different levels of importance, similar to human attention, which greatly improves the network performance without 
incurring additional computational costs. Theoretically, it can be a useful tool to replace traditional denoising algorithms 
and model the interdependencies between the different channels of a multichannel signal. Furthermore, the DSCA module 
and the modified residual connections are combined with a traditional convolutional network to obtain a novel network 
architecture named ResSCA and the results of comparative experiments are presented. Finally, single- and multichannel 
models are constructed based on ResSCA, which achieved improved accuracy rates. Their advantages and drawbacks are 
analyzed. This study presents a modified network architecture suitable for identifying and classifying complex signals to 
enable intelligent microseismic monitoring, which is valuable for various rock engineering applications.

Keywords  Microseismic monitoring · Signal recognition algorithm · Convolutional neural network · Attention mechanism · 
Deep learning

1  Introduction

The construction of deep and long tunnels is a major task 
in water diversion, transportation and other rock engineer-
ing applications around the world. Various rock engineer-
ing hazards such as rockbursts, soft rock deformation, and 
harmful gases have been frequently encountered during con-
struction, and these hazards severely threaten the safety of 
personnel and equipment. Recently, microseismic techniques 
have gradually been widely adopted for practical monitoring 

and early warning technology; in particular, such techniques 
are widely used for various rock engineering applications in 
China, such as projects involving rock slopes, hydropower 
stations and high concrete arch dams (Dong et al. 2019; Ma 
et al. 2015; Zhuang et al. 2019). In addition, microseismic 
analysis has proven to be a very useful tool for understanding 
underground rock failure processes since the twentieth cen-
tury (Ge et al. 2009; Ghosh and Sivakumar 2018; Milev and 
Spottiswoode 2002; Urbancic and Trifu 2000). A monitoring 
system is placed in an appropriate place from which micro-
seisms can be detected and located. Sensors acquire signals 
that are generated by the release of seismic energy from a 
microseism and then mathematical algorithms are used to 
locate the event based on classified and labeled data acquired 
manually from the P-wave and S-wave arrivals detected by 
the sensors. The processing of microseismic data can be 
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simply divided into three steps: waveform recognition, deter-
mination of a microseism’s arrival, and event location.

In real rock engineering, data processing has mainly been 
conducted by microseismic experts and engineers. However, 
manual processing is time consuming and the discrimina-
tion ability greatly depends on the engineers’ experience. 
Therefore, many automatic algorithms for event classifica-
tion (Paul et al. 2015; Zhao et al. 2015) and arrival picking 
(Akram and Eaton 2016; Guo et al. 2011; Lee et al. 2017; Li 
et al. 2018; Song et al. 2010) have been developed to replace 
manual processing. Automatic arrival picking algorithms 
have seemed to attract more attention from researchers than 
recognition algorithms. Nevertheless, a robust recognition 
algorithm can accurately screen out events to be located and 
improve the efficiency of the subsequent data processing, 
such as arrival picking. Currently, several frequently used 
classification algorithms such as spectrum-based analysis 
methods, traditional machine learning algorithms and ANN-
based models have achieved good results on academic data-
sets. However, most academic datasets contain only typical 
microseismic signals and easily distinguishable noise signals 
that are easy to classify. In real rock engineering construction 
and exploration, microseismic signals are often multichan-
nel signals that are mixed with various types of background 
and stationary noise (Alvarez et al. 2013). These traditional 
algorithms cannot perform well when dealing with such non-
typical and multidimensional data. Although some denoising 
algorithms have been developed by researchers (Liang et al. 
2014; Rodriguez et al. 2012), using these noise reduction 
algorithms might result in underutilization of the original 
data and loss of information. Hence, the existing automatic 
methods cannot completely replace manual discrimination 
and there is a need to develop more powerful methods.

Microseismic signals are essentially one-dimensional 
time series data. Traditional time series analysis and machine 
learning methods for processing such data mainly depend on 
the implementation of feature engineering (selecting a few 
features, such as the peak and frequency to replace an entire 
signal). In other words, they are affected by the skill and 
experience of the engineers, and thus, the raw waveform data 
may not be fully utilized. As an alternative, a well-designed 
artificial neural network (ANN) can reasonably extract a 
large number of high-level features from the original data 
without any human intervention, thus making full use of the 
waveform information. Although previous researchers have 
tended to choose certain parameters to use in place of wave-
forms as the input to a neural network for classification (Dai 
and Macbeth 2007; Wang and Teng 1995; Zhao and Takano 
1999), with the development of deep learning algorithms 
and the improvement of computer hardware capabilities, 
the original waveform data themselves can now be used as 
the neural network input, thereby avoiding the loss of infor-
mation caused by manual feature selection. In addition, in 

the era of Industry 4.0, construction sites typically generate 
massive amounts of data every day. As the amount of avail-
able data grows, conventional machine learning algorithms 
are gradually reaching the upper limits of their capabilities. 
However, ANNs, as a data-driven product of the big data era, 
have almost no upper limits as long as the model architecture 
is suitable for the problem. In other domains of industrial 
production, ANNs have already entered common use. To 
handle problems in different fields, different neural net-
work architectures have been designed and developed. For 
example, Gated Bidirectional Convolutional Network (Zeng 
et al. 2016) were specifically created for object detection 
tasks. Li (Li et al. 2019) developed a stereo region-convolu-
tional network to detect 3D objects, which is very useful in 
autonomous driving. Google launched the new Transformer 
framework to replace traditional architectures for machine 
translation tasks and achieved good results (Vaswani et al. 
2017). In the rock engineering field, some researchers have 
attempted to use neural networks to achieve intelligent moni-
toring. Many illustrative experiments have been conducted 
to compare the performance of neural networks and tradi-
tional methods, and the designed networks have performed 
well on the corresponding datasets (Lin et al. 2019; Shang 
et al. 2017; Wilkins et al. 2020). These studies’ achieve-
ments demonstrate the feasibility and great potential of using 
neural networks in the field of rock engineering.

Nevertheless, there are some improvements that are 
needed in the network architecture currently used to pro-
cess microseismic data. First, some network architectures 
are relatively simple and perform well only for simple data, 
whereas they show limited performance for complex datasets 
containing a large number of nontypical waveforms. In real-
world engineering, due to environmental interference, such 
nontypical data are more common. In addition, the signals 
are often interrelated multichannel signals, which require 
more computing resources to process than single-channel 
signals. Second, to improve the ability of a neural network to 
handle more complex microseismic signals, engineers often 
choose to simply add more layers to the network, which will 
introduce problems. Simply stacking layers can lead to prob-
lems of bottlenecking and degradation (He et al. 2016) as 
well as gradient vanishing/explosion (Bengio et al. 1994; 
Glorot and Bengio 2010). Moreover, each additional layer 
leads to considerable growth in the number of parameters 
and increased computational complexity. However, in this 
study, we proved that such a complex structure is not actu-
ally needed to complete the task of waveform classification 
and simply deepening the network to improve its representa-
tion ability will result in excess computational costs. Finally, 
some researchers have combined neural networks with other 
mathematical algorithms to perform predenoising (Dai and 
Macbeth 2007) or to model the correlations and interde-
pendence between multichannel signals (Lin et al. 2019). 
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However even if good results are achieved, the usability, and 
transfer ability of such a model may be reduced, increasing 
the difficulty of training. A more straightforward and easy-
to-use method of achieving these goals is proposed in this 
study.

In this study, we first present a dataset consisting of the 
most complex data from the Hanjiang-to-Weihe River Diver-
sion Project in China. It contains not only typical micro-
seismic waveforms but also mostly nontypical microseis-
mic waveforms and highly deceptive noise signals. Then, 
the basic type of neural network that is probably the most 
suitable for recognizing microseismic events is discussed. 
When one of the most popular network architectures that 
is commonly used in industrial production is reproduced 
and applied to our dataset, the results show the problems 
described above. To solve and avoid these problems, we pro-
pose several improvements to the residual blocks and convert 
them into the one-dimensional version, making them very 
easy to combine with the novel network module proposed in 
this study. The new network module is called the depthwise 
spatial and channel attention (DSCA) module; its aim is to 
improve the performance of a network model by refining 
the intermediate data flow in the network without increasing 
the number of layers. Furthermore, an attention module is 
used in place of the traditional denoising algorithms and can 
be used to model the interdependence among the different 
channels of a multichannel signal. This “lightweight” mod-
ule can easily be inserted into many popular convolutional 
neural network (CNN) architectures, computing in parallel 
and improving the network performance without introduc-
ing additional parameters or incurring additional computa-
tional costs. Finally, experimental investigations are reported 
to demonstrate the reliability and potential of this network 
architecture in practical engineering applications. To test 
the application of the proposed architecture in engineering 
practice, we specifically trained a multichannel recognition 
model for application to the Hanjiang-to-Weihe River Diver-
sion Project.

2 � Data Description

2.1 � Introduction to the Project

The microseismic monitoring data used in this study were 
all obtained from the Hanjiang-to-Weihe River Diversion 
Project, the purpose of which is to solve the problems of 
water shortages in the northwestern part of China. This 
project has a great impact on the overall planning of the 
South-to-North Water Transfer Project in China. It is located 
in Shanxi Province, crossing the Yellow River, the Yang-
tze River Basin and the Qinling Barrier. It has three major 
components: the Golden Gorge Water Conservancy Hub, 

the Qinling Water Conveyance Tunnel, and the Sanhekou 
Water Control Project, as shown in Fig. 1. The main pur-
pose of the project is to transfer excess water from the Han 
River basin to Guanzhong’s water-scarce areas through the 
construction of water conservancy hubs and water transfer 
tunnels. Through the construction of two main reservoirs, 
Jinxia and Sanhekou, in the Hanjiang River Basin, cosched-
uled water sources will be directed to the Hanjiang–Weihe 
water conveyance tunnel, and finally enter the Huangchigou 
water transfer project to supply water to the Guanzhong area. 
The tunnel under construction has a large burial depth, high 
in situ stress, and a long length. Furthermore, during the 
construction process, a series of geological engineering 
problems such as rockbursts, water and mud inrush, high 
ground temperature, soft rock deformation, radioactivity 
and harmful gases occurred. Therefore, the microseismic 
monitoring technology is adopted for geological advanced 
predictions. Compared with other projects in China, the col-
laborative data processing by engineers and machines has 
greatly improved the efficiency.

2.2 � Motivation for the Dataset and Its Composition

Large amounts of monitoring data are generated every day, 
and engineers can predict the conditions of underground 
structures by observing and analyzing these data. However, 
this task is very time consuming and labor intensive even for 
experienced interpreters. In addition, the monitoring data are 
always influenced by various types of noise due to the com-
plex construction environment (Alvarez et al. 2013; Liang 
et al. 2014; Rodriguez et al. 2012). Even experienced engi-
neers need to carefully scrutinize those complex data multi-
ple times. Although some automatic recognition algorithms 
have been developed that perform well on standard datasets, 
they are often misled by various external factors, such as 
noise and signal strength. As a result, it is very important to 
develop new models that can efficiently classify nontypical 
microseismic data. To train such neural network, a dataset 
needs to be created that contains various complex microseis-
mic waveforms and counterexamples, with coverage of the 
types of data that may be encountered that is as comprehen-
sive as possible. Then, the neural network will endeavor to 
recognize the underlying relationships in these labeled data 
through a process that mimics the operation of the human 
brain. Once such a machine learning model has been trained 
on an initial dataset, another dataset is needed to test it. To 
this end, a large number of different types of waveform data 
are required.

Typical microseismic waveforms (such as those depicted 
in Fig. 2) are included in the dataset. These signals are very 
pure, with high signal-to-noise ratios. They are largely 
undisturbed by noise. In addition, the arrival times of 
the pressure waves and shear waves, which are important 
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features of microseismic signals, are very clear. Traditional 
algorithms perform well on such data, and classifying them 
is relatively easy for both human beings and machines. More 
importantly, some types of barely distinguishable waveforms 
have also been selected manually from a large amount of 
recorded data and included in our dataset. The method used 
to create the dataset is described below:

To create the two subsets (for training and testing) of our 
dataset, we first conducted many field experiments using 
manual knocking, blower vibrations and human voices, 
and the corresponding signals were acquired. We added the 
collected signals to the engineering database, which con-
tains some previously observed microseismic waveforms 
triggered by rock failures. Human microseismic experts 
then examined the recorded data to identify events, and the 
experts made their decisions by comparison against wave-
forms representing definitive events recorded in the engi-
neering database. During the process of manual events iden-
tification, we observed that the human experts sometimes 
based their decisions on the signals from all sensors and not 
just on one channel. This is because when a microseismic 
event occurs, it usually triggers multiple sensors, and the 
monitoring system records a corresponding multichannel 
waveform. For example, a six-channel waveform is presented 

in Fig. 3. When looking only at the second waveform, it is 
difficult to say whether it was triggered by a rock fracture. 
However, when all six channels are considered simultane-
ously, it is clear that they were triggered by a microseism. 
Similar observations were made by Wilkins et al. (2020) 
who noted that humans can simultaneously identify various 
general characteristics.

On this basis, we spent considerable time selecting many 
barely distinguishable waveforms for use in model train-
ing. Figure 4 presents some examples of such nontypical 
waveforms. Figure 4a, b show examples with low signal-to-
noise ratios. Figure 4c present a segment of highly deceptive 
noise that is incorporated into the microseismic waveform, 
which can strongly affect the discrimination of machines. A 
more difficult case is depicted in Fig. 4d, which includes not 
only highly deceptive noise but also a low signal-to-noise 
ratio. Moreover, specific types of noise, such as waveforms 
containing blower vibration (Fig. 5a), manual knocking 
(Fig. 5b) or current interference (Fig. 5c), are also somewhat 
similar to microseismic events, which means they are more 
likely than ordinary noise to mislead machines, although 
human experts can easily distinguish them. We collected 
as many examples of these types of noise as we could and 
uniformly labeled them as the negative class to enable neural 

Fig. 1   The Hanjiang-to-Weihe 
River Diversion Project for 
addressing water shortages in 
the northwestern part of China 
(Liu et al. 2019)
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networks to explore their differences from the positive class 
(waveforms containing microseismic events). Furthermore, 
the final model should be able to determine whether a snip-
pet of a waveform in fact contains a microseismic event; 
therefore, a variety of waveforms were collected in the data-
set to enable the models to learn from as many potential 
situations as possible.

The original waveforms were exported in two-dimen-
sional coordinates from the monitoring system, where the 
abscissa represents time and the ordinate represents voltage. 
We retained only the voltage values to form time series data 
because the time intervals of these data are equal. We chose 
to provide these time series directly to the neural network, 

instead of selecting only certain parameters to replace a 
whole signal, because such artificial preprocessing and 
denoising algorithms may lose information and prevent the 
full utilization of the data.

One dataset was prepared with 10,244 single-channel 
data samples and another dataset was prepared with 1332 
six-channel data samples. The collected data was used to 
train and test two models, i.e. a single-channel model and 
a six-channel model (six sensors are used to monitor and 
receive data in this project). Here, each six-channel data 
sample consists of 6 waveforms. Thus, the total number of 
waveforms in the six-channel dataset is 7992 ( 1332 × 6 ). 
Among the 10,244 single-channel data samples, there are 

Fig. 2   Examples of typical 
microseismic waveforms
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5001 microseismic waveforms triggered by rock fractures, 
and the other 5243 waveforms are all various types of noise. 
As previously noted, among the 5243 noisy waveforms, we 
deliberately selected many that show some similarities to 
microseismic waveforms to enable the network models to 
learn from sufficiently complex situations. Similarly, among 
the 1332 six-channel data samples, 647 waveforms were 
triggered by rock fractures. The remaining 685 waveforms 
contain only various types of noise. It can be predicted that 
for the single-channel model, it should be easy to imple-
ment transfer learning, which is introduced later in this 
paper. Therefore, the pretrained single-channel model can be 
easily applied for other waveform recognition tasks such as 
the recognition of quarry blasts or piling vibrations, as well 
as also directly for other rock engineering applications. By 
contrast, the six-channel model can only be used for projects 
with the same number of sensors, but it can achieve better 
accuracy than the single-channel model.

3 � Methodology

3.1 � Backbone Model Analysis of Neural Networks 
for the Microseismic Recognition Task

An ANN neural network can process various types of data, 
learn from data and update its own internal structure to 
improve its performance. Feedforward neural networks 

(FFNNs), recurrent neural networks (RNNs) and Convo-
lutional neural network (CNNs) are the basic and typical 
architectures for deep neural networks. However, FFNNs 
and RNNs are not suitable for parsing superlong sequences 
of data because of the curse of dimensionality and gradient 
vanishing/explosion (Bengio et al. 1994; Elman 1990; Le 
et al. 2015).

CNNs are quite different from the other two types of 
networks. They are inspired by the organization of the 
animal visual cortex (Lecun et al. 1998). A CNN is not 
intended to parse data using a pixelwise approach. Instead, 
it tends to start with a “scanner”. For example, to take an 
image of 100 × 100 pixels as input, the input layer of an 
FFNN would need to contain 10,000 nodes. However, a 
CNN will create a scanner of 20 × 20 pixels, in which each 
pixel has its own weight, and move it in increments of one 
pixel from left to right (usually starting in the upper left 
corner). Each node concerns itself only with closely neigh-
boring cells (how close depends on the implementation, 
but usually not more than a few). Moreover, the structure 
of a convolutional model relies on strong assumptions 
about local relationships in the data, which, when true, 
make it a good fit to the problem. Because the shaft invari-
ance of images perfectly fits these assumptions, a CNN is 
ideal for images processing. For instance, when a CNN-
based classification model examines an image to determine 
whether there is a dog in the picture, it does not matter 
where the dog is. Similarly, microseismic waveforms also 

Fig. 3   An example of multichannel microseismic data
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have this property, and the feature extraction process of 
CNN can be applied not only to two-dimensional images 
but also one-dimensional sequences of data. A one-dimen-
sional CNN extracts features from a data sequences and 

maps the internal features of the sequence, which is an 
effective means of deriving features from fixed-length seg-
ments of an overall dataset in which the exact location of 
feature in a segment is not important.

Fig. 4   Examples of nontypical 
microseismic waveforms
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Overall, the architecture of the one-dimensional (1D) 
CNN is better for our recognition task than other basic 
architectures.

3.2 � One‑Dimensional Convolutional Neural 
Network (1D CNN)

A 1D CNN is basically identical to 2D CNN both math-
ematically and visually by setting the second dimension 
(either the vertical or horizontal one in visualization) to 

one. Accordingly, 1D filters can be applied in one dimen-
sion instead of using 2D filters spread over two dimensions. 
The basic properties of a CNN such as the local connectivity 
and shared weights are also independent of the number of 
dimensions. A deep 1D CNN consists of several component 
layer including the following four types:

(1)	 Convolutional
	   A one-dimensional convolutional layer consists of 

a line grid of neurons. Each neuron takes inputs from 

Fig. 5   Examples of highly 
deceptive noise types
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a line grid section of the previous input layer and the 
weights on this line section are the same for each neu-
ron in the convolutional layer. In addition, there may 
be several grids in each convolutional layer, where 
each grid takes inputs from all grids in the previous 
layer, potentially using different filters. This process is 
expressed by Eq. (1):

where wi denotes the weight at position i in the filter, 
yl−1 is the output of the previous layer, and f denotes 
the activation function, which can be specified manu-
ally, and is usually the ReLU function (Glorot et al. 
2011). Figure 6 shows a schematic sketch of convolu-
tion process where Seq represents a pending waveform 
and the yellow line grid represents the moving 1D filter 
(the convolution kernel), which aggregates information 
between adjacent nodes. w1, w2 and w3 in Fig. 6 cor-
respond to wi in Eq. (1).

(2)	 Pooling layers
	   After each convolutional layer, there might be a pool-

ing layer. The pooling layer takes small strip-shaped 
blocks from the preceding convolutional layer and sub-
samples each block to produce a single output. There 
are several ways to perform such pooling operation, 
such as taking the average, the maximum, or some 
learned linear combination of the neurons in the block.

(3)	 Batch normalization layers:
	   Batch normalization is a supervised learning tech-

nique that converts interlayer outputs of a neural net-
work into a standard format, called normalizing. This 
effectively resets the distribution of the output of the 
previous layer to enable more efficient processing by 
subsequent layers (Ioffe and Szegedy 2015).

(4)	 Fully connected layers:
	   Real-world implementation of CNNs often glues 

a FFNN to the end of the network to further process 
the data, thus allowing for highly nonlinear abstrac-

(1)yl
i
= f

(

m−1
∑

i=0

wiy
l−1
p+i

)

,

tions. Other types of classifiers such as support vector 
machines (SVMs), logical regression models and other 
machine learning models, can also be applied for the 
postprocessing of the features extracted by CNNs (Gir-
shick et al. 2014).

	   When a deep network is being trained, gradient 
explosion/vanishing and model degradation often 
occur, increasing the difficulty of training. To over-
come these obstacles, the concept of residual network 
(ResNets presented by He et al. (2016) is applied in our 
deep 1D CNN. This concept enables efficient perfor-
mance improvement with very few additional param-
eters. Moreover, it is easy to combine with the atten-
tion module we have designed, which will be described 
Sect. 3.4.

3.3 � Residual Learning

The conception of residual learning is essential to add skip 
connection. When a deep networks is able to start converging, 
a degradation problem might be exposed: as the network depth 
increases, the accuracy becomes saturated, which is not caused 
by overfitting (He and Sun 2015; Srivastava et al. 2015). This 
is unreasonable since as long as the neural network is able 
to fit an identity map, the performance of a deeper network 
should not be worse than that of a shallow one. In other words, 
deeper networks should be able to obtain potential advantages 
in identity mapping. Nevertheless, real observations tell us that 
neural networks are not good at fitting identity maps. To solve 
this problem, network architecture explicitly allows every few 
stacked layers to directly fit a residual mapping, instead of hop-
ing that these layers will directly fit a desired base mapping. 
Equation (2) shows the relationship between these mappings:

where xl+1 denotes the desired underlying mapping, and xl 
is the output of previous layers. What the layers attempt 
to fit is F

(

xl
)

 , which is called the residual. In this way, the 
original mapping is recast as xl + F

(

xl
)

 . The premise of this 
modification is that it is easier to optimize the residual map-
ping than to optimize the original, unreferenced mapping.

Nevertheless, sometimes, because the dimensionality of the 
data increases as the data flow deeper, a problem of unequal 
dimensions will arise when calculating xl + F

(

xl
)

 . To solve 
this, we perform a linear transformation of x and project it into 
a new space with the same dimensions as F

(

xl
)

.The param-
eters of the linear transformation can be obtained through 
backpropagation training. This is expressed in Eqs. (3) and (4).

(2)xl+1 − xl = F
(

xl
)

,

(3)xl+1 = h
(

xl
)

+ F
(

xl
)

,

Fig. 6   The process of a one-dimensional convolution
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where h
(

xl
)

 denotes the linear projection and Wz and b can 
be obtained through training.

Recursively, the relationship between the input layer and 
the Lth layer can be written as follows:

where xL is a correct mapping for layer L. 
∑l−1

i=1
F
�

xi
�

 repre-
sents all of the residuals from the first layer to the Lth layer 
and h

(

x0
)

 denotes the linear transformation of x0.
More generally, the relationship between layer A and layer 

B can be written as follows:

Then, we consider a loss function u. The derivative of u 
with respect to xb is expressed below:

By substituting in the expression for xb from Eq. (6), this 
derivative can be expressed as shown in Eqs. (8) and (9).

(4)h
(

xl
)

= Wzxl + b,

(5)xL = h
(

x0
)

+

l−1
∑

i=1

F
(

xi
)

,

(6)xb = H
(

xa
)

+

b−1
∑

i=a

F
(

xi
)

.

(7)
�u

�xa
=

�u

�xb

�xb

�xa
.

(8)
�u

�xa
=

�u

�xb

(

1 +
�

�xa

b−1
∑

i=a

F
(

xi
)

)

,

(9)�u

�xa
=

�u

�xb
+

�u

�xb

�

�xa

b−1
∑

i=a

F
(

xi
)

.

As seen, from our analysis, gradient vanishing will not 
occur in ResNet because �

�xa

∑b−1

i=a
F
�

xi
�

 in Eq. (8) is never 
able to become zero throughout the entire training process. 
Furthermore, due to Eq.  (9), the derivative of u with 
respect to xb can be easily transferred to any previous layer. 
This is the reason why training a network with shortcut-
like blocks is more effective and faster.

For our problem, two types of residual blocks are 
used. In the shallow layers of the model, the first module 
designed (Fig. 7a) is used when the dimensionality of the 
data is not very high. In other words, a shortcut connection 
is used once every two convolutional layers. However, to 
sufficiently extract waveform features, the number of chan-
nels needs to be a few hundred, especially for layers with 
smaller spatial inputs. In this case, the second residual 
block is used (Fig. 7b) to reduce the number of parameters. 
For a 1D convolution kernel, the number of parameters can 
be calculated using Eq. (10):

where l denotes the length of the kernel, inc is the dimen-
sionality of the input data and ouc is that of the output data. 
To alleviate the computational burden, the number of chan-
nels (dimensions) is reduced by applying a linear projection 
before the true convolutional layer. After the convolutional 
operation, the data will be transformed back into the origi-
nal dimensional space. In detail, these transformations are 
implemented by means of a convolution kernel of length 1 
(Fig. 7b). Furthermore, due to the presence of nonlinear acti-
vation functions such as the ReLU function after the linear 
transformation, the nonlinear fitting ability of the model is 
also enhanced.

(10)n =
(

l × inc + 1
)

× ouc,

Fig. 7   The architectures of two types of residual blocks
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In contrast to the traditional ResNet architecture (He et al. 
2016) used in image processing, in which the convolution 
kernels have a constant size of 3 × 3 , we designed our con-
volution kernels to be able to be freely specified.

Researchers have found that multiple stacked small con-
volutional kernels can achieve the same receptive field as a 
single larger convolution kernel, but with fewer parameters 
(Simonyan and Zisserman 2014). For example, it is easy 
to see that two 3 × 3 convolutional layers have an effective 
receptive field of 5 × 5 , whereas three 3 × 3 layers have a 
7 × 7 effective receptive field. A stack of two 3 × 3 convo-
lutional layers is parametrized by 2 × 3 × 3 × C2 = 18C2 , 
where C is the number of channels. However, a 5 × 5 layer 
has 5 × 5 × C2 = 25C2 parameters, i.e., 39% more. Moreo-
ver, the addition of more nonlinear rectification layers can 
also make the decision function more discriminative.

However, for a 1D convolution, the number of parameters 
cannot be effectively decreased even by using a stack of lay-
ers with smaller kernels in place of a large with a larger 
receptive field. For instance, a 5 × 1 1D convolution kernel 
requires 5 × C2 parameters. However, two 3 × 1 convolu-
tional layers have 9 × C2 parameters, an increase of over 
80%. The effect is the opposite of what it is for a 2D CNN.

Overall, as long as the nonlinearity of the network is suf-
ficient, larger convolution kernels should be chosen for the 
one-dimensional convolutional layers. Therefore, the resid-
ual blocks in our model should have kernels of different 
sizes, not merely 3 × 1 or 3 × 3 , which should be manually 
determined through many experiments.

3.4 � Depthwise Spatial and Channel Attention 
Module

In this subsection, we introduce our proposed DSCA mod-
ule, which we have designed based on an “attention mecha-
nism”. Originally, neural networks were developed by imi-
tating the neural connections in human brains. Later, deep 
learning researchers took inspirations from neuroscience, 
cognitive science and other human behaviors to optimize 
network architecture. The concept of an attention mecha-
nism is one of the ideas developed in this way. An important 
characteristic of human beings is that one is not inclined to 
process a whole scene in its entirety at once. Instead, people 
tend to pay selective attention to parts of what they can see 
to acquire the most necessary information and build up an 
internal representation of a scene to guide decision mak-
ing processes. Google proposed a model that relies entirely 
on an attention mechanism to extract global dependencies 
for machine translation tasks, which achieved new state-
of-the-art results in translation quality and reduced the 
required training and inference time (Vaswani et al. 2017). 
Squeeze-and-excitation modules can perform feature recali-
bration along the channel dimension based on an attention 

mechanism and a model based on this concept won the 
2017 ImageNet Championship (Hu et al. 2018). Further-
more, other researchers have also studied the significance of 
attention (Jaderberg et al. 2015; Mnih et al. 2014; Xu et al. 
2015). These findings all support our further exploration of 
the concept of attentions for our task.

(1)	 Spatial attention

When engineers conduct microseismic waveform analy-
sis, they tend to focus on only a few parts of the waveform 
instead of dividing their attention equally among every part 
of the waveform data. For instance, when the microseismic 
wave shown in Fig. 8a is analyzed manually, more atten-
tion should be paid to the incoming microseismic event 
(indicated by the orange box), than to the deceptive noise 
(indicated by the blue circle) or to other unmarked parts that 
contain little information. If attention is assigned to unrea-
sonable areas, it will be difficult to complete the waveform 
analysis task. Hence, the influence of noise can be effec-
tively suppressed through an attention mechanism, which 
can replace traditional denoising algorithms to avoid the loss 
of information caused by noise removal. For the same rea-
son, focusing the limited available computational resources 
on the proper parts of a scene can not only improve per-
formance by ignoring irrelevant noise but also reduce the 
task complexity since the object of interest can be placed 
at the center of attention. Of course, this is true not just for 
the input waveform data but also for the inputs to all of the 
intermediate layers of a CNN.

(2)	 Channel-based attention

When multichannel waveform data are analyzed simul-
taneously, experts will also unconsciously give priority to 
channels with lower noise (Fig. 8b); hence, the “attention” 
can be applied not only in terms of space but also in mod-
eling the channel-based interrelationships of features.

As the data pass deeper into a CNN model, the model 
can produce many feature maps and the importance of dif-
ferent types of features should be different. Through channel 
attention, the model should be able to learn from training to 
selectively highlight more meaningful features while sup-
pressing less useful ones by applying suitable weights to the 
feature vectors extracted in the intermediate layers (Fig. 8c).

(3)	 DSCA module

In this study, we have implemented an attention mecha-
nism by applying weights in both the spatial and channel 
dimensions. Our DSCA module can learn how to weight the 
feature maps along the spatial and channel dimensions sepa-
rately, and it can be easily used as a plug-and-play module 



58	 S. Tang et al.

1 3

Fig. 8   Attention diagram
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in combination with pre-existing base CNN architectures 
such as residual blocks. Hence, a combination of DSCA and 
residual blocks was created to perform the microseismic 
wave classification task considered in this study.

Two different types of mini-networks were designed 
and embedded into the original neural model to recali-
brate the importance of information along the spatial and 
channel dimensions. The concept of group convolution 
(Wang et al. 2017) was used to model spatial attention. 
Specifically, we adopted depthwise separable convolu-
tion or depthwise convolution, which is a special case of 
group convolution. Traditional convolution attempts to 
learn filters in a 3D space with two spatial dimensions 
(width and height) and a third dimension consisting of all 
channels (Fig. 9a). In other words, in traditional convolu-
tion, intra-channel spatial convolution and linear channel 

transformation are performed simultaneously. However, 
many studies (Chollet 2017; Wang et al. 2017; Zhang et al. 
2017) on the computational redundancy of convolution 
have shown that a convolution operation can be divided 
into several groups along the channel dimension, where in 
each group, only a subset of the channels are convolved.. 
By stacking such factorized convolution groups sequen-
tially to revert to the predefined output channels, similar 
or better accuracy can be achieved with significantly fewer 
computations. This is due to the reduction in the input 
channel dimensionality of the grouped convolution filters 
and the following hypothesis: the mapping of the cross-
channel correlations and spatial correlations in the feature 
maps can be decoupled. An “extreme” version of group 
convolution is known as the depthwise separable convolu-
tion. In this operation, the number of groups is equal to 

Fig. 9   Comparison between 
normal convolution and 
grouped convolution
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the number of channels, i.e., each group contains only one 
channel (Fig. 9b).

We explicitly define a convolution filter for each chan-
nel to model the spatial attention weights. Different from 
other spatial attention mechanisms (Chen et al. 2017; Woo 
et al. 2018), aggregation operations are not used before 
computing the spatial attention weights because they can 
make features with high values more prominent and it is 
obvious that each feature map has a different spatial rep-
resentation, which needs to be separately computed. Fur-
thermore, depthwise spatial attention does not require high 
computational redundancy because most of the computa-
tion resources are consumed by the channel projection and 
our model performs only intra-channel spatial convolution. 
As long as the convolution is performed with an odd kernel 
size, which can be specified by the users, setting the stride 
equal to 1 and the zero padding equal to (k − 1)/2 guaran-
tees that the output will have the same spatial dimension 
as the input. The operation to produce weights for each 
feature map is expressed in Eq. (11). Then, weights are 
applied to the corresponding layers using Eq. (12).

where k is the length of the convolution kernel. ws(x, c) 
denotes the spatial attention weight at (x,1) in the cth chan-
nel. Wsi denotes the concatenation of the ws(x, c) of each 
feature map along the channel dimension; ∗ represents ele-
mentwise multiplication. Wk is the parameter matrix of the 
convolution kernel, obtained through training; Fi represents 
the output of the previous convolutional layer and Fs is the 
version of Fi . For our waveform classification task, k is usu-
ally specified as 7 or 9.

Since each channel can be regarded as a feature detector 
(Zeiler and Fergus 2014), channel attention can be used 
to determine which features are more meaningful given 
an input sequence. Similar to SE-Net (Hu et al. 2018), 
we compress the spatial information by adopting an aver-
age pooling operation to compute the channel attention. 
Although the pooling operation can produce an embed-
ding of the global distribution of the channelwise feature 
responses, we argue that simple average pooling discards 
some important information about distinctive spatial fea-
tures for each map. To solve this, the spatial attention 
weights are calculated before pooling to allow a finer the 
aggregation process. This is simply a matter of computing 
order without requiring any additional computation. It is 
easy to parallelize because the convolution is divided into 
many groups. Equation (13) expresses the spatial aggrega-
tion operation.

(11)ws(x, c) =

k
∑

l=1

Wk(u, v)F(x + l − 1, c),

(12)Fs = Wsi ∗ Fi,

where Vc is the cth element of the aggregated vector. L is 
the feature map length (the feature maps of a 1D CNN have 
only one dimension). Ws denotes the abovementioned spa-
tial attention weight matrix, and F denotes the cth original 
feature map. After the spatial information is compressed to 
obtain a vector with a global receptive field, a mini-network 
with 3 layers is embedded to model the importance weights 
of the input channels (Fig. 10). In this architecture, the num-
ber of neurons in the hidden layer can be set to any number 
greater than 6. The overall equation for recalibrating the out-
put from the convolutional layers based on these two atten-
tion weights can be summarized as follows:

where Ws is the spatial attention matrix, the “concat” opera-
tion consists of sequentially stacking the feature maps 
weighted by Ws along the channel dimension, and Va is the 
channel attention vector generated by the mini-network 
shown in Fig. 10.

The whole attention process is shown in Fig. 11. After 
the data pass through the depthwise spatial attention block, 
the weights are generated and applied to the original infor-
mation flow. In Fig. 11, darker-colored elements represent 
larger attention weights, whereas lighter ones correspond to 
smaller weights. After the channel attention matrix is cal-
culated, it is multiplied by the spatial attention results. The 
DSCA module is flexible and can be directly incorporated 
into standard CNN architectures such as ResNet. To achieve 
the best results in the identification of microseismic events, 
we construct the aforementioned 1D residual architecture by 
adding a DSCA module before the residual sum operation 
in Fig. 7 following each convolution. Mathematically, the 
transformation F in Eq. (14) is taken as an entire residual 
block. Eventually, the complete ResSCA network is obtained 
by making this change for each such module (see Fig. 12) 
in the architecture.

4 � Experimental Study

4.1 � Results Comparison and Signal Channel Model 
Analysis

To confirm the effectiveness and performance of the pro-
posed ResSCA architecture for recognizing microseis-
mic signals, three networks were tested in comparative 
experiments: a relatively shallow classic neural network, 
a deep residual network and a deep residual network with 
the DSCA module integrated into it. Next, a six-channel 

(13)Vc =
1

L

L
∑

l=1

Ws(x, y, c)F(l, c),

(14)Fa = concat
(

Ws ∗ F
)

∗ Va,



61Identification of Microseismic Events in Rock Engineering by a Convolutional Neural Network…

1 3

model was constructed specifically to achieve the opti-
mal accuracy for the Hanjiang-to-Weihe River Diversion 
Project as a practical demonstration. All networks in this 
study were implemented using the Pytorch framework 
(Paszke et al. 2019). The dataset introduced in the second 
section of this paper was divided into two parts at a ratio 

of 2:8 between the training set and the test set. The train-
ing set was used for end-to-end training and the test set 
was used for model testing. Finally, a fivefold cross-vali-
dation experiment was conducted to further demonstrate 
improved better performance of ResSCA.

Fig. 10   The mini-network archi-
tecture for modeling the channel 
dependency

Fig. 11   The depthwise spatial and channel attention (DSCA) module
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First, a 1D CNN with a common architecture was imple-
mented and applied to our dataset. It was constructed by 
directly stacking different types of layers and a fully con-
nected neural network was used as the classifier at the end 
of the model. The flow chart of the network is depicted in 
Fig. 13a. The mini-batch gradient descent algorithm was 
used to train the model and the batch size was set to 64. 
To accelerate convergence and avoid some controversial 
questions regarding the Adam, the newest AdamW opti-
mizer (Loshchilov and Hutter 2018) was used for all net-
works tested in this paper. Moreover, a cross-entropy loss 
function, which is the most common type of loss function 

for classification tasks, was used as the loss function for 
all experiments reported in this paper. The accuracy curves 
on both the training data and the test data were plotted in 
Fig. 14a.

The final accuracy on the training set stabilizes at approx-
imately 79.0% and that on test set was lower, which was 
approximately 75.0%. This indicates that the fitting ability 
of the model is insufficient. Therefore, it is desirable to con-
tinue to increase the depth of the model, because the higher 
the number of layers is, the more high-level features that are 
extracted. Meanwhile, to avoid gradient explosions/vanish-
ing and model degradation and to shorten the training time, 

Fig. 12   The Combination of the 
DSCA module and a residual 
skip connection
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we can deepen the network by stacking residual blocks. As 
described in the third section, the convolution kernels in 
the residual blocks should be set as large as possible when 
the nonlinearity of the model is sufficient. To ensure fair 
comparisons, the hyperparameter settings, loss function 
and optimizer should be the same as in other experiments. 

The flow chart of the 1D deep residual network is shown in 
Fig. 13b, and Table 1 gives detailed information about its 
internal hyperparameters. The kernel and stride in Table 1 
refer to n and s in Fig. 7a, b, respectively. The results are pre-
sented in Fig. 14b. After 550 iterations, the training and test 
losses tended to become stable. Small gains in convergence 

Fig. 13   Comparison of four 
types of architectures: normal 
CNN, deep 1D residual CNN, 
ResSCA, ResSCA6
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speed and large gains in accuracy are evident. The accu-
racy on both the training and test data was increased to 
approximately 92.0%, by increasing the number of layers 

and embedding residual connections. This performance is 
much better than that of the normal CNN models commonly 
used for microseismic waveform recognition. Moreover, the 

Fig. 14   Graphs of the metrics 
for the three experiments
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total number of parameters is 292,976, fewer than in a tradi-
tional 2D CNN for image processing.

To obtain state-of-the-art results, we can continue to 
deepen the neural network with skip connections, and the 
performance of the model ought to improve further. How-
ever, the number of channels in the new layers needs to be 
a few hundred. Consequently, adding only one layer will 
increase the number of parameters by hundreds of thou-
sands. Our aim is to build a lightweight model and a key 
requirement is high usability. Therefore, making the internal 
structure more finely tuned rather than adding more layers is 
another way to achieve better performance.

Thus, in our third experiment, the proposed DSCA mod-
ule was embedded in the deep 1D residual network. This 
module is straightforward and can be directly used in exist-
ing CNN architectures by inserting it behind each residual 
block as shown in Fig. 12; the resulting structure is called a 
counterpart block. The details of this architecture are pre-
sented in Fig. 13c and Table 2. The difference is that the 
residual block is replaced with our ResSCA block and the 
other network components remain the same. The column 
labeled “attention kernel” in Table 2 refers to k in Eq. (11). 
The total number of parameters is 312,480. Figure 14c plots 
the results for the ResSCA network. After full convergence 
before overfitting, 97.5% accuracy was achieved on both the 
training and test sets, approximately 6% higher more than 
the accuracy of the residual network. Meanwhile, there is 
only a slight increase in the number of parameters (19,504 
additional parameters, representing 6% of the total), and the 
additional computational overhead can be neglected in most 
cases.

Thus, it is shown that, the lightweight DSCA module 
can successfully refine substantial features in both the chan-
nel and spatial dimensions and help the information flow 
smoothly without introducing redundant computations and 
parameters. Hence, the ResSCA architecture can achieve 
state-of-the-art results on our complex microseismic sig-
nal dataset. In addition, the pretrained model can be easily 
reused because it is trained simply to accept single-channel 
waveform input and is not limited by the number of chan-
nels (in other words, the number of sensors). The only thing 
that needs to be done is to freeze the parameters of the con-
volutional layers to serve as a feature extractor and train a 
new classifier for these features to replace the last two fully 
connected layers; this new classifier may be an SVM, an 
XGBoost model or a different FFNN.

4.2 � K‑fold Cross Validation

We used k-fold cross validation to compare the performance 
of ResSCA and ResNet (a common residual network without 
attention blocks) to prove the ability of theDSCA module 
and eliminate the possible impacts of specific datasets. The 
normal CNN was not included in the k-fold (fivefold) cross-
validation experiment since it showed the worst perfor-
mance in the previous experiments. K-fold cross-validation 
is a common type of cross validation that is widely used in 
machine learning to enable better utilization of data. The 
steps of k-fold cross-validation are as follows: (1) Partition 
the original training data set into k equal subsets. Each sub-
set is called a fold. (2) Reserve one fold as the validation 
set and use all the remaining k − 1 folds as training set. (3) 
Train models on each pair of train-test set and get k results. 
(4) Analyze the results.

In this study, we used fivefold cross validation to ensure 
that each test set would contain more than 2000 data samples 
and the results are given in Fig. 15. Figure 15 shows the test 
set accuracy after 100 and 500 training iterations for each 
model, respectively. As shown in the legend, the filled circles 
on the blue and green lines represent the test accuracy rates 
in iterations 100 and 500 when ResSCA was trained on each 
fold. Similarly, the stars on the yellow and red lines represent 
the same for ResNet. It can be observed from this figure that 

Table 1   Configuration of the deep 1D residual CNN

Layer types In/out channels Kernel Stride Parameters

Convolution Block 1/32 9 3 288
Basic Block 32/64 5 2 32,768
Basic Block 64/160 3 2 117,760
Bottleneck Block 160/304 5 2 112,784
FFNN1 304/96 / / 29,184
FFNN2 96/2 / / 192

Table 2   Configuration of the 
ResSCA network

Layer types In/out channels Kernel Stride Attention 
kernel

Parameters

Convolution Block 1/32 9 3 9 704
Basic Block 32/64 5 2 9 33,856
Basic Block 64/160 3 2 7 122,080
Bottleneck Block 160/304 5 2 7 126,464
FFNN1 304/96 / / / 29,184
FFNN2 96/2 / / / 192
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there was not much difference in performance between the 
two models in the initial stage of training. However, as the 
number of training rounds increased, the performance of 
ResSCA gradually exceeded that of ResNet. After 500 train-
ing iterations, the accuracy rates of ResSCA were almost all 
higher than those of ResNet. These findings indicate that 
networks with DSCA better capture nonlinear relationships 
among data as long as they are sufficiently trained.

4.3 � Transfer Learning and Reusability

The pretrained ResSCA network can also be applied for 
other rock engineering applications. If we wish to apply the 
ResSCA model trained in this study to other rock engineer-
ing projects, such as a rock slope project, we do not need to 
train a new model from scratch. Instead, we can fine-tune the 
pretrained ResSCA model with only a few hundred labeled 
data samples from the new projects. The fine-tuning step is 
necessary because the characteristics of microseismic sig-
nals are different in different projects due to differences in 
the lithology. This technique of transferring models to new 
applications is called transfer learning, which has proven to 
be very practical in deep learning (Lei 2019).

Transfer learning makes use of the knowledge gained 
while solving one problem by applying it to a different 
but related problem (Zhang et al. 2019; Lei 2019). Usu-
ally, many data are needed to train a neural network from 
scratch, but access to those data is not always available—
this is where transfer learning comes in handy. With trans-
fer learning a suitable machine learning model can be built 
with comparatively little training data because the model is 
already pretrained. For example, knowledge gained when 
learning to recognize microseisms in a tunneling project can 
be used to some extent, to recognize events in other rock 
engineering projects, such as slope engineering or mining 
projects. When we trained the network on our dataset, we 

trained all parameters of the neural network to obtain the 
final model. This may take hours of computing time and 
require a lot of available labeled data. However, if we wish 
to reuse the ResSCA, we can directly load our pretrained 
model and parameters and feed the model a new dataset 
(collected from another rock engineering project) to fine-
tune the pretrained ResSCA. Any new dataset consisting of 
microseismic monitoring data will be highly similar to the 
original dataset used for pretraining. Since the new dataset 
is similar, the same weights can be used for extracting the 
features from the new dataset. Here, two fine-tune methods 
are recommended:

(1)	 If the new dataset is very small, it is better to train 
only the classifier of the network to avoid overfitting, 
keeping all other layers fixed. For this purpose, the 
final fully connected layers (the classifier in ResSCA 
is a fully connected network) of the pretrained network 
should be removed. Then, new layers should be added 
to replace the old ones. Only the new layers should be 
retrained.

(2)	 If the new dataset is very large, the whole network can 
be retrained with the weights initially set to the values 
from the pretrained model.

4.4 � Practical Application and Multichannel Model 
Analysis

Following the previously introduced concept of ResSCA, we 
trained a six-channel model specifically for application to 
the Hanjiang-to-Weihe River Diversion Project. Six sensors 
are used to monitor a certain section of this project. When 
a microseism occurs, these sensors will be triggered by the 
same signal source but will generate different waveforms due 
to the different local conditions of each sensor such as the 
location and burial depth. To allow the model to accept the 
six-channel input and generate better results than the com-
mon ResSCA in this specific project, two modifications were 
made. First, we stacked every six single-channel waveforms 
reflecting the same event along the channel dimension, anal-
ogous to an RGB image. In addition, the shape of the input 
data matrix was changed from (n, 1, 4001) to (n/6, 6, 4001) 
where n is the number of samples and the second dimension 
denotes the number of channels, from 1 to 6. In this study, n 
refers to the number of waveforms, which is 7992, and n/6 is 
the number of six-channel data samples, which is one-sixth 
of the number of waveforms, i.e., 1332. The second entries 
in (n, 1, 4001) and (n/6, 6, 4001) represent the number of 
channels. Finally, the value of 4001 indicates that all wave-
forms consist of 4001 sampling points. Because the input 
now has the form of six-channel signals, the attention block 
shown in Fig. 11 is inserted before the first convolutional 
layer to model the interdependencies among the six channels 

Fig. 15   Results of fivefold cross validation
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and enable a more comprehensive analysis. Second, because 
the input data are more complex than the single-channel sig-
nals used in ResSCA, the neural network has one more layer 
than the ResSCA network. The architecture of the ResSCA6 
networks is depicted in Fig. 13d and the hyperparameters 
are given in Table 3. Finally, the trained ResSCA6 model 
achieved 99.3% accuracy. This result proves that considering 
the different channels simultaneously, as an expert dose can 
improve the performance. A comparison of the four experi-
ments is reported in Table 4.

Overall, a multichannel model adapted for a specific pro-
ject can achieve the best results but is slightly more complex. 
By contrast, the single-channel model is more advantageous 
for transfer learning and is not limited by the number of 
sensors.

5 � Conclusion

This study has proposed a new lightweight network architec-
ture for efficiently recognizing microseismic events, which 
is based on concepts of the residual skip connections and an 
attention mechanism in deep learning. The performance of the 
model was tested using a monitoring signal dataset we created, 
which consists of complex nontypical waveforms and highly 

deceptive noise samples selected from the Hanjiang-to-Weihe 
River Diversion Project in China.

To improve the representational ability of neural networks 
and allow such models to perform better for real rock engineer-
ing applications, the novel DSCA module based on an atten-
tion mechanism has been designed, and two types of residual 
blocks have been modified to their 1D version. The lightweight 
module can easily be inserted into pre-existing popular CNN 
architectures to successfully learn which parts of the infor-
mation should be emphasized or suppressed along both the 
channel and spatial dimensions. In addition, theoretically, 
this module can also be used to model the interdependence 
among multichannel signals and suppress noise by applying 
the attention weights obtained through training. We integrated 
residual connections and the DSCA module into a normal deep 
CNN, obtaining a new architecture named ResSCA, which 
achieved state-of-the-art results on our dataset. To achieve the 
best results for the specific project considered in this study, a 
six-channel model named ResSCA6 was constructed based 
on the proposed network concept. The basic single-channel 
model is obviously more amenable to transfer learning to adapt 
it to different projects and tasks, but a suitably constructed 
multichannel model can achieve higher performance for a spe-
cific project due to the consideration of the interdependencies 
among different sensors.

In conclusion, the proposed lightweight DSCA module can 
improve network performance without requiring many addi-
tional parameters or incurring much additional computational 
cost by refining the intermediate information in a CNN. Fur-
thermore, the ResSCA network performs well at identifying 
microseismic signals, and this concept has great potential for 
processing other waveform data obtained from construction 
activities. With further improvements to the neural network 
algorithm, it can be effectively applied in other rock engineer-
ing applications for intelligent monitoring.
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parameters

Normal CNN 75.0 /
Residual network 90.0 292,276
ResSCA 97.5 312,480
ResSCA6 99.3 434,286
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