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Abstract
This study introduces a methodology to solve plane strain stability problems in rock mechanics, following the generalized 
Hoek and Brown yield criterion, by employing the lower bound finite elements limit analysis in conjunction with the power 
cone programming. The efficacy of the proposed approach has been demonstrated by solving three different types of stability 
problems: (1) finding the bearing capacity of strip footings on rock media, (2) assessing the stability of finite rock slopes, and 
(3) the stability analysis of unlined rectangular tunnels in rock mass. In all the cases, the results obtained from the analysis 
have been compared thoroughly with that computed using (1) nonlinear programming, and (2) semi-definite programming 
technique. The present approach has been found to be computationally very robust and it generates very accurate solutions.

Keywords Limit analysis · Rock mechanics · Finite elements · Power cone programming · Hoek and Brown yield criterion

List of Symbols
�1  Major principal stress
�3  Minor principal stress
�ci  Uniaxial compressive strength
mb  Hoek–Brown material constant
mi  Hoek–Brown material constant
s  Hoek–Brown material constant
α  Hoek–Brown material constant
GSI  Geological strength index
D  Disturbance factor
K  Cone
K

∗  Dual cone
ℜn  n-Dimensional real space
ℜm×n  Real matrices of size m × n
Qn  n-Dimensional quadratic cone
Qn

r
  n-Dimensional rotated quadratic cone

P�
n
  n-Dimensional power cone

�n  Set of n × n symmetric matrices
�n
+
  Set of n × n positive definite matrices

�  Stress tensor
�max  Auxiliary variable

�min  Auxiliary variable
t  Auxiliary variable
�x  Normal stress on x-plane
�y  Normal stress on y-plane
�xy  Shear stress on x-plane in y-direction
c  Vector which contains the objective function
�̄  Global unknown vector
NN  Number of nodes
�equi  Matrix containing the left-hand side of all the 

equilibrium equations
�dis  Matrix containing the left-hand side of all the 

discontinuity equations
�bc  Matrix containing the left-hand side of all the 

boundary conditions
�equi  Vector containing the right-hand side of all the 

equilibrium equations
�dis  Vector containing the right-hand side of all the 

discontinuity equations
�bc  Vector containing the right-hand side of all the 

boundary conditions
B  Width of foundation
Qu  Maximum vertical load
N�  Bearing capacity factor of strip footing in weight-

less media
N��  Bearing capacity factor of strip footing
qu  Ultimate bearing pressure
γ  Unit weight of rock mass
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L  Parameter which defines the boundary
H  Parameter which defines the boundary
p  Parameter which defines the state of stress
q  Parameter which defines the state of stress
β  Slope angle
Ns  Stability number for slope
h  Height of tunnel
w  Width of tunnel
Nt  Stability number for tunnel

1 Introduction

To solve different stability analysis in rock mechanics, two 
different computational approaches, namely, (1) the con-
tinuum-based formulations (Zienkiewicz et al. 1975; Swan 
and Seo 1999; Li et al. 2009), and (2) discontinuum-based 
formulations (Cundall 1971; Shi and Goodman 1985), are 
often employed. The elasto-plastic finite element method 
(FEM) is often adopted while employing the continuum-
based approaches. In this approach, for determining the 
stability of any structure, the associated analysis is based 
on either (1) the shear strength reduction method (SSRM) 
(Zienkiewicz et al. 1975), or (2) the gravity increase method 
(GIM) (Swan and Seo 1999; Li et al. 2009; Lian et al. 2018). 
In the SSRM, for given imposed loading on the structure, 
the material shear strength parameters are gradually reduced/
increased to induce the onset of ultimate shear failure. Sim-
ilarly, in the GIM, the value of gravitational acceleration 
is increased/reduced to attain the onset of ultimate shear 
failure; this analysis is very similar to the experimental 
approach used typically in a centrifuge test (Alzoubi et al. 
2010). The factor of safety, accordingly, is defined as the 
ratio of the (1) required shear strength parameters to induce 
the failure to the given material shear strength parameters in 
the SSRM, (2) required gravitational acceleration to gener-
ate the failure to the acceleration (g) due to gravity in GIM. 
For jointed rock masses, the analysis is often dictated by the 
shear strength along the rock joints and the discontinuum-
based techniques, for instance, the discrete element method 
(DEM) (Cundall 1971) and the discontinuous deformation 
analysis (DDA) (Shi and Goodman 1985) can be employed 
to solve the problem. The SSRM- and GIM-based analyses 
can be even used for the discontinuum-based methods as 
well. With the advancement of the finite element method 
and different robust optimization techniques, the finite ele-
ment limit analysis (FELA) has emerged as a very powerful 
tool for solving various stability problems in soils and rocks 
(Sloan 1988; Merifield et al. 2006; Krabbenhoft et al. 2007). 
The FELA does not require any assumption associated with 
the geometry of the collapse mechanism. It can deal with 
complicated boundary conditions, arbitrary geometries, 
anisotropy and heterogeneity of the material; the domain 

is always discretized into a large number of elements and 
the heterogeneity as well as anisotropy of the material can 
be easily accounted in the analysis by defining the relevant 
input material parameters to the different elements in the 
domain. Unlike the elasto-plastic FEM, in the FELA, there 
is no need to describe the complete constitutive model since 
the method uses only the shear strength parameters at fail-
ure. The solution obtained using the FELA is bracketed into 
two bounds, namely, lower and upper bounds. It should be 
mentioned that the computational cost in the FELA remains 
much smaller than the elasto-plastic FEM as the later tech-
nique tends to generate the complete load–deformation plot 
before attaining the failure (Makrodimopoulos and Martin 
2006; Sloan 2013).

For problems involving rock mass, the generalized Hoek 
and Brown (GHB) yield criterion is often applied to check 
failure in intact and jointed rock mass. This failure criterion 
was originally developed by Hoek and Brown (1980) and 
Hoek (1983), through curve-fitting of laboratory triaxial test 
data on rock samples, and it was later modified by Hoek 
et al. (2002). In the FELA, the GHB has also been employed 
to solve different stability problems in rock media. At pre-
sent, the associated optimization problems using the GHB 
have been solved mostly with the usage of the nonlinear 
programming (NLP). For instance (1) the determination 
of bearing capacity of strip and circular footings on rock 
media (Merifield et al. 2006; Chakraborty and Kumar 2015), 
(2) the stability of rock slopes (Li et al. 2008) and (3) the 
stability of underground openings in rock mass (Suchow-
erska et al. 2012; Zhang et al. 2019). To use the NLP, the 
yield function needs to be  C2 continuous, that is, the sec-
ond derivative of the yield function needs to be continuous. 
However, in principal stress space, the GHB yield criterion 
has a form of pyramid with the sharp edges. The stress 
discontinuities appear at the apex of the yield surface in a 
meridian-plane, and along the corners of the hexagon in a 
pi-plane. To implement the NLP algorithm for the HB yield 
criterion, these discontinuities need to be smoothed. The 
different conic programming techniques such as semi-defi-
nite programming (SDP), second-order cone programming 
(SOCP) and power cone programming (PCP) can easily han-
dle any yield function, even with the singularities, provided 
the yield surface remains convex and can be expressed in 
the form of conic constraints. As compared to the NLP, the 
different conic programming techniques which often employ 
the primal–dual interior-point algorithms (Nesterov and 
Todd 1998; Andersen et al. 2003), have been proven to be 
far superior, both in terms of accuracy and computational 
efficiency (Krabbenhoft et al. 2007; Makrodimopoulos and 
Martin 2006). In a recent study, while using the LB-FELA, 
Kumar and Mohapatra (2017) have employed the SDP tech-
nique while solving the plane strain and axisymmetric prob-
lems using the modified Hoek–Brown (MHB) yield criterion 
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in which case the value of the exponent (α) needs to be kept 
equal to 0.5. This assumption leads to much higher values 
of the collapse load(s), especially when the magnitude of 
the geological strength index (GSI) becomes lesser than 
30. A trial and iterative procedure was later introduced by 
Kumar and Mohapatra (2018) to extend this work on the 
basis of the SDP to account for any given value of α. Using 
the same SDP formulation, again with � = 0.5 , Ukritchon 
and Keawsawasvong (2018) provided the solution for the 
three-dimensional problem. Ukritchon and Keawsawasvong 
(2019) have determined the stability numbers of an unlined 
square tunnel on the basis of the plane strain analysis. How-
ever, due to an assumption of � = 0.5 , the usage of the SDP 
in the LB-FELA fails to capture the exact non-linear nature 
of the GHB.

In the present research, a plane strain LB-FELA formula-
tion has been presented while implementing the exact form 
of the GHB criterion in rock mass with the usage of the 
power cone programming (PCP): a relatively new technique 
in the field of optimization. The need of any kind of the 
modification of the GHB yield surface has been totally elim-
inated. For the purpose of checking the efficacy and accu-
racy of the proposed formulation, three different types of 
stability problems in rock mechanics have been solved: (1) 
finding the bearing capacity of strip footings on horizontal 
rock media, (2) assessing the stability of finite rock slopes, 
and (3) determining the stability of rectangular unlined tun-
nels in rock mass. For all the selected problems, the results 
obtained from the present analysis have been thoroughly 
compared with that reported in literature.

2  Hoek and Brown (HB) Yield Criterion

The Hoek–Brown failure criterion was initially proposed 
by Hoek and Brown (1980). After a number of subsequent 
modifications, the generalized Hoek–Brown (GHB) yield 
criterion (Hoek et al. 2002; Hoek 2007) is recommended for 
defining the failure in rock mass. If tensile normal stresses 
are considered as positive, this criterion has the following 
mathematical form:

where �1 and �3 refer to the major (maximum tensile/mini-
mum compressive) and minor (minimum tensile/maximum 
compressive) principal stresses, and �ci defines the uniaxial 
compressive strength of rock samples. The other material 
parameters, namely, mb , s and α become a function of geo-
logical strength index (GSI), disturbance factor (D) and the 
parameter ( mi ), as defined by the following expressions:

(1)�1 − �3 −
(
−mb�1

(
−�ci

)(1−�)∕�
+ s

(
−�ci

)1∕�)�

≤ 0,

3  Conic Optimization Techniques

The applications of second-order cone programming 
(SOCP) and semi-definite programming (SDP) techniques 
in the FELA allow nonlinear inequality constraints to be 
expressed in the form of (1) either a set of quadratic cones 
or rotated quadratic cones in SOCP (Mohapatra and Kumar 
2019a), and (2) the cones of positive semidefinite matrices 
in the SDP (Alizadeh 1995; Alizadeh and Goldfarb 2003; 
Mohapatra and Kumar 2019b). These conic programming 
techniques eliminate completely the requirement of either 
the linearization or smoothing of the nonlinear yield surface 
which is otherwise needed in the nonlinear programming 
(NLP) method.

A set K is defined as a cone if for any � ∈ K and with 
� ≥ 0 , �x ∈ K . The set K is a convex cone if it remains 
convex for every � and � ∈ K and with � and ∈≥ 0 , 
��+ ∈ � ∈ K . The quadratic cone, power cone and semi-
definite cones are the standard examples of convex cones. 
A quadratic cone is defined as:

The convex cone in the following form is known as a 
rotated quadratic cone:

The power cone is defined as:

Note that for the values of � equal to 0 and 1, the power 
cone simply takes the form of the second-order cone.

A set of n × n symmetric matrices ( �n ) are positive semi-
definite if

The primal form of a standard conic programming prob-
lem can be written as:

(2a)mb = mi exp
(
GSI − 100

28 − 14D

)
,

(2b)s = exp
(
GSI − 100

9 − 3D

)
,

(2c)� =
1

2
+

1

6
(exp (−GSI∕15) − exp (−20∕3)).

(3)

K ≡ Qn =

{
� ∈ ℜ

n|
√

x2
2
+ x2

3
+…… x2

n
≤ x1, x1 ≥ 0

}
.

(4)
K ≡ Qn

r
=
{
� ∈ ℜ

n|x2
3
+ x2

4
+…… x2

n
≤ 2x1x2;x1, x2 ≥ 0

}
.

(5)

K ≡ P
𝛽

n
=

{
� ∈ ℜ

n|
√

x
2

3
+ x

2

4
+…… x2

n
≤ x

𝛽

1
x
1−𝛽

2
;0 < 𝛽 < 1 andx1, x2 ≥ 0

}
.

(6)�n
+
= {� ∈ �n|�≽0}.
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where �T ∈ ℜn , � ∈ ℜn , � ∈ ℜm , � ∈ ℜm×n and K = convex 
cone. The dual of this conic problem is:

where K∗ =
{
� ∈ ℜn|�T� ≥ 0,∀� ∈ K

}
 is the dual cone to 

K.
This conic programming problem can be sub-classified as 

(1) second-order cone programming (SOCP) if K ≡ Qn (the 
quadratic cone) or Qn

r
 (the rotated quadratic cone), (2) power 

cone programming (PCP) if K ≡ P�
n
(power cone) and (2) 

semi-definite programming (SDP) if K is a positive semidefi-
nite cone of n × n symmetric matrices (Alizadeh 1995; Ali-
zadeh and Goldfarb 2003; Boyd and Vandenberghe 2004).

Similar to the linear programming (LP) technique, the 
conic programming (CP) techniques also follow the duality 
theorem and these problems can be solved very efficiently 
with the help of the primal–dual algorithms based on the 
interior-point method (IPM) (Andersen et al. 2003; Tang 
et al. 2014). Numerous solvers such as SeDuMi (Sturm 
1999), SDPT3 (Tütüncü et al. 2003) and MOSEK (Mosek 
2019) can be utilized to solve these CP problems in an effi-
cient way. In the present investigation, for carrying out the 
optimization, the optimization toolbox MOSEK has been 
used because of its robustness and computational efficiency 
(Mosek 2019). The entire code for performing the finite ele-
ments limit analysis was written in MATLAB and no com-
mercial software has been employed.

4  Modified Hoek–Brown Criterion in Terms 
of Semi‑definite Conic Constraints

In the generalized Hoek–Brown criterion, the exponent α 
depends on GSI as per Eq. (2c). It has the maximum and 
minimum values of 0.59 and 0.50 corresponding to GSI 
equal to 10 and 100, respectively. Kumar and Mohapatra 
(2017) have considered a constant value of α = 0.5 and the 
GHB has been renamed as the modified Hoek and Brown 
(MHB) yield criterion. In mathematical form, the MHB can 
be expressed as:

Assuming a = −mb

(
−�ci

)
 and b = s

(
−�ci

)2 , the MHB 
criterion becomes as:

To solve the optimization problem in LB-FELA, Kumar 
and Mohapatra (2017) implemented the MHB yield criterion 

(7a)(P)
{
min �T�|�� = �, � ∈ K

}
,

(7b)(D)
{
max �T�|�Ty + � = �, � ∈ K

∗
}
,

(8)�1 − �3 − (−mb�1
(
−�ci

)
+ s

(
−�ci

)2
)0.5 ≤ 0.

(9)(�1 − �3) ≤ (a�1 + b)0.5.

in terms of the following two semi-definite and one rotated 
quadratic conic constraint constraints:

Here, � is the stress tensor with �1 and �3 as maximum and 
minimum eigenvalues, respectively. �max and �min are two 
auxiliary variables such that �max ≥ �1 and �min ≤ �3 . In 
Eq. (11) �dif = �max − �min , k =

(
a�max + b

)
 and l = 0.5; 

also �dif and k are non-negative.
As mentioned earlier, the exponent parameter α depends 

on GSI and it controls the curvature of the GHB, and fix-
ing its value simply equal to 0.5 will never ensure the true 
solution. The comparison of the normalized yield surfaces, 
between MHB and GHB yield criteria for different GSI 
(10, 20, 30 and 40) and mi (1, 10, 20 and 35) as illustrated 
in Fig. 1a–d, reveals that the MHB always predicts higher 
yield strength than the GHB, especially for the value of GSI 
smaller than 30. It can also be observed that with an increase 
in the value of GSI, the gap between the GHB and MHB 
yield surfaces reduces continuously and for GSI ≥ 40, the 
two surfaces almost coincide with each other. On account of 
this, Kumar and Mohapatra (2017) reported quite significant 
differences in the bearing capacity factors for strip and cir-
cular footings on the basis of the LB analysis using the SDP, 
especially for GSI ≤ 30. In an attempt to consider the true 
value of α, Kumar and Mohapatra (2018) proposed an itera-
tive procedure. Although the iterative procedure improves 
the results, the computational time increases quite exten-
sively with an increase in the number of iterations. There-
fore, to improve the accuracy of the LB solution and the 
efficiency in terms of the required computational time, there 
is a need of a new methodology in which the GHB yield 
criterion must be implemented as conic constraints in its 
native form.

5  Generalized Hoek–Brown Criterion 
in Terms of Power Conic Constraints

The generalized Hoek–Brown criterion as in Eq. (1) can be 
expressed as:

where a� = −mb�1
(
−�ci

)(1−�)∕� and b� = s
(
−�ci

)1∕�.
Now, introducing a new variable such that

Since �1 > �3 , t ≥ 0.
Hence, Eq. (12) can be re-written as:

(10)𝜆max� − �≽0; 𝜆min� − �≼0,

(11)�2
dif

≤ 2kl.

(12)(�1 − �3) ≤ (a��1 + b�)� ,

(13)t = (a��1 + b�)� .
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For a plane strain problem

(14)
(
�1 − �3

)
≤ t.

(15a)�1 =
�x + �y

2
+

√(
�x − �y

2

)2

+
(
�xy

)2
,

(15b)�3 =
�x + �y

2
−

√(
�x − �y

2

)2

+
(
�xy

)2
,

(15c)
(
�1 − �3

)
=

√(
�x − �y

)2
+
(
2�xy

)2
,

Fig. 1  A comparison of the MHB and the GHB for D = 0 using different values of mi with: a GSI= 10, b GSI= 20, c GSI= 30, d GSI= 40
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where �x, �y and �xy refer to normal and shear stresses with 
respect to the cartesian co-ordinates system. Therefore, 
Eq. (14) can be written as:

Since t ≥ 0 , Eq. (16) can easily be expressed in the stand-
ard form of a second-order conic constraint:

where x1 = t , x2 = (�x − �y) and x3 = 2�xy.
For a plane strain case again, using Eq. (15a), the value of 

t in Eq. (13) can be written in terms of �x , �y and �xy:

Now from Eqs. (16) and (18), since the value of the expo-
nent α is always +ve,

(16)
√(

�x − �y
)2

+
(
2�xy

)2
≤ t.

(17)
√

x2
2
+ x2

3
≤ x1,

(18)

t =

[
a�

2

{(
�x + �y

)
+

√(
�x − �y

)2
+
(
2�xy

)2
}

+ b�
]�
.

If x4 , x5 and x6 are defined by the following expressions:

Then, Eq. (19) will take the form of a power conic con-
straint as defined by the following expression:

Accordingly, the optimization plane strain problem in the 
LB-FELA can be solved using the power conic program-
ming (PCP) by imposing the GHB failure criterion as the 
summation of one quadratic conic constraint (Eq. 17) and 
one power conic constraint (Eq. 21).

(19)t ≤

[
a�

2

{(
�x + �y

)
+ t

}
+ b�

]�
.

(20)
x4 =

a�

2

{(
�x + �y

)
+ t

}
+ b�, x5 = 1, and x6 = t.

(21)x�
4
x1−�
5

≥

√
x2
6
.

Fig. 2  A flow chart for performing the lower bound finite element limit analysis



3243Lower Bound Limit Analysis Using Power Cone Programming for Solving Stability Problems in Rock…

1 3

6  Lower Bound (LB) Finite Elements Limit 
Analysis (FELA)

To discretize the selected domain, three-noded triangular 
elements have been used. Along the interfaces of all the ele-
ments, statically admissible stress discontinuities were being 
introduced. These stress discontinuities introduce additional 
degrees of freedom and help to attain a better lower bound 
solution. Following the lower bound limit analysis, the 

magnitude of the collapse load can be maximized by estab-
lishing a statically admissible stress field which should sat-
isfy equilibrium conditions, the stress boundary conditions, 
the equations applicable along the stress discontinuities and 
nowhere it should violate the yield condition. The paper of 
Sloan (1988) can be referred for the derivation of the equa-
tions arising on account of the satisfaction of equilibrium 
conditions, stress discontinuities and boundary conditions. 
The enforcement of the GHB yield criterion has already 
been indicated by employing Eqs. (17) and (21).

Finally, the LB-FELA optimization formulation can be 
cast as a PCP problem in the following form:

Fig. 3  For a strip footing: a stress boundary conditions, b a typical 
chosen mesh

Fig. 4  For different values of GSI and mi, a comparison of Nσγ 
using different methods for: a σci/γB = 125; b σci/γB = 1000; c σci/
γB = 10,000
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Subjected to

where � is a vector containing all the coefficient 
terms for the objective function, the vector �̄ con-
tains global unknown vector of the decision vari-
a b l e s  [�̄]T =

[
𝜎1
]T[

𝜎2
]T

⋯

[
𝜎i
]T

⋯

[
𝜎NN

]T
,  w h e r e 

NN denotes total number of nodes in the domain and 
�i = [�i

x
�i
y
� i
xy
tixi

1
xi
2
xi
3
xi
4
xi
5
xi
6
] . The constraints involving 

subscripts equi, dis and bc arise due to the satisfaction of 
equilibrium conditions, statically admissible stress discon-
tinuities and stress boundary conditions, respectively. The 
inequality constraints associated with Eq. (24) arise due to 
the implementation of the GHB yield criterion. The work-
ing operation of the LB-FELA has also been explained 
by constructing a flow chart as illustrated in Fig. 2. The 

(22)Maximize �T�̄.

(23a)�equi�̄ = �equi,

(23b)�dis�̄ = �dis,

(23c)�bc�̄ = �bc,

(24)f (�̄) ≤ 0,

implementation of the PCP with the help of MOSEK has 
been explained in Appendix.

7  Numerical Examples for Stability 
Problems in Rock Mechanics

To demonstrate the efficacy of the present methodology, 
three different types of stability problems, as indicated ear-
lier, were solved and the obtained results using the PCP were 
compared with that computed by employing the SDP and 
that reported on the basis of the NLP. The analysis was car-
ried out on a desktop computer (Intel Core i7–7700 K CPU 
@ 4.20 GHz, 16 GB RAM) on the Windows 10 environment 
with the help of the conic programming toolbox MOSEK 
(version 9.0.84 2019) along with MATLAB version 2016. 
For all the problems chosen, the disturbance factor (D) in the 
GHB yield criterion was simply taken equal to 0.

7.1  Bearing Capacity of Strip Foundation on Rock 
Mass

A rigid strip footing of width B is placed on a semi-infinite 
rock media with horizontal free surface. The footing is rough 
and subjected to vertical downward load without any eccen-
tricity. The interface of the footing and underlying rock mass 

Table 1  A comparison of the bearing capacity factor (Nσ) for a rough strip footing with γ = 0

GSI mi Nσ GSI mi Nσ

Merifield et al. 
(2006)
NLP 
(LB + UB)/2

Kumar and 
Mohapatra (2017) 
SDP
LB

Present analysis 
PCP
LB

Merifield et al. 
(2006)
NLP 
(LB + UB)/2

Kumar and 
Mohapatra (2017) 
SDP
LB

Present analysis 
PCP
LB

10 1 0.015 0.045 0.015 50 1 0.281 0.290 0.280
5 0.042 0.123 0.042 5 0.644 0.662 0.643

10 0.077 0.209 0.077 10 1.037 1.057 1.033
20 0.156 0.369 0.154 20 1.765 1.781 1.754
30 0.238 0.523 0.238 30 2.467 2.465 2.443
35 0.288 0.599 0.284 35 2.817 2.796 2.786

20 1 0.044 0.071 0.044 70 1 0.765 0.776 0.763
5 0.119 0.186 0.118 5 1.582 1.582 1.577

10 0.209 0.312 0.208 10 2.444 2.438 2.438
20 0.389 0.545 0.387 20 4.012 3.998 3.990
30 0.575 0.768 0.571 30 5.491 5.460 5.452
35 0.670 0.877 0.664 35 6.068 6.169 6.060

30 1 0.092 0.113 0.091 100 1 3.461 3.449 3.448
5 0.235 0.283 0.234 5 6.124 6.104 6.103

10 0.397 0.466 0.396 10 8.896 8.865 8.866
20 0.713 0.806 0.707 20 13.847 13.790 13.790
30 1.022 1.130 1.013 30 18.444 18.356 18.357
35 1.193 1.289 1.186 35 20.688 20.553 20.553
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Fig. 5  Failure patterns for a strip footing for: a GSI= 70, mi = 35 and σci/γB = 125; b GSI= 70, mi = 10 and σci/γB = 125; c GSI= 30, mi = 35 and 
σci/γB = 125; d GSI= 30, mi = 10 and σci/γB = 125; e GSI= 30, mi = 10 and σci/γB = 1000; f GSI= 30, mi = 10 and σci/γB = 10,000
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is assumed to be the same as that of any plane within the 
rock media itself, as a result, no special provision needs to 
be made to simulate this footing–rock mass interface stress 
boundary condition. It is required to determine the maxi-
mum magnitude ( Qu ) of the vertical load (objective func-
tion) which the rock media can withstand without failure. 
The bearing capacity factor ( N�� ) is defined as:

where qu is the ultimate bearing pressure which is equal to 
Qu∕B . The bearing capacity factor ( N�� ) depends on (1) the 
different Hoek–Brown parameters GSI, mi and �ci , (2) the 
unit weight of rock mass (γ) and the width of the foundation 
(B). The bearing capacity factor for a weightless (γ = 0) rock 
mass is simply denoted by N� . The chosen domain is shown 
in Fig. 3a; the size of the domain (L and H) are based on 
two primary requirements: (1) no yielding of the elements 
near the chosen boundaries of the domain and (2) a further 
extension of the chosen boundaries in either horizontal or 
vertical direction does not alter the results. The boundary 
conditions have been described in Fig. 3a. A typical mesh, 
with 6680 number of elements and 9950 discontinuities, has 
been illustrated in Fig. 3b. The fan-type mesh was chosen 
to account for the stress singularity along the footing edge.

(25)N�� = qu∕�ci,

The variation of N�� with an increase in GSI for three 
different values of mi, namely 10, 20 and 35, corresponding 
to �ci∕(�B) = 125, 1000 and 10,000, is shown in Fig. 4a–c, 
respectively. It can be seen that the magnitude of N�� 
increases continuously with an increase in the values of 
both GSI and mi. The magnitude of N�� becomes smaller 
for greater values of �ci∕(�B) . In all the cases, the results 
obtained from the present analysis were compared with (1) 
the average of lower and upper bound solutions given by 
Merifield et al. (2006) on the basis of the NLP for a given α, 
and (2) the lower bound solution of Kumar and Mohapatra 
(2017) using the SDP for α = 0.5. It can be seen that for all 
the values of GSI and mi, the present results with the appli-
cation of the PCP match very closely with the solution given 
by Merifield et al. (2006), validating thereby the present 
solution procedure. Note that for the values of GSI < 40, the 
values of N�� reported by Kumar and Mohapatra (2017) for 
α = 0.5 using the SDP become invariably greater than that on 
the basis of the present solution using the actual value of α 
and PCP. The difference between the two solutions increases 
continuously with a decrease in the value of GSI. It implies 
that for soft to very soft rocks, it will be unsafe to make an 
assumption of α = 0.5.

To check the accuracy of the present solutions, the val-
ues of the bearing capacity factor Nσ for a weightless rock 
mass have been compared in Table 1 with the results of 
Merifield et al. (2006) on the basis of the NLP and Kumar 
and Mohapatra (2017) using an assumption of α = 0.5. It 
can be noted that due to an assumption of α = 0.5, Kumar 
and Mohapatra (2017) always overestimate the values of Nσ 
except for GSI= 100. The present solution also matches quiet 
well with the average of the LB and UB solution of Merifield 
et al. (2006).

The proximity of the state of stress to failure is 
defined on the basis of a ratio, p/q; where p = (�1 − �3) 
and q = (a��1 + b�)� . The range of this ratio always lies 
between 0 and 1, and the value of p/q = 1 implies the yield-
ing. The failure patterns’ figures for a constant value of 
�ci∕(�B) = 125 with two different values of GSI, namely, 30 
and 70 and for two different values of mi, namely, 10 and 
35, are shown in Fig. 5a–d. Also, with constant mi and GSI, 
Fig. 5e, f display the failure patterns for �ci∕(�B) = 1000 and 
�ci∕(�B) = 10000 , respectively. Note that in all the cases, 
starting from the center line, a curvilinear shape of the fail-
ure zone develops around the footing base and this zone 
extends right up to the ground surface. In all the cases, a 
small triangular non-plastic wedge develops below the foot-
ing base; this observation is similar to that usually noted for 
a rough strip footing with the usage of the MC yield crite-
rion. Note that an increase in the values of GSI and �ci∕(�B) 
leads to increase in the size of the plastic zone as well as the 
extent of the failure surface on the ground surface.

Fig. 6  For a finite slope: a stress boundary conditions; b a typical 
chosen mesh
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7.2  Stability Analysis of Finite Rock Slopes

The geometry of the rock slope is shown in Fig. 6a. The 
slope is defined by means of two geometrical parameters: 
height (H) and slope angle (β). It is to maximise the magni-
tude of the unit weight (objective function) of a rock slope 
for (1) different values of H and β and (2) different input 
material properties of rock mass. Figure 6a gives the details 
of the boundary conditions which need to be imposed while 
solving this problem. A typical chosen mesh is presented in 
Fig. 6b. Depending on the geometry of the slope and proper-
ties of rock, the total number of elements was varied from 
9500 to 28,200. All the numerical results were expressed in 

terms of a non-dimensional parameter, the stability number 
Ns which is defined as:

The results were obtained for three different values of 
β, namely 30°, 45° and 60°. The variation of Ns for differ-
ent combination of GSI and mi has been shown in Fig. 7; 
four different values of mi, namely, 5, 15, 25 and 35, were 
being chosen. Note that the magnitude of Ns increases con-
tinuously with an increase in the values of both GSI and 
mi. Amongst the chosen values of β, the magnitude of Ns 
reduces with an increase in β; it is quite obvious since the 
stability of slopes will reduce with an increase in the slope 
angle (β). The obtained results are compared with the aver-
age of the LB and UB solutions published by Li et al. (2008) 
on the basis of the NLP. In addition, for the sake of com-
parison, the results were also obtained with the usage of 
the SDP for α = 0.5. Note that the present results for the 
actual value of α on the basis of PCP matches very closely 
with the solution of Li et al. (2008). Like in the case of the 
foundation problem, the magnitude of Ns for α = 0.5 with 
lower values of GSI becomes much greater than the cor-
responding result with the true value of α. Failure patterns 
for GSI= 90 and mi = 15 with three different slope angles are 
shown in Fig. 8a–c. Irrespective of the slope angle, all these 
figures illustrate the toe failure. The size of the failure zone 
in terms of the normalized height increases continuously 
with a decrease in the slope angle.

7.3  Stability of Rectangular Unlined Tunnels in Rock 
Mass

A rectangular underground tunnel of height h, width w and 
cover H, as shown in Fig. 9a, has been considered for assess-
ing its stability. Similar to the slope stability problem, it is 
to find the maximum unit weight (γ) of the rock mass for 
(1) different combinations of w, h and H, and (2) different 
values of GSI for a given mi. The stress boundary conditions 
have been defined in Fig. 9a. Note that the interior perimeter 
of the tunnel is a surface free from any stress possibly due 
to either any lining or an anchorage device. A typical mesh 
has been shown in Fig. 9b. The stability number ( Nt ) for an 
underground tunnel is defined as:

For mi= 15, the variation of Nt with GSI for three differ-
ent values of H/h, namely 1, 2 and 4 has been illustrated in 
Fig. 10a–c, respectively. Note that the value of Nt increases 
continuously with an increase in GSI. For a given GSI, the 
magnitude of Nt increases with an increase in the value of 

(26)Ns = �H∕�ci.

(27)Nt = �H∕�ci.

Fig. 7  A comparison of stability numbers for slopes with different 
GSI and mi with: a β = 30°; b β = 45°; c β = 60°
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H/h. It implies that the stability of the tunnel for given values 
of H and w/h will improve with a decrease in the value of h 
which looks quite obvious. The magnitude of Nt increases 
with a decrease in the value of w/h; that is, for given val-
ues of H and h, the stability of the tunnel reduces with 
an increase in the width of the tunnel which also appears 
quite acceptable. The obtained solutions were compared 
for α = 0.5, with the application of the SDP. Note that the 
value of Nt based on SDP is again found to be higher than 
the solution obtained from PCP. For the true value of α, 
depending on GSI, the obtained values of Nt were also com-
pared with the average of lower and upper bound finite ele-
ments limit analysis solution on the basis NLP as reported 

by Suchowerska et al. (2012). Once again, it can be noted 
that in all the cases, the two solutions remain very close to 
each other.

Figure 11a–f illustrate the failure patterns for the tun-
nel problem. Figure 11a–c indicate the effect of w/h, using 
three different values, namely, w/h = 1, 2 and 4 with mi = 15, 
GSI = 70 and H/h = 1. Starting from the upper edge of the 
tunnel, a curvilinear rupture zone develops which continu-
ously progresses towards the vertical axis of the tunnel. 
Note that with an increase in w/h, the rupture zone gradually 
extends up to the ground surface. The effect of GSI on the 
failure patterns has been shown in Fig. 11d–f corresponding 
to mi = 15, w/h =4 and H/h = 1. Note that with an increase in 
GSI not only the size of the rupture zone increases but also 

Fig. 8  For GSI= 90 and mi = 15, the failure patterns for slopes with: a 
β = 30°; b β = 45°; c β = 60°

Fig. 9  For an unlined tunnel: a stress boundary conditions; b a typi-
cal chosen mesh
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the rupture surface extends continuously up to the ground 
surface.

It should be mentioned that for the problems of founda-
tions, slopes and tunnels taken in the Sects. 7.1, 7.2 and 7.3, 
the properties of the rock are defined by means of its mate-
rial parameters GSI, mi, D, γ and σci. All the results have 
been normalized with respect to σci and γ. It implies that one 
can simply generate the solution for any given magnitudes of 
σci and γ. For the field application of the proposed method, 
one can either actually perform the analysis for given mate-
rial parameters of the rock mass by incorporating the actual 
tunnel geometry or can even directly make of the proposed 
non-dimensional charts for the quick usage of the obtained 
results.

8  Mesh Dependency and Computational 
Efficiency of the Proposed Approach

As indicated earlier, the domain was discretized into a num-
ber of linear triangular elements. To examine the influence 
of the chosen mesh on the results, the solutions for all the 
three chosen problems were obtained for four different num-
bers of elements. The results with four different meshes for 
all three different types of problems are presented in Table 2; 
note that the total number of elements varies between 145 
and 23,420. It can be noted that the values of Nσγ, Ns and 
Nt increase continuously with an increase in the number of 
elements, and finally, the values of these non-dimensional 
factors, associated with the three different problems, tend to 
become constant. As was expected, the CPU times for run-
ning the programs increase continuously with an increase 
in the number of elements; observe that the CPU times vary 
between 0.65 and 43.94 s. To provide a comparison of the 
efficiency of present methodology on the basis of the PCP, 
for all the three chosen problems, the CPU times, along with 
the corresponding values of the bearing capacity factors/
stability numbers, were also determined using the SDP for-
mulations in combination with the iterative procedure of 
Kumar and Mohapatra (2018) corresponding to the true 
value of α. The results have been reported in Table 2 for 
different combinations of GSI and mi. Note that the values 
of Nσγ, Ns and Nt compare closely from both the methods. 
It can be noted that the current formulation using the PCP 
requires much lesser computational time than that with the 
usage of the SDP in conjunction with the iterative procedure 
to account for the true value of α. The difference between the 
CPU times associated with the present PCP approach and 
that on the basis of the SDP increases continuously with a 
decrease in the value of GSI; it should be mentioned that for 
lower values of GSI, greater number of steps is required to 
implement the iterative formulation of Kumar and Mohapa-
tra (2018). The comparison clearly reveals the computational 
supremacy of the present PCP approach over the existing 
one without making any compromise with the accuracy. 
It should be mentioned that in the present analysis, three 
nodded triangular elements have been used. One can use 
higher-order elements with greater number of nodes. How-
ever, this will induce additional non-linearity in the analysis. 
No attempt has been made at present to obtain results using 
higher-order elements.

9  Conclusions

Using the generalized Hoek–Brown (GHB) yield criterion, a 
lower bound finite element limit analysis (LB-FELA) formu-
lation has been introduced for solving different plane strain 

Fig. 10  For mi = 15, a comparison of the stability numbers for tun-
nels with different values of GSI and w/h with: a H/h = 1; b H/h = 2; 
c H/h = 4
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stability problems in rock mechanics on the basis of the 
power cone programming (PCP). The formulation consid-
ers the true value of the exponent in the GHB yield criterion. 

The proposed method does not require any assumption asso-
ciated with either the value of the exponent in the GHB yield 
criterion or any smoothing of the yield surface. Accordingly, 

Fig. 11  Failure patterns for 
tunnels for mi = 15, GSI = 70, 
H/h = 1 with: a w/h = 1; b 
w/h = 2; c w/h = 4 and mi = 15, 
H/h = 1, w/h = 4; d GSI = 10; e 
GSI = 50; f GSI = 90
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the proposed technique overcomes the limitation and restric-
tion of the optimization procedure in nonlinear program-
ming and semi-definite programming technique which was 
followed till date. To show the efficacy of the proposed for-
mulation, three different types of stability problems in rock 
mechanics have been analyzed: (1) determining the bearing 
capacity of strip foundation on rock mass, and (2) computing 
the stability numbers for finite rock slopes, and (3) evaluat-
ing the stability numbers of rectangular unlined tunnels in 
rock media. By applying the interior-point method based 
efficient algorithm using MOSEK, it is found that the appli-
cation of the PCP in all the cases is computationally very 
versatile and it generates very accurate solution.

Appendix: Implementation of the PCP 
in MOSEK

The present investigation utilizes the optimization toolbox: 
MOSEK in MATLAB since it can handle the PCP which 
is found to be robust and computationally very efficient 
(Makrodimopoulos and Martin 2006; Ukritchon and Keaw-
sawasvong 2018; Mohapatra and Kumar 2019a). To solve 
the PCP in MOSEK, the input needs to be specified in a 
particular way. The objective function, as given in Eq. (22), 
is defined by the command ‘prob.c’. The matrices containing 
inequality or equality constraints are defined with ‘prob.a’ 
command. The lower and upper bounds of the constraints are 
specified by ‘prob.blc’ and ‘prob.buc’, respectively. The cor-
responding bounds on the variables are defined by ‘prob.blx’ 

Table 2  A comparison of the results using the PCP and the SDP formulations for different chosen problems

Problem GSI mi Other parameters NE Optimization method

Present method Kumar and Mohapatra 
(2018)

PCP
GHB

SDP + iterative method
GHB

Nσγ CPU (s) Nσγ CPU (s)

Strip footing 10 5 �ci∕(�B) = 125 145 0.076 0.65 0.088 12.60
1515 0.090 5.14 0.103 108.34
5250 0.095 16.17 0.108 361.20
8550 0.096 21.31 0.110 497.42

30 20 1435 1.025 4.53 1.032 76.84
5550 1.061 16.86 1.069 344.52

11,290 1.067 29.78 1.074 526.71
14,790 1.070 34.85 1.078 801.24

Ns CPU (s) Ns CPU (s)

Finite slope 10 5 β = 60° 584 0.014 1.92 0.016 40.41
3304 0.020 9.61 0.023 194.52

10,524 0.023 25.25 0.027 570.78
15,146 0.025 31.15 0.029 767.20

70 35 954 2.583 2.88 2.824 46.28
5772 3.945 15.50 4.124 255.80

15,801 4.645 34.66 4.656 560.80
23,420 5.104 43.94 5.108 667.45

Nt CPU (s) Nt CPU (s)

Rectangular tunnel 10 15 H/h = 1, w/h = 1 348 0.0004 1.12 0.0006 28.32
3542 0.0006 10.10 0.0008 244.13
5634 0.0008 15.24 0.0009 398.47
9753 0.0009 23.68 0.0010 711.10

90 15 1346 0.1066 2.96 0.1070 7.12
8680 0.1475 21.24 0.1477 50.40

13,942 0.1651 29.68 0.1653 87.34
19,864 0.1892 40.24 0.1892 102.24
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and ‘prob.bux’. The cones are prescribed using four different 
cell arrays: ‘prob.cones.type’, ‘prob.cones.conepar’, ‘prob.
cones.sub’ and ‘prob.cones.subptr’. The array ‘prob.cones.
type’ specifies the type of cone and it takes the command (1) 
‘res.symbcon.MSK_CT_QUAD’ for the second-order cone, 
(2) ‘res.symbcon.MSK_CT_RQUAD’ for the rotated quad-
ratic cone, and (3) ‘res.symbcon.MSK_CT_PPOW’ for the 
power cone. The value of the power term in the power cone 
is specified by ‘prob.cones.conepar’. The variables related 
to a particular cone are specified by ‘prob.cones.sub’ and 
the change in the cone is indicated in ‘prob.cones.subptr’. 
The optimal solution of the objective function is obtained 
through ‘res.sol.itr.pobjval’ command. The primal as well as 
dual optimal solutions of the variables are finally reported in 
‘res.sol.itr.xx’ and ‘res.sol.itr.y’, respectively.
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