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Abstract
Several experimental studies, carried out on anisotropic rocks, have evidenced that even though strains, due to isotropic load-
ing and/or internal fluid pressure, are strongly anisotropic, the resulting Biot’s tensor is almost isotropic. Those results were 
found on two different rocks: a clay rock (France—Bure argillite) and a sandstone from the Vosges region (France). Such (a 
priori) surprising results led us to develop micromechanical modelling in which anisotropy comes either from an anisotropic 
solid matrix (and isotropic pore space) or from an anisotropic pore space (and isotropic solid matrix). The obtained results 
have shown that for both cases the Biot’s tensor is virtually isotropic or presents a very weak anisotropy. This unambiguously 
supports the fact that a strongly anisotropic porous material is compatible with experimental measurements of isotropic (or 
quasi isotropic) Biot’s tensor.
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List of Symbols
�	� Cauchy stress tensor
�	� Infinitesimal strain tensor
�	� Infinitesimal distortion strain
E	� Young’s modulus
�	� Poisson coefficient
b	� Biot’s coefficient (scalar)
B	� Biot’s coefficient (tensorial)
H	� Expansion modulus
Pc	� Confining pressure
p	� Pore pressure
ℂ	� Fourth-rank stiffness tensor

ℂ
dr	� Fourth-rank drained stiffness tensor

�	� Second-rank identity tensor
�	� Symmetrized fourth-rank identity tensor
�	� Fourth-rank strain concentration tensor
X	� Spheroidal inclusion aspect ratio
ℙ(X)	� Fourth-rank Hill tensor of a spheroidal inclusion

1  Introduction

Poromechanical behavior of rocks, which accounts for cou-
plings between fluid pressure(s) and material deformation, 
is crucial to be identified in many practical situations such 
as petroleum engineering and radioactive waste storage 
fields. The Biot’s poroelastic theory (Biot 1955) is usually 
recognized as the relevant theoretical approach for describ-
ing these poromechanical couplings. The latter is a gener-
alization of Terzaghi’s theory to the case of a compressible 
solid matrix. The concept of elastic effective stress, initially 
introduced by Terzaghi, is then generalized. The Biot’s 
coefficient is introduced to calculate effective stresses for 
isotropic materials. For non-isotropic materials, a Biot’s 
second-rank tensor must be used, which makes tricky the 
experimental measurements of its components. For example, 
a simple transverse isotropic porous material needs eight 
poromechanical properties to be identified (Cheng 1997). As 
a consequence, there is a lack of laboratory measurements of 
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the latter. One can nevertheless mention the comprehensive 
work of Wong (2017) who gathered many results on cracked 
Berea sandstone. The results are diverse as the anisotropy 
induced by cracks may sometimes lead to significant Biot’s 
components anisotropy or not. Other results on shales can 
also be found in Suarez-Rivera and Fjær (2013) but they are 
very disperse and strongly dependent on the stress levels and 
on the methodology used to measure the Biot’s components.

The present study mainly focuses on this particular point 
for two isotropic transverse materials, such as the COx argil-
lite and a Vosges sandstone. As it will be detailed further, 
this case involves two independent components to be identi-
fied b1 = b2 = b and b3 according to the material structural 
axes.

This paper is organized into two parts: the first part sums 
up experimental measurements, carried out in the LaMCube 
Laboratory on argillite and sandstone, for which (quasi)-
identical values of b and b3 were obtained. This important 
result was found despite a strong anisotropic effect of the 
internal pore pressure on the material strains. A theo-
retical approach has been derived to assess this a priori 
counterintuitive result. The latter constitutes the second 
part of the present study. It relies on microporomechanic 
approaches (Dormieux et al. 2006) applied here in the con-
text of poroelasticity. This methodology allows to relate 
the tensorial Biot’s coefficient to the material anisotropy. 
This modeling unambiguously shows that, despite a strong 
modeled anisotropy, the Biot’s components can virtually be 
identical.

2 � Experimental Part

2.1 � Materials Used

In this part are presented typical results obtained in a clay 
rock (Bure argillite) and in a high-porosity sandstone from 
the Vosges region in France. The argillite samples were 
originally drilled from the Callovo-Oxfordian stratum of 
the Meuse–Haute Marne (MHM) site in France, by URL of 
the French organization Andra. This argillite is mainly com-
posed of a clay matrix, quartz and carbonate. The average 
proportions of these components are approximately 45 ± 7% 
clay matrix, 23 ± 4% quartz, 27 ± 9% carbonate (calcite) 
and 5 % feldspars, pyrite, and iron oxides (Song et al. 2015). 
However, the exact mineralogical composition of argillite 
varies significantly with depth. The clay matrix includes 
approximately 40% illite, 30% kaolinite, 5 % chlorite and 25% 
swelling minerals (such as interstratified and smectite). Such 
a material has a swelling capacity that can modify its pore 
structure during the dehydration and/or hydration processes, 
which leads to porosity variations depending on its water 
content. These variations in porosity have a significant effect 

on the poroelastic properties of argillite during a hydro-
mechanical loading process (Yang et al. 2012).

Argillite has long been identified as a transverse iso-
tropic material (Mohajerani et al. 2011). Axes 1 and 2 
will characterize the plan of isotropy, which is related to 
the plan of horizontal layers at great depth in the Bure 
site. The vertical axis is, therefore, the revolution axis 3. 
On a practical point of view the ratio between Young’s 
moduli E1(= E2)∕E3 is around 2, which is already a pro-
nounced anisotropy. The material porosity is often meas-
ured between 15 and 18% whereas its water permeability 
is generally less that 10−20 m 2 . This low value makes it 
difficult to perform poromechanical experiments with 
water as the porous fluid since a long time is necessary, 
between each loading step, for the fluid pressure (or the 
strain values) to be stable. This also requires the use of 
small samples to shorten the experimental time. Both gas 
and water have been used to measure some poromechani-
cal properties of the argillite but, in the results presented 
throughout this study, only experiments conducted with 
water are analyzed. The interested reader may find the 
results obtained with gas in Yuan et al. (2018) that give 
the same conclusions as with water.
The sandstone used in the present study was obtained 
from a depleted gas reservoir in Vosges Mountain in 
the east of France (Hu et al. 2018). The initial poros-
ity measured with distilled water is around 19.4% . The 
microstructure of this sandstone was observed with X-ray 
tomography. Several horizontal sedimentary bands were 
detected from the CT scanning image (see Fig. 2). This 
structure leads to a slight anisotropy as it will be seen in 
the following. The material gas permeability is as high as 
10−12 to 10−13 m 2 . This makes it easy to perform porome-
chanical experiments with water or with gas as the pore 
fluid. In the results presented hereafter for the sandstone, 
all the experiments were conducted with gas.

2.2 � Experimental Methods and Procedure 
for Argillite

As mentioned before, the COx argillite from Bure is a 
transverse isotropic material. As shown in Fig. 1, the iso-
tropic plane is the bedding plane containing the structural 
axes 1 and 2, and axis 3 is the in situ vertical axis. The 
samples used for the poromechanical tests were obtained 
from a ‘ T1 cell’ which is 80-mm-diameter, 250-mm-long 
cylindrical core. These cylinders are often cored in the 
horizontal direction, i.e. with a horizontal coring axis (axis 
1 or 2). It is thus very difficult to accurately identify axis 
3 (see Fig. 2) as the bedding plane is not visible at that 
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scale. Cylindrical samples 20 mm in diameter and 40 mm 
in height were cored from ‘ T1 cell’ for the tests. These 
sample dimensions satisfy the standard requirement of 
the usual ratio (length-to-diameter ratio = 2), thus avoid-
ing end effects and reducing the time needed to complete 
the poromechanical tests. Each sample was polished and 
verified, to ensure that it had parallel end surfaces within 
a tolerance of less than 0.05 mm. Four strain gauges were 
glued onto the surface of each sample : two longitudinal (1 
or 2 axis), and two transverse (n-axis) gauges were used, 
as shown in Fig. 1. The strain values were measured with 
a Labview system having an accuracy of ±10−6 m/m.

Within the framework of Biot’s theory, the transverse 
isotropic poroelastic behavior of the tested material can 
be expressed with respect to its material axis using the 
following relation:

where tensile stresses are positive, and b, b3 are the coef-
ficients accounting for the Biot’s tensor in the transverse 
isotropic case. A convenient approach to the identification 
of these components relies on the application of a hydro-
static loading Pc and/or a pore pressure p. One interesting 
case arises when b = b3 . When this specific case is verified, 
the following expressions for the three strain terms can be 
derived:

where � = p∕Pc , and

A gauge Jn , glued in any direction n , will give �nn = n ⋅ � ⋅ n . 
This yields ( n = ni ei):

Equation (4) shows that, whatever the gauge direction, the 
Biot’s coefficient b can be derived from two measurements, 
which may be combined: hydrostatic loading with a con-
fining pressure Pc and a change in pore pressure p. This is 
useful when the direction 3 is not accurately known as it is 
the case for Cox argillite samples. It can also be underlined 
that an “isotropic” Biot’s coefficient does not mean that a 
change in pore pressure would lead to isotropic strain state 
[see relations (2) and (3)].

Another modulus denoted by Hi is sometimes used to 
analyze the different experiments. This modulus is related 
to a change in pore pressure p according to (no summa-
tion on i):

While relation (1) is only relevant for poroelastic behav-
ior, initial experiments on argillite have shown that, due to 
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Fig. 1   Schematic representation of the argillite sample with its bed-
ding plane and equipped with crossed strain gages

Fig. 2   Microscopic picture and scheme of sandstone sample equipped 
with gages
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plastic strain effects and/or micro-cracking, its behavior is 
not reversible. The following method was thus used to iden-
tify Biot’s coefficient for a given value of Pc:

•	 Step 1 is a hydrostatic loading phase during which con-
fining pressure is increased from P1

c
 to P2

c
= P1

c
+ �Pc . 

Since this step is generally nonlinear and irreversible, 
unloading steps are needed to obtain elastic values of 
strain.

•	 Step 2 is a p loading phase, with confining pressure 
being increased up to P2

c
 , following which an increase 

in pore pressure �p is applied, with �p = �Pc . This 
loading is elastic since it is equivalent to hydrostatic 
pressure unloading. The strain values �22(�p) and 
�nn(�p) are measured after this process. The pore pres-
sure p is then decreased down its initial value.

•	 Step 3 is a hydrostatic unloading phase, with confin-
ing pressure being reduced from P2

c
 to P2

c
− �Pc = P1

c
 , 

allowing �22(�Pc) and �nn(�Pc) to be measured.
•	 Step 4 involves comparing �22(�Pc) and �nn(�Pc) with 

�22(�p) and �nn(�p) , therefore, allowing Biot’s coeffi-
cient b to be identified.

When b is not equal to b3 , further tests, such as axial 
loading, must be carried out to produce new conditions 
allowing b and b3 to be determined. This approach was 
not required in the present study since the first results con-
firmed that b = b3.

2.3 � Experimental Methods and Procedure 
for Sandstone

Contrary to argillite, the structural axis identification is 
easier for sandstone as the sedimentary layers are clearly 
visible (see Fig. 2). Two couples of crossed gages are dia-
metrically glued on the cylindrical sample, which dimen-
sions are 37 mm diameter and 70 mm height. They will 
allow to measure the axial strain �a(= �33) and the lateral 
strain �l(= �11 or �22 ). The measurement method used to 
obtain the strains due to �Pc and �p are the same than 
those previously described in Sect. 2.2.

2.4 � Experimental Device

The device used is composed of a hydrostatic cell that 
allows both confining pressure and pore pressure to be 
controlled (see Fig. 3). This system is used either for water 
or gas injection. A Labview system is connected to this 
system to get the strain measurements and, more specifi-
cally, to follow the strain evolution when a long time is 

needed to assess their stability (see the case for argillite 
in the following).

2.5 � Results for Argillite

Numerous tests have been performed on this material but 
the presentation of the whole series is not the purpose of 
this study. Hence, only typical and representative results are 
selected and given in Fig. 4. Four gages were glued on the 
sample as drawn in Fig. 1. These are crossed gages such as 
J2 and Jn , and they are therefore located at the same point (or 
position); two crossed disposals were diametrically opposed: 
the (axial) average values of the two “ J2 ” are plotted in 
green, while the (transverse) average values of the two “ Jn ” 

Fig. 3   Scheme of the experimental device

Fig. 4   Typical results for argillite
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are in black. A complete cycle of loading–unloading opera-
tions, described in Sect. 2.2, is represented in Fig. 4, which 
also gives the selected values of Pc and p.

The total duration of this cycle is around 20 days. This 
long time comes from the low water permeability of argillite 
and is necessary to get a complete strain value stabiliza-
tion. The difference between strains from A to B (or A′ to 
B′ ) and from D to E (or E′ to D′ ) is due to the Pc loading 
or unloading (5–12–5 MPa) whereas B − C ( B� − C� ) and 
C − D ( C� − D� ) comes from the p loading or unloading 
(2–9–2 MPa). In the following, the writing (MN) will indi-
cate the strain difference �(N) − �(M) . The strong material 
anisotropy is clearly visible as (AB) is almost twice higher 
than (A�B�) , which is also confirmed by the comparison (DE) 
and (D�E�) , or (BC) and (B�C�) , etc. It is also interesting to 
underline that (AB) or (A�B�) and (ED) or (E�D�) are virtually 
the same. This simply means that the first Pc loading step 
led to elastic strains. (BC) = (DC) and (B�C�) = (D�C�) were 
expected results as they are due to an increase in p, which 
was already assumed to lead to elastic strains (cf. Sect. 2.2). 
Another crucial information is given by the ratios: ((AB) 
or (ED))/((CB) or (CD)) and ( (A�B�) or (E�D�))/((C�B�) or 
(C�D�) ) that are all virtually identical to 1. This unambigu-
ously means that b = b3 = 1 [see relation (2) in Sect. 2.2 
when � = 1].

2.6 � Results for Sandstone

The whole set of results obtained for five different samples 
are summed up in Table 1. Four samples were used at con-
fining pressure of 5, 10, 20 and 30 MPa, respectively. The 
Biot’s coefficients were measured with the same methodol-
ogy as for argillite. Then these samples were conducted up 
to the failure under increasing deviatoric stress (this is why 
the samples are not the same).

The last column 8, in italic letters, is related to the same 
5th sample that was successively submitted to an increasing 
hydrostatic stress only (Pc = 5, 10, 20 and 30 MPa). The ‘b’ 
coefficient was therefore directly calculated by the ratio of 
volumetric strains ��v(�p = �Pc)∕��v(�Pc) . The second and 
third columns give the ratio of mean lateral strain over mean 
axial strain, respectively, for a decreasing confining pressure 

or an increasing pore gas pressure. Both indicate a slight 
material anisotropy (10–20% ), which can also be observed 
in columns 6 and 7. In columns 4 and 5, the ‘apparent’ Biot’s 
tensor components are calculated from the ratio ��g

l
∕��c

l
 

(resp. ��ga∕��ca ) for b1 (resp. b3 ). The term apparent is chosen 
here as these ratios are the real ‘ bi ’ components only in the 
case where they are equal. As b1 and b3 are very close to each 
other, generally by a difference that is less than 5 % , it can 
be admitted that they are virtually identical. It can be finally 
observed that these b1 and b3 values are also very close to the 
‘b’ values obtained on the same sample at different confining 
pressures. Once again, despite a (slight) material anisotropy, 
it is found that the Biot’s tensor is virtually composed of a 
unique component b.

As a partial conclusion, two set of experimental results 
indicate that a (quasi)-isotropic Biot’s tensor, despite a 
more or less strong material anisotropy, can be obtained. 
This result can a priori be surprising, or non-logical, but it 
must be reminded here that this result does not mean that 
the pore pressure effect leads to isotropic strains. The next 
section raises the issue of this a priori surprising result from 
a theoretical point of view through a microporomechanics 
point of view (Dormieux et al. 2006).

3 � Anisotropy of the Poromechanical 
Coupling: A Micromechanical Model

The purpose of this section is to propose a micromechanical 
model that supports the fact that a strong material anisotropy 
is compatible with a quasi-isotropic Biot tensor. The ani-
sotropy of the poromechanical coupling will be examined 
through three indicators:

•	 Biot’s tensor B;
•	 the strain tensor �1 induced by a change of the confining 

pressure;
•	 the strain tensor �2 induced by a change of the pore pres-

sure.

Table 1   Initial anisotropic 
properties under hydrostatic 
stress and before failure test 
(except for the results in column 
8 that are related to the same 
sample)

��c
a
 and ��c

l
 (resp. ��ga and ��g

l
 ) are the variation of axial and lateral strain caused by confining (resp. pore) 

pressure

1 2 3 4 5 6 7 8
Pc (MPa) ��c

l
∕��c

a ��
g

l
∕��

g
a b1 b3 H1 (GPa) H3 (GPa) ‘b’

5 1.134 1.149 0.775 0.765 30.69 35.30 0.767
10 1.180 1.209 0.754 0.735 38.57 46.65 0.740
20 1.140 1.231 0.704 0.689 47.70 58.75 0.707
30 1.100 1.151 0.724 0.692 52.88 60.88 0.706
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From a computational point of view, the starting point is the 
first state equation of poroelasticity in the form :

which is the generalized formulation of (1). ℂdr is the 
drained stiffness tensor of the porous material. For the unit 
change of pore (resp. confining) pressure, this yields:

As regards the drained stiffness tensor, it is convenient to 
introduce the following anisotropy indicators:

For a second rank tensor T such as B , �(1) and �(2) , the rel-
evant anisotropy indicator is

In the sequel, we propose to determine the drained stiff-
ness tensor ℂdr and Biot’s tensor B of a theoretical porous 
material (acronym TPM) in the framework of an upscaling 
process. The scale at which the drained stiffness tensor and 
the Biot tensor are defined and can be measured is referred 
to as the macroscopic scale: it is the uppermost scale of the 
upscaling process. This way suggests two options that we 
shall consider successively: 

1.	 The solid matrix itself is anisotropic. This option is con-
sidered in Sect. 3.1.

2.	 The porous material has an isotropic solid matrix and the 
anisotropy of ℂdr and B is the consequence of the ani-
sotropy of the geometry of the pore space. This option 
is considered in Sect. 3.2

It is assumed in the sequel that the Mori–Tanaka scheme is 
appropriate for all forthcoming upscaling operations.

(6)� = ℂ
dr ∶ � − Bp,

�1 = −ℂdr−1 ∶ � ; �2 = ℂ
dr−1 ∶ B.

(7)� =
Cdr
1111

Cdr
3333

; � =
Cdr
1212

Cdr
1313

.

(8)r
T
= T11∕T33.

3.1 � The Anisotropic Matrix

In this section, we shall consider a porous material having 
a transversely isotropic solid matrix (symmetry direction 
along e3 ). We shall assume that the geometry of the pore 
space is isotropic, so that the porous material itself will be 
also transversely isotropic along e3.

In fact, a transversely anisotropic matrix (symmetry axis 
along e3 ) can a priori be defined by any appropriate choice 
of a set of the five constants Cm

1111
 , Cm

1122
 , Cm

1133
 , Cm

3333
 and 

Cm
2323

 , chosen in such a way that the condition of definite 
positiveness of the elastic stiffness tensor ℂm is satisfied. In 
this paper, a more physical approach is preferred, in which 
a micromechanical interpretation of the anisotropy of the 
matrix is provided.

We shall use the standard terminology of homogeni-
zation and introduce three levels of geometrical analysis, 
respectively, referred to as microscopic, mesoscopic and 
macroscopic, associated with increasing length scales: the 
lowest scale reveals the heterogeneity of the matrix. It will 
be termed the microscopic scale. At this scale, a representa-
tive elementary volume (rev) � of matrix is regarded as an 
heterogeneous structure, comprising a solid subdomain and 
pores. In contrast, at the scale above, referred to as meso-
scopic scale, this structure reduces to a material point which 
mechanical behavior is characterized by the matrix stiffness 
tensor ℂm . The latter can be derived by appropriate averaging 
techniques from the response of the rev ( � ) to a mechanical 
boundary value problem defined at the microscopic scale 
on � . In turn, the mesoscopic scale reveals the heterogene-
ity of the TPM. This means that a rev � of the TPM at the 
mesoscopic scale is a heterogenous structure comprising an 
elastic solid domain (the matrix with elastic stiffness tensor 
ℂ

m ) and a pore space filled by a pressurized fluid (pressure 
p). Eventually, the rev of the TPM reduces to a material 
point at the macroscopic scale. Again, the macroscopic state 
equation (6) can be derived by averaging techniques from the 
solution to a boundary value problem defined at the meso-
scopic scale on � by the macroscopic strain tensor � and 
the fluid pressure p (Dormieux et al. 2006). More precisely, 

Fig. 5   Representative elemen-
tary volumes: at the mesoscopic 
scale (left), at the microscopic 
scale (right)
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the Hashin type boundary conditions consist in prescribing 
the displacement � ⋅ z at any point z on the boundary �� , 
while the pressure p is applied on the whole boundary of the 
mesoscopic pore space (see Fig. 5).

The first step consists in defining an anisotropic matrix 
characterized by a stiffness tensor ℂm , as the result of a micro 
→ meso scale transition. Depending on assumptions on the 
pore space at the mesoscopic scale, we shall afterwards com-
pute the macroscopic elastic stiffness ( ℂdr ) and the three indi-
cators of the poromechanical coupling ( B , �1 and �2).

3.1.1 � Definition of the Matrix

At the microscopic scale, a rev � of matrix is made up of 
an isotropic linear elastic solid (elastic stiffness tensor ℂs ) in 
which a set of homothetic spheroidal inclusions (same aspect 
ratio X) is embedded. The volume fraction of the microscopic 
inclusions in the rev � is denoted by � . The symmetry axis of 
the spheroids is along e3.

As regards the numerical determination of ℂm , these inclu-
sions will be interpreted as empty pores ( ℂ → 0 ). It should be 
emphasized that the role of this inclusionary phase is solely to 
provide an explanation to the anisotropy of the matrix behav-
ior. Many other strategies could have been used alternatively 
for the same purpose including spheroidal rigid inclusions 
( ℂ → ∞ ). Consequently, � may be interpreted as a micro-
scopic occlusive porosity. As such, it will not be taken into 
account in the determination of the effective porosity that will 
only consider the mesoscopic pore space.

The homogenized elastic stiffness ℂm of the matrix is deter-
mined by means of the Mori–Tanaka homogenization scheme 
that is dedicated to the particulate composite morphology:

where ℙs(X) is the Hill tensor of a spheroid (aspect ratio X, 
symmetry axis along e3 ) embedded in the elastic medium 
with stiffness ℂs (see section “Appendix”). The fourth-rank 
identity tensor � is defined by

The Young modulus Es of the isotropic solid phase is taken 
as reference unit ( Es = 1 ). The Poisson coefficient is arbi-
trarily fixed: �s = 0.3 and the matrix porosity is � = 0.5 . 
Two numerical simulations, respectively, with an aspect 
ratio X = 5 (prolate spheroids) and an aspect ratio X = 0.4 

(9)ℂ
m = (1 − �)ℂs ∶

(
(1 − �)𝕀 + �(𝕀 − ℙ

s(X) ∶ ℂ
s)−1

)−1
,

Iijkl =
1

2

(
�ik�jl + �il�jk

)
.

(oblate spheroids) are performed. The set of elastic moduli 
derived from (9) are given in Table 2.

In the following, the subscripts 5 and 0.4 are used; hence, 
ℂ

m
5

 and ℂm
0.4

 are, respectively, associated with X = 5 and 
X = 0.4.

3.1.2 � Macroscopic Poroelastic Behavior

The material determined at Sect. 3.1.1 from the micro→meso 
transition is now the (anisotropic) solid phase at the meso-
scopic scale (see Fig. 5). The next step is the meso→macro 
transition. We again implement the Mori–Tanaka scheme. For 
the same value f of the mesoscopic porosity (numerical value 
f = 0.15 ), two different isotropic geometries of the meso-
scopic pore space are tested:

(case a) The pore space is made up of spheres. In this case, 
the drained macroscopic stiffness tensor is 

 where ℙm
sph

 is the Hill tensor of a sphere embedded in the 
elastic medium with stiffness ℂm.
(case b) The pore space is made up of a set of spheroidal 
pores (aspect ratio X = 3 ), the distribution of the orienta-
tions of the symmetry axes being isotropic. The expression 
of the macroscopic drained stiffness tensor then reads: 

 where ℙm(�,�,X) is the Hill tensor of a spheroid embed-
ded in the elastic medium with stiffness ℂm , having a sym-
metry axis along the radial vector er(�,�) in the system of 
spherical coordinates in which � is the angle between er 
and e3 ) (see Sect. 1). � is the averaging operator over the 
unit sphere applied on the fourth-rank tensor � : 

In both cases, Biot’s tensor is given by the same relation:

ℂ
dr
a
= (1 − f )ℂm ∶

(
(1 − f )𝕀 + f

(
𝕀 − ℙ

m
sph

∶ ℂ
m
)−1

)−1

,

ℂ
dr
b
= (1 − f )ℂm ∶

(
(1 − f )𝕀 + f (𝕀 − ℙm(�,�,X) ∶ ℂm)−1

)−1

,

� =
1

4� ∫
2�

0

d�

(
∫

�

0

�(�,�) sin � d�

)
.

B = � ∶
(
𝕀 − ℂ

m−1 ∶ ℂ
dr
)
.

Table 2   Matrix moduli for pore 
aspect ratios X = 5 and X = 0.4

X = 5 Cm
1111

= 0.32778 Cm
1122

= 0.11626 Cm
1133

= 0.13466 Cm
3333

= 0.55175 Cm
2323

= 0.13274

X = 0.4 C
m

1111
= 0.47598 C

m

1122
= 0.16254 C

m

1133
= 0.11187 C

m

3333
= 0.24946 C

m

2323
= 0.109121



4038	 C. Hu et al.

1 3

3.1.3 � Numerical Results

The set of the elastic moduli defining ℂdr are given in Tables 3 
and 6, respectively, for a microscopic pore aspect ratio X = 5 
and X = 0.4 . The anisotropy indicators are gathered in 
Tables 5 and 8.

•	 matrix elastic stiffness ℂm
5
 (Tables 4, 5):

	   It appears that the numerical results concerning cases 
a and b (spherical pores or isotropic distribution of 
spheroidal prolate pores) are very close. The anisotropy 
of Biot’s tensor is very weak (see. Table 4) while the 
anisotropy of the drained stiffness tensor is pronounced 
(see Table 3). The anisotropy of the characteristic strain 
tensors �1 and �2 are significant as well and similar (see 
Table 4).

•	 matrix elastic stiffness ℂm
0.4

 (Table 6).
	   The conclusions in the case X = 0.4 are qualitatively 

identical to those formulated previously in the case 
X = 5 : strong elastic anisotropy and very weak anisot-
ropy of Biot’s tensor. Interestingly, the anisotropy indica-
tors are essentially inverted w.r.t. the previous case. It is, 
therefore, reasonable to hope that the similar conclusions 
drawn in the two considered cases are, in fact, general 
(Tables 7, 8).

For illustrative purposes, the case of an anisotropic 
matrix of the previous type (see Sect. 3.1.1) with spheri-
cal pores (same porosity f = 0.15 ) is finally considered for 

the range of values of X ∈ [0.4, 5] . The anisotropy indica-
tors of the drained stiffness tensors thus generated are pre-
sented at Fig. 6. The corresponding anisotropy indicators 
of �(1) , �(1) and B are plotted against X at Fig. 7. The latter 
emphasizes that the Biot’s tensor is almost isotropic on 
the whole range of material anisotropy considered herein.

3.2 � The Anisotropic Pore Space

In the second morphological option, it is assumed that 
the solid matrix of the porous material is a linear elastic 
isotropic solid (isotropic elastic stiffness tensor ℂm ). The 
macroscopic anisotropy is, therefore, due to the anisotropic 
shape of the pores. More precisely, we consider a pore space 
with volume fraction f made up of a set of homothetic sphe-
roids (same symmetry axis along e3 and same aspect ratio 
X). This second model is very simple in so far as it considers 
only two scales: the microscopic scale reveals the heteroge-
neity of the rev, which comprises a solid domain and a pore 
space, while the same material is homogenized at the mac-
roscopic scale. The quantitative transition micro→macro is 
again carried out with the help of the Mori–Tanaka scheme:

where ℙm(X) is the Hill tensor of a spheroid (aspect ratio X, 
symmetry axis along e3 ) embedded in the elastic medium 
with stiffness ℂm (see “Appendix”).

As regards numerical simulations, the value of the poros-
ity f is identical to the mesoscale porosity of the first model 
(see Sect. 3.1.2), that is, f = 0.15 . Figure 8 provides, through 
the anisotropy indicators � and � (see 7), an estimate of the 
anisotropy induced for a given pore aspect ratio.

Figure 9 presents the anisotropy indicators r
1
 , r

2
 and r

B
 , 

respectively, related to �(1) , �(2) and B (see 8). With this 
micromechanical model in which the anisotropy is induced 
by the geometry of the pore space, it appears that the strain 
�(2) induced by a pore pressure change is the most sensi-
tive anisotropy indicator. Again, Biot’s tensor exhibits the 
weakest anisotropy. Nevertheless, it is only slightly below 
the anisotropy of the strain �(1) induced by a change in con-
fining pressure. As opposed to the first model, �(1) and �(2) 
have very different sensitivities to the material anisotropy.

(10)
ℂ

dr = (1 − f )ℂm ∶
(
(1 − f )𝕀 + f (𝕀 − ℙ

m(X) ∶ ℂ
m)−1

)−1
,

Fig. 6   Anisotropy of the drained stiffness tensor. X is the aspect ratio 
of the microscopic porosity

Table 3   Drained stiffness moduli (microscopic aspect ratio X = 5)

X = 5 Cdr
1111

Cdr
1122

Cdr
1133

Cdr
3333

Cdr
2323

Case a 0.24001 0.080847 0.093386 0.39205 0.09849
Case b 0.23473 0.078255 0.090140 0.38194 0.09673
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4 � Conclusion

This study, involving both experimental and theoretical 
considerations, was first motivated by poromechanical 
experiments intended for the measurements of Biot’s ten-
sor components of transversely isotropic porous materials. 
As it is highlighted in the first part of this paper, a priori 
surprising results were found that showed an isotropic (or 
quasi-isotropic) Biot’s tensor. This result does not mean that 
the pore pressure effect is isotropic as the strains due to a 
pore pressure variation revealed to be anisotropic. It was, 
therefore, very tempting to involve a modelling based on a 
micromechanical model, able to take in a wide sweep vari-
ous anisotropic scenario.

Hence, two main options were chosen: case 1—the solid 
matrix is transversely isotropic and the pore space is iso-
tropic or case 2—the solid matrix is isotropic and the pore 
space is anisotropic, i.e. designed to obtain a transversely 
isotropic behavior of the skeleton. The strains calculated 
with those modellings, either for a confining pressure or 
for a pore pressure loading, were always indicative of a 
(sometime) strong anisotropic behavior. Conversely, for 
both cases, the Biot’s tensor always exhibited the weakest 
anisotropy. The anisotropy indicator for this tensor never 
exceeded 11% in case 1 (and for some extreme case only). 
As a consequence, the Biot’s tensor is quasi isotropic. It 

is slightly different for case 2 but, in a large range of ani-
sotropic pore space geometries, the Biot’s tensor can be 
seen as virtually isotropic.

On an experimental point of view, and taken into 
account the difficulties to measure the Biot’s coefficient, 
10% variation (or errors) are very few and can be included 
into the experimental uncertainties. Hence, the obtained 
differences in the Biot’s tensor components are not signifi-
cant for case 1, which in our opinion is likely to represent 
more in situ cases than the case 2.

Table 4   Biot’s tensor and strain 
tensors �(1) and �(2) (microscopic 
aspect ratio X = 5)

X = 5 B11 B33 �
(1)

11
�
(1)

33
�
(2)

11
�
(2)

33

Case a 0.280707 0.298636 − 2.756448 − 1.237511 0.7583025 0.4004709
Case b 0.299152 0.320066 − 2.824996 − 1.284746 0.8268580 0.4477064

Table 5   Anisotropy scalar indicators (microscopic aspect ratio X = 5)

X = 5 � � r
B

r�(1) r�(2)

Case a 0.612 0.808 0.94 2.23 1.89
Case b 0.614 0.809 0.934 2.199 1.85

Table 6   Drained stiffness moduli (microscopic aspect ratio X = 0.4)

X = 0.4 Cdr
1111

Cdr
1122

Cdr
1133

Cdr
3333

Cdr
2323

Case a 0.341446 0.111591 0.078029 0.185284 0.08184
Case b 0.332991 0.107499 0.0755121 0.181577 0.080445

Table 7   Biot’s tensor and strain 
tensors �(1) and �(2) (microscopic 
aspect ratio X = 0.4)

X = 0.4 B11 B33 �
(1)

11
�
(1)

33
�
(2)

11
�
(2)

33

Case a 0.294631 0.267641 − 1.494552 − 4.138286 0.469689 1.04887
Case b 0.315270 0.284253 − 1.546612 − 4.220900 0.521750 1.13149

Table 8   Anisotropy scalar indicators (microscopic aspect ratio 
X = 0.4)

X = 0.4 � � r
B

r�(1) r�(2)

case a 1.84 1.40 1.10 0.361 0.447
case b 1.83 1.4 1.11 0.366 0.461

Fig. 7   Anisotropy indicators of �(1) , �(2) and B . X is the aspect ratio of 
the microscopic porosity
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To conclude, the micro-modelling calculations evidence 
that an isotropic Biot’s tensor is compatible with an aniso-
tropic porous medium behavior.
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Appendix: Hill Tensor of an Ellipsoid

Consider an ellipsoid defined by the equation:

where S is a positive definite symmetric second-rank ten-
sor. This ellipsoid is embedded in an infinite linear elastic 
medium with elastic stiffness tensor ℂ . Let � denote some 
vector on the unit sphere: |�| = 1 . The associated acoustic 
tensor is K = � ⋅ ℂ ⋅ � . The coefficient Pijkl of the Hill ten-
sor reads:

In the above expression, the integral is taken with respect to 
� over the unit sphere. The subscript (ij), (k�) means that the 
expression is symmetrized w.r.t. the subscripts i and j, and 
w.r.t. the subscripts k and �:

In Sect. 3.1.2, the Hill tensor ℙm(�,�,X) refers to a spheroid 
with aspect ratio X, and a symmetry axis along the radial 
unit vector er(�,�):

It is recalled that the matrix is transversely isotropic (sym-
metry axis along e3 ). In the spherical basis (er, e� , e�) , the 
tensor S(�,�,X) of this spheroid reads:

The integration variables in (11) are the two angles x and y 
that define the unit vector �:

where dS� = sin x dxdy.
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