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Abstract
This study takes sluice foundation rock mass in Datengxia Hydropower Station, China as an example to examine two-dimen-
sional (2D) discrepancies in fracture geometric factors and connectivity between field-collected and stochastically modeled 
discrete fracture networks (DFNs). We discover that the trace lengths of field-collected and corresponding modeled DFNs 
diverge, especially with relatively large lengths. A new variable called minimum spacing sequence (MSS) is proposed, which 
lists minimum spacing between each fracture midpoint and all the other fracture midpoints. The probability density function 
curve of MSS shows that the fracture locations do not follow a homogeneous (Poisson) model. The following is performed 
to examine whether the differences will result in noticeable DFN application errors. The 2D fracture connectivity, which is 
calculated by depth-first search algorithm, is applied to quantify the discrepancies between field-collected and statistically 
modeled 2D DFNs. Results show that the statistically modeled DFNs have small clustered fracture path numbers and ratios 
but with considerably large maximum and average lengths for paths (or for paths longer than certain thresholds) owing to 
the concentration disadvantage and connection advantage of scattered fractures. We comprehensively compare different 2D 
DFNs (including field-collected DFN, totally modeled DFNs, DFNs with field fracture size, and DFNs with field fracture 
locations) and conclude that generating statistically modeled DFNs with identical connectivity features is extremely difficult. 
Mechanical means that consider connections among fractures are recommended for DFN applications.
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1  Introduction

Discontinuities, including rock beddings, soft layers, struc-
tural fractures, and microfractures, act as distinctly weak 
parts and play primary roles in the deformational and 
mechanical characteristics of rock masses. As an important 
type of discontinuity, structural fractures are large in number 
and are stochastically distributed. Consequently, they pose a 
considerable challenge to engineering geologists when thor-
oughly exploring the influence of complicated and random 
fractures on mechanical weakening and deformation aug-
mentation on rock masses. Therefore, structural fractures are 
extensively emphasized in geometric and mechanical rock 
mass analyses (Einstein et al. 1983; Chen et al. 1995; Hud-
son and Harrison 1997; Grenon and Hadjigeorgiou 2003; 
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Jing 2003; Sisavath et al. 2004; Esmaieli et al. 2010; Vazaios 
et al. 2018).

In terms of current technologies, structural fractures 
inside rock masses are invisible. Therefore, only one-dimen-
sional (1D) and two-dimensional (2D) traces of fractures 
on rock outcrops can be collected, and those in other 2D 
sections or in three-dimensional (3D) spaces are unavail-
able. Consequently, modeling methods of discrete fracture 
network (DFN), which is an ensemble of structural fractures 
and can be used to generate fractures in other sections or 
spaces, have achieved tremendous development in the recent 
50 years (Chen et al. 1995; Xu and Dowd 2010; Thovert 
et al. 2011; Malinouskaya et al. 2014; Bonneau et al. 2016; 
Han et al. 2016; Fang et al. 2017). DFN modeling is primar-
ily accomplished on the basis of stochastically geometric 
technologies. The geometric factors of DFN, such as trace 
length (or 3D disc size), orientation, density, and location, 
have been widely examined by engineering geologists (Priest 
and Hudson 1981; Kulatilake et al. 1984, 1990, 2011; White 
and Willis 2000; Thovert and Adler 2004; Chen et al. 2005; 
Thovert et al. 2014). Complicated considerations have been 
occasionally combined in DFN modeling, such as mechani-
cal aspects (Davy et al. 2013; Lei et al. 2015; Li et al. 2018). 
To date, DFN modeling method is supposed to be relatively 
perfect in theory and has been widely used in practical rock 
engineering analysis (Grenon and Hadjigeorgiou 2003; Chen 
et al. 2005; Elmo et al. 2014; Bauer and Toth 2017; Vazaios 
et al. 2017; Zhang et al. 2017a).

Fractures generated by DFN modeling method are statis-
tically representative of the field natural ones, with incon-
sistency in the specific location and corresponding geo-
metric factors of a fracture. Discrepancy occurs between 
statistically modeled and field-collected DFNs (Esmaieli 
et al. 2010; Zhang et al. 2013, 2017b). Some scholars have 
diminished the discrepancies by increasing the number of 
statistically modeled DFNs and subsequently taking their 
statistical results as references of rock mass structural analy-
sis (Elmo et al. 2013; Stacey et al. 2015). Some researchers 
have argued that DFNs, which are entirely generated based 
on geometric statistics, may not be representative, and thus 
require additional mechanical considerations (Lei et al. 
2015; Bonneau et al. 2016; Li et al. 2018). However, the 
generation technique of mechanical DFNs has been limited. 
Research has indicated the discrepancies that should be con-
sidered in DFN application. The following references, which 
are introduced as typical examples, directly focused on DFN 
discrepancies. Odling and Webman (1991) compared a natu-
ral fracture pattern with ten statistically modeled realiza-
tions. The permeability of the natural pattern was indicated 
to be increasingly underestimated with the increase in the 
permeability contrast between rock matrix and fractures. 
Afterwards, Odling (1992) found that the spatial distribu-
tions of natural and modeled DFNs significantly varied, 

which led to distinctly different degrees of connectivity and 
fractal patterns. Belayneh et al. (2009) researched the per-
meability of outcrop-based deterministic analogs and several 
stochastic realizations. The hydraulic properties were proven 
to vary dramatically. Lei et al. (2015) examined the validity 
of statistically modeled DFNs in representing field-collected 
fractures in terms of their geomechanical and hydraulic 
responses. The results demonstrated that modeled DFNs 
were only representatives for fixed mechanical conditions, 
which might be unreliable if mechanical changes occurred.

Discrepancies between field-collected and statistically 
modeled DFNs play extremely crucial roles in determining 
the mechanical and deformational properties of rock mass, 
given that DFN is the fundamental procedure in rock mass 
analysis. However, discrepancy studies are inadequate to 
understand DFN application limitations. Well-known impor-
tant problems explain the discrepancies occurring in terms 
of fracture locations and geometric factors, the manner in 
which discrepancies are quantitatively described, and the 
manner in which these discrepancies can be considered in 
DFN application. The current study takes sluice foundation 
rock mass in Datengxia Hydropower Station as an example 
to establish a comprehensive analysis of these problems. Its 
natural fractures are collected, and 20 2D DFNs are statisti-
cally modeled on the basis of stochastic theories (Sect. 2). 
Discrepancies in fracture position and trace length distribu-
tions are examined (Sect. 3). The discrepancies in 2D con-
nectivity determined by depth-first search (DFS) algorithm 
are quantitatively described (Sect. 4), and discussion to these 
discrepancies is presented (Sects. 5, 6).

2 � Study Area and Data Acquisition

2.1 � Study Area

This study uses fractures developed in a sluice foundation 
rock mass in Datengxia Hydropower Station as the study 
object (Fig. 1a). The hydropower station is located at the 
Pearl River in Guiping City, China and has a main dam size 
of 80 m (height) × 1343 m (length) and a reservoir storage 
capacity of 2.813 × 109 m3. Mainly designed for power gen-
eration, flood control, and shipping, this station has been 
set to be the primary engineering of China Ministry of 
Water Resources. The foundation of the sluice plays a cru-
cial role in dam safety as a portion of the main stream due 
to its expected high hydrostatic pressure exerted by a 61 m 
upstream water level and a 22.7 m downstream water level 
(normal storage condition). Therefore, studying the charac-
teristics of discontinuities developed inside the sluice foun-
dation rock mass is essential.

The hillocks downstream the sluice are sliced off and 
cleaned out, thereby facilitating our discontinuity collection. 
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The moist rock exposures indicate a shallow water level con-
dition. This study selects a headmost cleaned portion; its 
location is illustrated in Fig. 1a, and the overall perspective 
is shown in Fig. 1b. This portion is covered by formations 
of Lower Devonian (D1) limestones, with bed thickness of 
more than 20 m and bedding surfaces dipping at the direc-
tions of 100°–110° with dip angles of 10°–15°.

Although a few faults are developed around the sluice, 
their scales are relatively small. Moreover, their strikes are 
nearly the same as the direction of the hydrostatic pressure. 
Therefore, the influences of the faults on the safety of the 
sluice dam are considerably reduced. This study focuses 
on stochastically distributed structural fractures, which are 
believed to have a substantial effect on sluice safety. Collec-
tion and details of the fractures are introduced in Sect. 2.2.

2.2 � Collection of Field Fractures

Sampling window method (Kulatilake and Wu 1984) is 
applied to collect the fractures in the cleaned rock expo-
sure, as exhibited in Fig. 1b. Fractures, with trace lengths 
shorter than 0.3 m, are truncated during the collection. The 
geometric characteristics, including the start and end coor-
dinates, orientation (dip direction and dip angle), aperture 

width, filling, moisture, weathering degree, and surface 
morphology of fractures with trace lengths larger than 
0.3 m, are recorded. A total of 667 fractures are eventu-
ally detected, and their traces are shown in Fig. 2.

An overwhelming majority of fractures are steeply 
dipped with angles larger than 70° and embody shear 
mechanism with straight traces. The field observation indi-
cates that the fracture traces predominantly extend along 
two directions, with one direction similar to and the other 
one perpendicular to the sluice strike (233° or 43°). There-
fore, two sets are categorized using the method suggested 
by Chen et al. (1995), and their average orientation results 
(dip toward 296° and 210°) are approximately consistent 
with our field judgment (Table 1 and Fig. 3). This fracture 
set categorization aids mechanical analysis, because the 
hydrostatic pressure is similar to or perpendicular to the 
mean fracture strikes.

Trace lengths of the aforementioned two fracture sets 
are examined, showing that they follow log-normal distri-
bution (Table 1), as elucidated in Sect. 2.3. P20 (fracture 
number per area, 1/m2) and P21 (total fracture trace length 
per area, m/m2) are derived to depict the 2D fracture den-
sity (Table 1).

(b)

(a)

Legends:

Flow direction
Main dam Sluice
Researched rock mass

Fracture collection domain

x°directing towards x°

Fig. 1   Study area and fracture-collection domain. a Location of the main dam and its sluice. b Domain of the collected fractures developed in 
the sluice foundation rock mass
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2.3 � Generation of Statistically Modeled DFNs

2D DFN modeling method, which has been extensively used 
in rock mass analysis, is used to regenerate fractures on the 
rock exposure with the reason, as introduced in Sect. 3. The 
manner in which the elements for DFN generation is deter-
mined is described as follows.

The collected fractures are located within a polygonal 
region with an area of 1390 m2 (Fig. 2). Generating fractures 
within this irregular region is definitely inconvenient; thus, 
a slightly larger region with a size of 60 m (X axis) × 40 m 
(Y axis) is selected as the modeling region to accommodate 
the generated fractures.

A total of 466 and 201 field fractures of sets 1 and 2 
are collected, respectively, and their densities are calculated 
(Table 1). The fracture numbers in the 60 × 40 m region can 

be redetermined by augmenting 2400/1390 times. Conse-
quently, this process results in 805 and 346 fractures that can 
be simulated for sets 1 and 2, respectively. The two fracture 
numbers are ultimately applied to represent the simulated 
fracture density and generate the fractures in the modeling 
region.

Fracture positions are always considered to follow a 
homogeneous (Poisson) model, a nonhomogeneous process, 
a cluster process, or a Cox process (Lee et al. 1990; Xu and 
Dowd 2010). Among the four considerations, homogeneous 
(Poisson) model is mostly used in DFN generation (Chen 
et al. 1995; Bonneau et al. 2016; Zhang et al. 2017b). In 
addition, the researched rock masses belong to the same 
lithology with identical physical and mechanical charac-
teristics. Thus, the mostly used Poisson model is applied 
in this study, and the discrepancy analysis is performed 
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Fig. 2   Traces of the fractures collected on the rock exposure of the sluice foundation rock mass

Table 1   Information on the traces of fractures collected in the sluice foundation rock mass

Fracture set Fracture 
number

Fracture orientation Fracture trace length Fracture density

Dip direc-
tion (°)

Dip angle (°) Mean (m) Standard 
deviation (m2)

Distribution type P20 (1/m2) P21 (m/m3)

1 466 296 80 2.14 1.89 Log-normal 0.34 0.72
2 201 210 82 2.61 2.68 Log-normal 0.14 0.38
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on the basis of this model. In this study, the midpoint of a 
fracture trace is used to represent the fracture position. The 
midpoints of the aforementioned 805 and 346 fractures are 
uniformly distributed in the 60 × 40 m region. Notably, the 
spatial organization of field-collected fractures differs from 
the homogeneous point process results according to two-
point correlation dimension (Bonnet et al. 2001; Bonneau 
et al. 2016). Section 6 further discusses this finding. Con-
sidering the common use of Poisson model in DFN genera-
tion especially in rock masses with identical mechanical and 
deformational features as our study object, the discrepancy 
analysis is continuously carried out on the basis of the Pois-
son model (Sects. 4.2, 5.1). In addition, the discrepancy is 
executed on the basis of the field fracture point organization 
reflecting the field fracture location organization as the sup-
plementary verification (Sect. 5.2).

The fracture trace length is an extremely crucial element 
that influences the rock mass characteristics. Therefore, this 
element is widely researched by scholars worldwide (Priest 
and Hudson 1981; Kulatilake and Wu 1984; White and 
White 2000; Wu et al. 2011). A plausible method for gener-
ating fracture traces in a statistical homogenous domain is 

to examine the probability distribution of the trace lengths 
of field-collected fractures and to apply this distribution to 
model the trace length population. Chi-square and Kolmog-
orov–Smirnov (KS) goodness-of-fit tests are common and 
acceptable methods to determine the probability distribu-
tion of the trace length data. The two tests show that log-
normal distribution is optimal to describe the trace lengths 
of field-collected fractures, which thoroughly introduced in 
Sect. 3.1. Therefore, log-normal distribution and its statisti-
cal parameters (Table 2) are applied for trace length gen-
eration. Subsequently, 805 and 346 trace lengths following 
log-normal distributions, with corresponding location and 
scale parameters listed in Table 2, are generated for fracture 
sets 1 and 2, respectively.

Fracture orientations are typically scattered and bivari-
ate, which pose a complicated problem to rock mass analy-
sis. These orientations are frequently assumed to follow 
bivariate Fisher, normal, Bingham, or experimental distri-
bution (Kulatilake et al. 1990; Jayaram and Baker 2008; 
Liu et al. 2018). The current study applies the experimen-
tal distribution, as indicated in Fig. 4. The fracture orienta-
tions are projected in the equal-area Schmidt (Fig. 3) and 

Fig. 3   Poles and strike rose 
diagrams of the 667 collected 
fractures. Red poles represent 
the first-set fractures and blue 
poles represent the second-set 
fractures (color figure online)
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667 poles
466 first-set poles

201 second-set poles
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divided into 47 patches, with each showing its fracture 
number ratio. The modeled fracture orientations follow 
these number ratios. Orientations (dip and dip angle) in 
each patch follow uniform distribution, which can greatly 
simplify the generation of fracture orientations. The frac-
tures in the modeled 2D DFN are only characterized by 
extension directions, which are equal to the fracture plane 
strikes for the horizontal rock outcrop. Therefore, strikes 
of modeled fractures are used to represent the 2D fracture 
orientations (extension direction).

The aforementioned steps determine the fracture accom-
modation scope, density (number), position, trace length, 
and extension direction. A Monte Carlo simulation can be 
used to stochastically synthesize the latter three geometric 
factors to generate 805 and 346 fractures for sets 1 and 2 
in the 60 × 40 m region, respectively (Chen et al. 1995). 
Countless DFNs can then be generated (Esmaieli et  al. 
2010; Zhang et al. 2013; Vazaios et al. 2018), based on 
which fractures inside the polygonal field-collection region 
(Fig. 2) can be determined. Geometric parameters of some 

Table 2   Density function 
parameters and statistics 
determined by Chi-square and 
KS goodness-of-fit tests

A, B, and C of Triangle distribution represent lower limit, upper limit, and mode, respectively; A and B of 
Uniform distribution represent lower and upper limits, respectively; A of Poisson distribution represents 
the rate parameter equal to sample’s average value; A and B of normal distribution represent average and 
standard deviation values, respectively; A of Exponential distribution represents the rate parameter equal 
to the reciprocal of average value; A and B of the Log-normal distribution represent the location and scale 
parameters, respectively; A and B of Gamma distribution represent shape and rate parameters, respectively

Distribution type Set 1 Set 2

Density function param-
eters

χ2 Dn Density function param-
eters

χ2 Dn

A B C A B C

Triangle 0.50 4.20 1.72 534 0.46 0.50 4.60 1.32 325 0.47
Uniform 0.50 12.72 − 1137 0.61 0.50 17.50 − 641 0.63
Poisson 2.14 − − 1317 0.36 2.61 − − 712 0.50
Normal 2.14 1.89 − 2341 0.34 2.61 2.68 − 1123 0.38
Exponential 0.47 − − 76 0.13 0.38 − − 30 0.11
Log-normal 0.48 0.76 − 29 0.04 0.59 0.85 − 17 0.05
Gamma 1.28 1.67 − 69 0.15 0.94 2.77 − 29 0.17
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Fig. 4   Equal-area Schmidt projection diagram of the collected fractures. x (y%) represents the ratio (y%) of fracture number in the xth patch to 
the total fracture number
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DFNs inside the region inevitably deviate from those of 
the collected fractures. Therefore, we select eligible DFNs 
with acceptable deviations. The number (n) of fracture and 
the parameters of fracture length trace log-normal distribu-
tion law (average u, standard deviation σ) collected on the 
field (Table 1) are adopted to evaluate the validity of mod-
eled DFNs. DFNs with fracture numbers within n ± 10 and 
trace length parameters within u ± 0.1 (m) and σ ± 0.1 (m) 
are selected as eligible ones and applied for the following 
simulations. n should eliminate fractures smaller than 0.3 m, 
which corresponds to the operation of field-collected frac-
tures (Sect. 2.2).

A large amount of DFNs that meet the aforementioned 
requirements can be determined in the field-collection 
region. This study illustrates three modeled DFNs as exam-
ples in Fig. 5, from which the distributions of fractures in 
different DFNs noticeably vary. Therefore, DFN variability 
should be the focus, that is, only the stochastic evaluations of 
DFNs draw rational results. Eventually, this study later uses 
20 modeled DFNs for the discrepancy analyses.

3 � Discrepancy in Fracture Geometric 
Parameters

DFN technology can be used in both 2D (linear fracture 
traces) and 3D (planar fractures) modeling methods. These 
models are helpful in evaluating the mechanical and defor-
mational characteristics of rock masses (Baghbanan and 
Jing 2008; Zhang et al. 2017b; Li et al. 2018). This study 
carries out discrepancy analysis between field-collected 
and statistically modeled DFNs. Although 3D analysis is 
valuable, collecting 3D fractures in field is impractical for 
today’s technologies. Thus, conducting 3D discrepancy 
analysis is difficult or even impossible. Given that only 
field-collected 2D traces are actual and thus can be used for 

practical discrepancy analysis, 2D DFNs corresponding to 
field-collected fracture parameters are modeled.

We use experimental distribution to generate orientations 
of modeled fractures to ensure that the modeled orientations 
are close to the field data (Fig. 4). Fracture density is consid-
ered to determine the fracture number, which is made to fit 
the field fractures. Density is not the discrepancy research 
focus. Distribution of fracture trace lengths and regular pat-
tern of fracture locations (positions) are highlighted, con-
sidering the aforementioned geometric characteristics of the 
fractures.

3.1 � Trace Length Distribution

Size is the most influential element in the geometric charac-
teristics of fractures. Therefore, the fracture trace length is 
extensively examined, among which the trace length distri-
bution is one of the most important research points (Priest 
and Hudson 1981; Kulatilake and Wu 1984; White and 
White 2000; Wu et al. 2011). Two interesting arguments are 
worth elaborating. First, can trace lengths of naturally devel-
oped fractures be perfectly described by a theoretical prob-
ability distribution? Differences inevitably exist between the 
practical distribution of field-collected fracture trace lengths 
and the theoretical distribution, which require quantifica-
tion and qualification for rock mass analyses. Second, can 
a single probability distribution perfectly describe trace 
lengths of field fractures? To investigate these questions, 
we compare the frequencies of field-collected trace length 
probability distribution with those of the theoretical distribu-
tion confirmed by Chi-square and KS goodness-of-fit tests.

Chi-square and KS goodness-of-fit tests are plausible 
methods to determine which probability distribution the 
observation (field-collected fracture trace lengths) follows 
by comparing the observation sample with designed prob-
ability distributions (Zhang et al. 2013; Song et al. 2017). 
The difference between the two tests is that the former 
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Fig. 5   Three exampled DFNs in the fracture-collection region with acceptable values of n, u, and σ 
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compares the cumulative difference of probability density 
function (PDF), whereas the latter compares the maximum 
difference of cumulative distribution function (CDF). The 
statistics of Chi-square (χ2) and KS tests (Dn) are exhibited 
by Eqs. (1) and (2), respectively:

where N is the total number of observations (field-collected 
fractures), n is the number of compared parts (i.e., the entire 
extension of the fracture trace lengths is divided into n 
parts, and each part is compared with its corresponding part 
derived from the designed PDF), Oi is the number of obser-
vation in the ith part, and pi is the fraction of the ith part in 
the population of the designed PDF (Npi is the theoretical 
count of the ith part):

where supx is the supremum function, Fn(x) and F(x) are the 
empirical distribution function of the sample (field-collected 
fractures) and the CDF, respectively, and n is the number of 
compared parts, which is similar to that in Eq. (1).

Seven frequently used probability distributions (i.e., tri-
angle, uniform, Poisson, normal, exponential, log-normal, 
and gamma distributions) are considered designed probabil-
ity distributions in this study. χ2 and Dn shown in Eq. (1) 
and (2) are calculated for each aforementioned distribution. 
The designed probability distribution with the minimum χ2 
or Dn values is considered the most suitable, and its PDF 
parameters are used for trace length generation mentioned in 
Sect. 2.3. Here, the comparison between calculated and criti-
cal test statistics, which requires determinations of degree 
of freedom and significance level, is weakened. Given the 
continuing controversy in the determination of key param-
eters such as significance level for critical test statistic, we 
emphasize the minimum test statistic judgement which 
can offer us the optimal probability distribution. Table 2 
shows the test statistics of differently designed probability 

(1)
�
2 = N

n∑

i=1

(
Oi

N
− pi

)2

pi
,

(2)Dn = supx
||Fn(x) − F(x)||,

distributions, with n = 12. As mentioned in Sect. 2.3, the 
log-normal distribution, which embodies the minimum test 
statistics, is selected.

Table 3 shows the Chi-square and KS goodness-of-fit test 
results under different compared parts n. The Chi square 
goodness-of-fit test of trace lengths of fracture 2 is taken as 
an example. The values of χ2 are smaller than their critical 
ones when n = 12, 14, and 16 (significance level is 0.05), 
whereas, values of χ2 are larger when n equals 8, 10, and 
20. Therefore, the discrepancy between trace lengths of 
field-collected fractures and their theoretical PDF or CDF 
is proven to be variable.

Figure 6 exhibits the discrepancy under different values 
of n. The discrepancy (percentage difference) is small when 
the trace length is smaller than 5 m for fracture sets 1 and 
2. Majority of the percentage difference values are smaller 
than 25%, whereas the values increase when the length is 
larger than 5 m, with most of them larger than 50%. Specifi-
cally, the theoretical values are larger than those of the field-
collected fracture traces for lengths approximately ranging 
from 5 to 8 m, whereas the theoretical values are smaller 
for lengths larger than 8 m. The difference in fracture trace 
lengths results in discrepancies in rock mass characteristics, 
especially when the lengths are large; hence, this difference 
requires consideration.

In sum, the trace lengths of field-collected fractures in the 
sluice foundation rock mass in Datengxia Hydropower Sta-
tion can be statistically described by a theoretical PDF. How-
ever, the discrepancies between the practical and theoretical 
PDFs should be considered. Section 5.2 will further describe 
the influence of this discrepancy on fracture connectivity. In 
addition, the field-collected fractures can be described by a 
single probability distribution. However, complicated situ-
ations may occur, as introduced in Sect. 6.

3.2 � Regular Pattern of Fracture Location

As introduced in Sect. 2.3, fracture location is assumed to 
follow a homogeneous (Poisson) model; that is, fractures 
are stochastically distributed in rock masses. This handling 

Table 3   Chi-square and KS 
goodness-of-fit test results 
under different numbers of 
compare parts n 

Goodness-
of-fit tests

Test results

Set 1 Set 2

n 8 10 12 14 16 20 8 10 12 14 16 20

Chi square
 Nf 5 7 9 11 13 17 5 7 9 11 13 17
 χ2 21.43 35.04 29.21 33.03 40.06 49.63 12.1 15.02 16.91 15.38 22.16 31.26

KS
 Nf 8 10 12 14 16 20 8 10 12 14 16 20
 Dn 0.02 0.041 0.038 0.044 0.057 0.071 0.027 0.032 0.05 0.019 0.024 0.06
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(a) (b)

(c) (d)

(e) (f)

Fig. 6   Histograms and corresponding statistical curves in different comparison part number n 
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pattern of DFN generation is widely accepted and used. 
However, this pattern is sometimes controversial (Davy 
et  al. 2013); thus, the discrepancy between the natural 
and Poisson-modeled fracture locations must be explored. 
Accordingly, we propose a new variable called minimum 
spacing sequence (MSS) to assess the regular pattern of 
fracture locations. The ith element of MSS is determined 
by the minimum spacing between the ith fracture midpoint 
(representing the location) and the others. The number of the 
sequence is equal to that of the researched fractures.

MSS for the field-collected fractures is shown in Fig. 7a. 
For comparison, the MSS for Poisson-modeled fractures is 
shown in Fig. 7b–e, with Fig. 7c–e representing the first 
exampled three DFNs exhibited in Figs. 5 and 7b represent-
ing the population of the 20 modeled DFNs. Discrepancies 
in MSS PDFs for field-collected and Poisson-modeled frac-
tures are noticeable. The MSS PDF curves of Poisson-mod-
eled fractures are approximately eudipleural with the right 
part slightly longer, whereas the curve of field-collected 

fractures noticeably leans to the left. Therefore, quantifica-
tional examination of the difference is essential. This study 
applies the statistical measures (i.e., average, standard devia-
tion, skewness, and excess kurtosis), and their values are 
presented in Fig. 8. Average, standard deviation, skewness, 
and excess kurtosis of MSS for field-collected fractures are 
0.65 m, 0.44 m2, 1.52, and 4.19, respectively (Fig. 7a). They 
have a slightly smaller average and a slightly larger standard 
deviation but considerably larger skewness and excess kur-
tosis than the modeled fractures (Fig. 8).

Several outcomes can be summarized considering the 
results of the statistical measures. A small average of field-
collected fractures implies that the MSS has small val-
ues. This finding indicates that the field-collected fractures 
are more concentrated to one another compared with the 
Poisson-modeled ones. By contrast, a large standard devia-
tion indicates scattered locations. In sum, field-collected 
DFN has more small-spaced (concentrated) but do not lack 
large-spaced (scattered) fractures, which is contrary to the 
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conception that fractures are uniformly distributed. Skewness 
and excess kurtosis have noticeable powers to embody dif-
ferences between field-collected and Poisson-modeled MSS 
DFNs. The skewness value for the field-collected fractures 
is 1.52, which is considerably larger than those for either the 
20 modeled fractures (ranging from 0.43 to 0.87) or for their 
population (0.62). This result indicates that the MSS PDF 
curves for field-collected and Poisson-modeled fractures are 
all positively skewed (left-leaning curved), with the curve for 
the field-collected fractures having a considerably longer and 
thinner right tail. Therefore, the MSS values for field-collected 
fractures have remarkably more minimum spacing values; that 
is, field-collected fractures are more concentrated than the 
Poisson-modeled fractures. The excess kurtosis value (kur-
tosis value minus 3) for the field-collected fractures is 4.19, 
which is markedly larger than those for either the 20 modeled 
fractures (ranging from − 0.09 to 0.82) or for their population 
(0.17). This result indicates that the MSS PDF curves for the 
Poisson-modeled fractures have approximately the same or 
slightly more extreme outliers than that of the normal distribu-
tion curve (excess kurtosis equal to 0); by contrast, the MSS 
PDF curve for the field-collected fractures is typically lepto-
kurtic, which have much more extreme outliers.

In sum, the field-collected fractures are concentrated to one 
another and have extensive minimum spacing values. Conse-
quently, the MSS PDF curve for the field-collected fractures 
leans to the left and has a large extension with a long and thin 
right tail.

4 � Connectivity Analyses of Field‑Collected 
and Modeled DFNs

Differences in trace length and location distributions 
between the field-collected and statistically modeled DFNs 
evidently exist in Sect. 3. Whether these differences will 
result in discrepancy in rock mass characteristics requires 
assessment. Fracture connectivity, which emphasizes the 
connections of fractures, is widely used in assessing the 
hydraulic diffusivity of a rock mass formation (Hao et al. 
2008; Adler et al. 2012; Bonneau et al. 2016; Li et al. 
2018). Connections of fractures, which comprehensively 
depend on fracture geometric characteristics, indicate 
the deformational and mechanical properties of rock 
masses (Yang et al. 2018). Therefore, fracture connectiv-
ity is applied to examine the discrepancy in rock mass 
characteristics.

4.1 � DFS Algorithm

Discontinuities, especially structural fractures, are large in 
number and are stochastically distributed inside the analyzed 
rock masses. Summarizing fracture connection disciplines is 
time-consuming. This work uses the DFS, which is an effi-
cient algorithm widely used for searching connected tree or 
graph data structures, to quantify the fracture connectivity.

Fig. 8   Statistical parameters of 
20 statistically modeled DFNs
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DFS was first proposed to solve a maze problem (Bondy 
and Murty 2010) that somewhat resembles the connected 
path searching of our study. The present work uses an 
illustrational DFN shown in Fig. 9i determine the fracture 
connectivity through the following procedures, which are 
implemented using stacks: (1) arbitrarily selecting a frac-
ture from the DFN and placing its connected fractures into 
the stack; (2) taking the last fracture inside the stack out 
and placing its connected and unsearched fractures into the 
stack; (3) moving backwards to find fractures to traverse 
if no fracture is in the stack; and (4) starting new research 
and repeating the abovementioned procedures until all the 
fractures are searched.

Using the abovementioned procedures shown in 
Fig. 9ii–ix, connectivity paths can be searched as Fig. 9x. 
Further specific procedures can be referred to Bondy and 
Murty (2010), which are not introduced in detail here.

4.2 � Results

Connectivity characteristics, such as the number of con-
nected fractures and the length of a path (sum of connected 
fracture lengths), can be confirmed using the DFS algorithm, 
as shown in Sect. 4.1. Searching of the field-collected and 
the first three DFNs, as shown in Figs. 2 and 5 are taken as 
examples. The results are presented in Fig. 10, which show 
single fracture paths (carmine marked), clustered fracture 
paths (light green marked) that comprise connected frac-
tures, and the longest path (black marked).

Specifically, searching of the field-collected fractures 
results in 62 clustered fracture paths, 200 single fracture 
paths, and 3 longest paths, with lengths sufficiently close 
and all larger than 130 m (Fig. 10a). We mark the number of 

clustered and single fracture paths as N1 and N2, respectively, 
and the length and fracture number of the longest path as L 
and n, respectively. These parameters are listed for the first 
three statistically modeled DFNs, as shown in Fig. 10b–d. 
The results show that the modeled DFNs possess small N1, 
large N2, and extremely large n and L.

We primarily account for the connectivity discrepancies 
given the following reasons. Fracture locations of statisti-
cally modeled DFNs follow the Poisson model, which is 
different from the field-collected fractures that are more con-
centrated to one another (Sect. 3.2). Consequently, the mod-
eled fractures have a low degree of concentration, featured 
by small N1 values. Moreover, scattered fractures for mod-
eled DFNs easily result in single fractures (large N2), which 
are not linked with other fractures. From another view, the 
scattering feature increases the opportunity for a fracture to 
connect with one another in a varying location; thus, statisti-
cally modeled DFNs have considerably large n and L values.

This section only samples three statistically modeled 
DFNs, and other modeled DFNs’ results and specific cor-
responding comparison can be found in Sect. 5.

5 � Discrepancy in Connectivity Analysis 
Results

Section 4.2 preliminarily compares the path numbers and 
lengths of field-collected fractures with those of the three 
statistically modeled DFNs, which is inadequate for examin-
ing discrepancies. This section extends the comparison to all 
of the 20 modeled DFNs and to other specific connectivity 
analysis results.
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5.1 � Discrepancies in Path Number and Length

Comparisons shown in Fig. 10 are extended to all of the 
20 statistically modeled DFNs. The results are shown in 
Fig. 11a, with exhibited regular patterns corresponding to 
those elaborated in Sect. 4.2. That is, the statistically mod-
eled DFNs possess small N1, large N2, and considerably 
large n and L. Notably, the N2 and total path number N (equal 
to N1 + N2) of modeled DFNs are approximately 10–40 more 
than those of the field-collected fractures. However, this dif-
ference is unapparent when drawn in Fig. 11a.

A large proportion of paths are characterized by single 
fracture ones, with clustered fracture paths only account-
ing for 12–24% of all the paths. We use CR to represent 
the ratio of the clustered fracture paths to the total paths 
(Fig. 11a). CR values of statistically modeled DFNs (rang-
ing from 12 to 23%) are all smaller than that of the field-
collected fractures (24%). This conclusion verifies that the 

field-collected fractures tend to concentrate to one another 
and consequently have a large CR value.

Longer paths have more influence on rock mass proper-
ties than shorter ones. Accordingly, we study paths longer 
than certain thresholds. This work sets thresholds to 10, 
20, 30, 40, and 50 m, with the total lengths for paths longer 
than these thresholds marked as TL10, TL20, TL30, TL40, 
and TL50, respectively. The results are shown in Fig. 11b, 
which indicates that TL10–TL50 of statistically modeled 
DFNs distribute around the corresponding values of the 
field-collected fractures. The TL10–TL50 for field-collected 
and modeled DFNs are statistically the same. When con-
sidering the average of the field-collected and all the 20 
statistically modeled DFNs, TL10, TL20, TL30, TL40, and 
TL50 account for 69.7%, 63.5%, 60.1%, 56.5%, and 54.7% 
of the total path lengths (sums of all fracture lengths), 
respectively. The single longest path length accounts for 
41.8% of the total length. Therefore, emphasis on few 
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Fig. 10   DFS results for field-collected and the first three statistically modeled DFNs. Single paths are marked by carmine fractures, clustered 
paths are marked by light green fractures, and the longest path is marked by black fractures (color figure online)



2412	 W. Zhang et al.

1 3

but significant large-scale paths can simplify rock mass 
analyses.

Subsequently, we count the numbers of path longer 
than the aforementioned thresholds, which are marked as 
N1–10, N1–20, N1–30, N1–40, and N1–50. As shown in Fig. 12a, 
N1–10–N1–50 for the statistically modeled DFNs are all 
smaller than their corresponding values of the field-col-
lected fractures. This result indicates that average lengths 
(marked as AL10, AL20, AL30, AL40, and AL50) become 
larger or considerably larger (Fig. 12b). This tendency is 
similar to the results derived from Figs. 10 and 11. We 

ascribe this phenomenon to the scattering features of the 
statistically modeled DFNs, as explained in Sect. 4.2.

The statistically modeled DFNs can scarcely represent the 
field-collected fractures. However, DFN modeling remains 
in use as an efficient method for rock mass analyses. The 
problem exposed to us is how we can use DFN while com-
prehensively considering the discrepancies in path proper-
ties between field-collected and statistically modeled DFNs. 
Fracture connectivity properties require consideration, simi-
lar to the those of the conventional geometric characteristics 
(e.g., fracture orientation, size, and density) when selecting 
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eligible DFNs. Specifically, a statistically modeled DFN, 
with numbers, total lengths, or average lengths of paths 
longer than certain thresholds similar to those of the field-
collected fractures, will be eligible and selected for further 
analyses. If we fix our attention on the total paths (TL10, 
TL20, TL30, TL40, and TL50), the results of DFNs 2, 9, 10, and 
15 are close to those of field-collected fractures. Thus, four 
of the modeled 20 DFNs can be used for further analyses. 
Other fracture connectivity properties (e.g., total and average 
lengths) can also be considered, depending on the analysis 
requirement of engineering projects.

5.2 � Influences of Length and Location Differences 
on Connectivity Discrepancies

Section 3 indicates that differences exist in fracture length 
and location distributions between field-collected and sta-
tistically modeled DFNs. The current section examines 
whether these differences will result in connectivity discrep-
ancies in Sect. 5.1. We model two other types of DFNs with 
each type number 20 to implement this destination. One type 
of DFN only models fracture size (trace length) as shown in 
Sect. 2.3, with the fracture locations (midpoints) the same as 
the field ones. The other type of DFN only models fracture 
location, with the trace lengths stochastically selected from 
the field-collected fractures. Figure 13 exhibits the results of 
the number of paths N1 (e.g., N1–10, N1–20, N1–30, N1–40, and 
N1–50), total length of paths TL (e.g., TL10, TL20, TL30, TL40, 
and TL50), and average length of paths AL (e.g., AL10, AL20, 
AL30, AL40, and AL50) for different types of DFN.

Figure 13 shows that DFNs with field sizes have nearly 
the same N1, TL, and AL compared with the entirely modeled 
DFNs, which simultaneously model fracture size and posi-
tion, as indicated in Sect. 2.3. Therefore, DFNs using field 
and modeled fracture traces nearly have no difference. In 

other words, the discrepancy introduced in Sect. 3.1 is neg-
ligible in DFN applications. The connectivity discrepancy 
will be largely reduced, because differences in some trace 
lengths are limited compared with the long clustered frac-
ture path. However, the discrepancy in fracture trace length 
distribution, which is discussed is Sect. 6, should still be 
considered in rock mass analyses.

The results in Fig. 13 indicate that DFNs with field loca-
tions have slightly deviated N1, larger TL, and nearly the 
same AL compared with the entirely modeled DFNs. Thus, 
DFNs using field and modeled fracture locations yield differ-
ences. Difference in fracture locations introduced in Sect. 3.2 
has an apparent effect on discrepancies in fracture connec-
tivity and should thus be considered in DFN application. 
Specifically, DFNs with field locations have more concen-
tration degree; thus, N1 (e.g., N1–20, N1–30, N1–40, and N1–50) 
values tend to be larger than those of totally modeled DFNs. 
However, N1–10 is smaller, because resulting in small paths 
with lengths ranging from 10 to 20 m for this degree of con-
centration is difficult. The other inclinations, which seem to 
be relatively difficult to understand, are explained as follows. 
Regular patterns are followed in the processes of fracture 
initiation, growth, interaction, and termination (Jing 2003; 
Welch et al. 2009; Bonneau et al. 2016). Geometric factors 
are randomly allocated to fractures via Monte Carlo simula-
tion, as discussed in Sect. 2.3. Geometric characteristics of 
fractures in modeled DFNs (the three types of DFNs other 
than the field one) are more discrete. This finding results in 
a higher degree of connections among adjacent fractures 
than that for practically mechanically generated field frac-
tures. Consequently, fractures in DFNs with field location 
distribution not only have the same concentration as the field 
DFN but also have the same connection as the entirely mod-
eled DFNs. Therefore, DFNs with field locations have the 
largest TL. Connections will reduce N1 compared with field 
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DFN; thus, the field-collected fractures have the largest N1. 
Nevertheless, this property has not altered the connected 
fracture numbers and lengths compared with the entirely 
modeled DFNs; thus, AL values are nearly the same as those 
of entirely modeled DFNs, which are larger than field DFN.

6 � Discussion

Our study carried out 2D discrepancy analysis (mainly con-
nectivity) given that obtaining field 3D fractures is imprac-
tical using current technologies. The results presented in 
this manuscript are indicative for 3D DFN modeling and 
application. Given that the fracture-collection area reflects 
sampling from a cross section of the 3D space, 3D discrep-
ancies inevitably exist. 3D DFN modeling and application 
(e.g., connectivity) should consider the discrepancy conclu-
sions derived from the 2D analysis. Distributions of trace 
lengths and regularity pattern of fracture locations should be 
given particular focus ahead of 3D DFN modeling. Notably, 
2D fracture network tends to underestimate the conductivity 
compared with 3D realizations given that the connectivity of 
the 2D DFN is inferior to that of 3D one (Yao et al. 2019). 
Therefore, 2D results can be used for qualitative or pre-
liminary quantitative analyses (Ozkaya and Mattner 2003; 
Tang et al. 2017). 3D analyses would be more accurate and 
rational for practical engineering projects than 2D results.

Modeled DFNs have been traditionally examined to deter-
mine whether their distributions of fracture size, density, 
orientation, and trace types (e.g., one end observable, two 
ends observable, and no end observable) are statistically 
identical to those of field-collected fractures (Chen et al. 
1995; Zhang et al. 2013). In this study, the traditionally 
used parameters are insufficient. Some studies have earlier 
mentioned the importance of using rock mass properties for 
DFN verification (Hestir and Long 1990; Xu et al. 2006). 
Considering other characteristics, such as fracture connec-
tivity, will inevitably complicate the modeling processes, 
especially when statistical analyses are rational based on a 
large number of DFN analyses (Esmaieli et al. 2010; Zhang 
et al. 2013). However, this complicated procedure is essen-
tial, because improvement of modeling accuracy is our fun-
damental purpose. The following paragraphs will focus on 
examining these discrepancies.

Although discrepancy in fracture trace length distribution 
is proven to have no effect on connectivity, as discussed in 
Sects. 3.1 and 5.2, this discrepancy remains enlightening 
for rock mass analyses, because further complicated cases 
may occur. For example, if we extend the research scope 
of fracture trace lengths to those shorter than 0.3 m, then, 
the fracture number will be highly increased (Wang and 
Sun 1990; Anders et al. 2014). Consequently, a single PDF 
cannot describe the practical trace lengths. As discussed in 

Sect. 3.1, conventionally used distributions inevitably result 
in a large discrepancy and thus will no longer be applicable. 
Therefore, multi-distribution curves, which are more compli-
cated than traditional means, may be more rational. In addi-
tion, the Chi-square and KS goodness-of-fit tests consider 
the trace length population including extremely large ones 
to derive PDF curves. Extremely large trace lengths, which 
are frequently collected in the field, will increase the mean 
and especially the deviation variance, making statistically 
modeled values deviate from field-collected ones for small 
trace lengths. We thus recommend that extremely large trace 
lengths, which could influence the precision of modeled 
PDF in terms of field fracture distribution, be separated from 
statistical analysis and then added into the accomplished 
DFN. Generally, differences between practical and statisti-
cal trace length distributions should be considered in DFN 
applications.

From the view of MSS, the way in which fractures distrib-
ute is contradictory to the traditionally used Poisson model, 
which results in noticeable connectivity discrepancies. We 
use a two-point correlation function C2(r) to verify this con-
clusion as

where DC is the correlation dimension, N2 is the total num-
ber of the collected fracture traces, and Nd is the number of 
trace pairs whose distance of midpoints is smaller than r.

The two-point correlation dimension was calculated as 
1.67 using Eq. (3). Figure 14 presents the result. Therefore, 
the fracture trace locations build a correlated DFN charac-
terized by a correlation dimension inferior to 2. This result 
verifies that many fractures concentrate to each other, which 
is identical to the MSS pattern. We should alter the frac-
ture location distribution in DFN modeling, which subse-
quently influences DFN applications in rock mass projects. 
Although some scholars have noticed the deficiency of the 
Poisson model for fracture locations and proposed many 
other methods (Davy et al. 2013; Bonneau et al. 2016), 
existing research is insufficient and has not been proven to 
be adequately relational. Fracture point process may not be 
homogeneous, which is contrary to the common conception 
that fractures in a rock mass with identical properties are 
homogeneously distributed. In addition, although the dis-
crepancies may be reduced if MSS or correlation dimension 
was considered in this study, the discrepancies cannot be 
eliminated entirely, as shown in Fig. 13. Mechanical con-
siderations for fracture locations may be indicative, which 
will be discussed in the last paragraph.

Our discrepancy tendencies are contrary to those derived 
from Odling (1992), which presented that natural fractures 
contained roughly half the number of clusters, and the longest 

(3)C2(r) =
1

N2

Nd(r) ≈ rDc ,



2415Two-Dimensional Discrepancies in Fracture Geometric Factors and Connectivity Between…

1 3

path was approximately double that of the realizations. We 
ascribe these contradictions to the difference in natural frac-
ture patterns. Many natural fractures in the study of Odling 
(1992) are parallel, thereby resulting in low opportunities of 
connections among adjacent fractures even if cluster property 
is still manifested. Therefore, although discrepancy between 
field-collected and statistically modeled DFNs exists, the dis-
crepancy inclinations may vary in terms of natural fracture 
patterns.

Section 5 implies that no matter which fracture geometric 
factor is altered to be the same as that in field, connectivity 
results can scarcely coincide with the outcomes determined 
on the basis of field-collected fractures. Therefore, we can 
only attempt to select certain DFNs with similar connectiv-
ity properties. This phenomenon is caused by the fractures 
with mechanical connections and are not geometric random 
objects. Therefore, DFN modeling with additional mechani-
cal considerations is plausible (Lei et al. 2015; Bonneau et al. 
2016; Li et al. 2018). However, the current research focuses 
on the initiation and propagation of limited fractures (Wong 
and Einstein 2009; Lee and Jeon 2011; Liu and Wang 2018), 
which practically represent large-scale ruptures in geological 
mass rather than stochastically distributed structural fractures. 
Researching regular patterns of location and geometric factors 
of a large number of structural fractures has profound impor-
tance in DFN modeling and application. Our study focuses on 
the problems in DFN modeling and application rather than 
solving them. Working on additional engineering projects and 
other rock mass properties is crucial to study the discrepancies 
and yield corresponding solutions.

7 � Conclusion

This study takes sluice foundation rock mass in Datengxia 
Hydropower Station, China as an example and focuses on 
discrepancies in fracture geometric factors and connec-
tivity between field-collected and statistically modeled 
DFNs. The findings are summarized as follows:

1.	 Many aspects that can lead to discrepancies in fracture 
geometric factors between field-collected and statisti-
cally modeled DFNs require consideration. For example, 
a PDF curve should be checked whether it is qualified 
to be representative of a factor distribution. Moreover, 
field-collected fractures are concentrated to one another 
rather than following a homogeneous (Poisson) model, 
as can be concluded from the mean, standard deviation, 
skewness, and excess kurtosis of the MSS PDF curves.

2.	 Remarkable discrepancies occur in rock mass properties 
(i.e., connectivity in this study) between field-collected 
and stochastically modeled DFNs due to differences in 
fracture location and distribution. Major inclinations 
of modeled DFNs tend to have small cluster numbers 
and long paths (applicable if path length thresholds are 
considered), which are indicative of low shear strengths 
of rock masses and large safety factors of engineering 
projects. Thus, discrepancies should be considered in 
DFN applications. In addition, the discrepancy tenden-
cies are not fixed. Instead, they vary in terms of natural 
fracture patterns.

Fig. 14   Calculation results of 
two-point correlation dimen-
sion for fracture trace locations 
according to Eq. (3). r extends 
from 0.1 to 10 m, and Dc is 
derived as 1.67
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3.	 In view of rock mass properties, such as connectivity, 
selecting DFNs for application is essential. However, 
generating DFNs that resemble connectivity features 
of field-collected fractures is difficult. This difficulty 
is attributed to the mechanical connections of adjacent 
fractures, which cannot be reflected by geometric sto-
chastic theories. Moreover, a focus on mechanical DFNs 
in future research is recommended.

Acknowledgements  This work was supported by the National 
Nature Science Foundation of China (Grant numbers: 41877220 and 
41472243), the National Nature Key Science Program Foundation 
(Grant number: 41330636), and the National Key Research and Devel-
opment Plan (Grant number: 2017YFC1501000).

Compliance with Ethical Standards 

Conflict of interest  The authors declare no conflict of interest.

References

Adler PM, Thovert JF, Mourzenko VV (2012) Fractured porous media. 
Oxford University Press, Oxford

Anders MH, Laubach SE, Scholz CH (2014) Microfractures: a review. 
J Struct Geol 69:377–394

Baghbanan A, Jing L (2008) Stress effects on permeability in a frac-
tured rock mass with correlated fracture length and aperture. Int 
J Rock Mech Min Sci 45:1320–1334

Bauer M, Toth TM (2017) Characterization and DFN modelling of the 
fracture network in a Mesozoic Karst Reservoir: Gomba Oilfield, 
Paleogene Basin, Central Hungary. J Petrol Geol 40:319–334

Belayneh MW, Matthäi SK, Blunt MJ, Rogers SF (2009) Comparison 
of deterministic with stochastic fracture models in water-flooding 
numerical simulations. AAPG Bull 93:1633–1648

Bondy A, Murty U (2010) Graph theory (graduate texts in mathemat-
ics). Springer, London

Bonneau F, Caumon G, Renard P (2016) Impact of a stochastic 
sequential initiation of fractures on the spatial correlations and 
connectivity of discrete fracture networks. J Geophys Res Sol Ea 
121:5641–5658

Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz 
B (2001) Scaling of fracture systems in geological media. Rev 
Geophys 39:347–383

Chen JP, Xiao SF, Wang Q (1995) Three dimensional network mod-
elling of stochastic fractures. Northeast norm University Press, 
Changchun

Chen JP, Shi BF, Wang Q (2005) Study on the dominant orientations 
of random fractures of fractured rock mass. Chin J Rock Mech 
Eng 24:241–245

Davy P, Goc RL, Darcel C (2013) A model of fracture nucleation, 
growth and arrest, and consequences for fracture density and scal-
ing. J Geophys Res Sol Ea 118:1393–1407

Einstein HH, Veneziano D, Baecher GB, Oreilly KJ (1983) The effect 
of discontinuity persistence on rock slope stability. Int J Rock 
Mech Min Sci Geomech Abstr 20:227–236

Elmo D, Stead D, Eberhardt E, Vyazmensky A (2013) Applications of 
finite/discrete element modeling to rock engineering problems. 
Int J Geomech 13:565–580

Elmo D, Rogers S, Stead D, Eberhardt E (2014) Discrete frac-
ture network approach to characterise rock mass fragmenta-
tion and implications for geomechanical upscaling. Min Tech 
123:149–161

Esmaieli K, Hadjigeorgiou J, Grenon M (2010) Estimating geometri-
cal and mechanical REV based on synthetic rock mass models at 
Brunswick Mine. Int J Rock Mech Min Sci 47:915–926

Fang JL, Zhou FD, Tang ZH (2017) Discrete fracture network model-
ling in a naturally fractured carbonate reservoir in the Jingbei 
Oilfield, China. Energies 10:183

Grenon M, Hadjigeorgiou J (2003) Open stope stability using 3D 
joint networks. Rock Mech Rock Eng 36:183–208

Han XD, Chen JP, Wang Q, Li YY, Zhang W, Yu TW (2016) A 3D 
fracture network model for the undisturbed rock mass at the 
Songta Dam Site based on small samples. Rock Mech Rock 
Eng 49:611–619

Hao YH, Yeh TJ, Xiang JW, Lllman WA, Ando K, Hsu KC, Lee CH 
(2008) Hydraulic tomography for detecting fracture zone con-
nectivity. Ground Water 46:183–192

Hestir K, Long JCS (1990) Analytical expressions for the permeabil-
ity of random two-dimensional Poisson fracture networks based 
on regular lattice percolation and equivalent media theories. J 
Geophys Res 952(B13):21565–21581

Hudson JA, Harrison JP (1997) Engineering rock mechanics: an 
introduction to the principles. Pergamon, London

Jayaram N, Baker JW (2008) Statistical tests of the joints distri-
bution of spectral acceleration values. B Seismol Soc Am 
98:2231–2243

Jing L (2003) A review of techniques, advances and outstanding issues 
in numerical modelling for rock mechanics and rock engineering. 
Int J Rock Mech Min Sci 40:283–353

Kulatilake PHSW, Wu TH (1984) Estimation of mean trace length of 
discontinuities. Rock Mech Rock Eng 17:215–232

Kulatilake PHSW, Wu TH, Wathugala DN (1990) Probabilistic mod-
elling of joint orientation. Int J Numer Anal Methods Geomech 
14:325–350

Kulatilake PHSW, Wang LQ, Tang HM, Liang Y (2011) Evaluation 
of rock slope stability for Yujian River dam site China by block 
theory analyses. Comput Geotech 38:846–860

Lee H, Jeon S (2011) An experimental and numerical study of fracture 
coalescence in pre-cracked specimens under uniaxial compres-
sion. Int J Solids Struct 15:979–999

Lee JS, Veneziano D, Einstein HH (1990). Hierarchical fracture trace 
model, In: Hustrulid, W., Johnson, G.A. (Eds.), Rock mechanics 
contributions and challenges; Proceedings of the 31st US Rock 
Mechanics Symposium, Balkema, Rotterdam, pp. 261–268

Lei Q, Latham JP, Tsang CF, Xiang J, Lang P (2015) A new approach 
to upscaling fracture network models while preserving geostatis-
tical and geomechanical characteristics. J Geophys Res: Sol Ea 
120:4784–4807

Li MC, Han S, Zhou SB, Zhang Y (2018) An improved computing 
method for 3D mechanical connectivity rates based on a polyhe-
dral simulation model of discrete fracture network in rock masses. 
Rock Mech Rock Eng 51:1789–1800

Liu J, Wang J (2018) Stress evolution of rock-like specimens containing 
a single fracture under uniaxial loading: a numerical study based 
on particle flow code. Geotech Geol Eng 36:567–580

Liu Y, Wang Q, Chen JP, Song SY, Zhan JW, Han XD (2018) Determi-
nation of geometrical REVs based on volumetric fracture intensity 
and statistical tests. Appl Sci 8:800

Malinouskaya I, Thovert JF, Mourzenko VV, Adler PM, Shekhar 
R, Agar S, Rosero E, Tsenn M (2014) Fracture analysis in the 
Amellago outcrop and permeability predictions. Petrol Geosci 
20:93–107

Odling NE (1992) Network properties of a two-dimensional natural 
fracture pattern. Pure Appl Geophys 138:95–114



2417Two-Dimensional Discrepancies in Fracture Geometric Factors and Connectivity Between…

1 3

Odling NE, Webman I (1991) A “conductance” mesh approach to the 
permeability of natural and simulated fracture patterns. Water 
Resour Res 27:2633–2643

Ozkaya S, Mattner J (2003) Fracture connectivity from fracture inter-
sections in borehole image logs. Comput Geosci-UK 29:143–153

Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and 
trace length using scanline surveys. Int J Rock Mech Min Sci 
Geomech Abstr 18:183–197

Sisavath S, Mourzenko V, Genthon P, Thovert JF, Adler PM (2004) 
Geometry, percolation and traport properties of fracture networks 
derived from line data. Geophys J Int 157:917–934

Song SY, Sun FY, Chen JP, Zhang W, Han XD, Zhang XD (2017) 
Determination of RVE size based on the 3D fracture persistence. 
Q J Eng Geol Hydrogeol 50:60–68

Stacey TR, Armstrong R, Terbrugge PJ (2015) Experience with the 
development and use of a simple DFN approach over a period of 
30  years. Min Tech 124:178–187

Tang YB, Li M, Li XF (2017) Connectivity, formation factor and per-
meability of 2D fracture network. Phys A 483:319–329

Thovert JF, Adler PM (2004) Trace analysis for fracture networks of 
any convex shape. Geophys Res Lett 31:L22502

Thovert JF, Mourzenko VV, Adler PM, Nussbaum C, Pinetters P 
(2011) Faults and fractures in the Gallery 04 of the Mont Terri 
rock laboratory: characterization, simulation and application. Eng 
Geol 117:39–51

Thovert JF, Mourzenko VV, Adler PM, Nussbaum C (2014) Statistical 
analysis of the fracture network. In: Nussbaum C, Bossart P (eds) 
Mont Terri Rock Laboratory, 1st edn. Swisstopo, Wabern

Vazaios I, Vlachopoulos N, Diederichs MS (2017) Integration of lidar-
based structural input and discrete fracture network generation 
for underground applications. Geotech Geol Eng 35:2227–2251

Vazaios I, Farahmand K, Vlachopoulos N, Diederichs MS (2018) 
Effects of confinement on rock mass modulus: a synthetic 
rock mass modelling (SRM) study. J Rock Mech Geotech Eng 
10:436–456

Wang CY, Sun Y (1990) Oriented microfractures in Cajon pass drill 
cores: stress field near the SAN Andreas Fault. J Geophys Res 
95:135–142

Welch J, Davies R, Knipe R, Tueckmantel C (2009) A dynamic model 
for fault nucleation and propagation in mechanically layered sec-
tion. Tectonophysics 474:473–492

White CD, Willis BJ (2000) A method to estimate length distributions 
from outcrop data. Math Geol 32:389–419

Wong LNY, Einstein HH (2009) Systematic evaluation of cracking 
behavior in specimens containing single flaws under uniaxial com-
pression. Int J Rock Mech Min Sci 46:239–249

Wu X, Kulatilake PHSW, Tang HM (2011) Comparison of rock discon-
tinuity mean trace length and density estimation methods using 
discontinuity data from an outcrop in Wenchuan area, China. 
Comput Geotech 38:258–268

Xu CS, Dowd P (2010) A new computer code for discrete fracture 
network modelling. Comput Geosci-UK 36:292–301

Xu C, Dowd PA, Mardia KV, Fowell RJ (2006) A connectivity index 
for discrete fracture networks. Math Geol 38(5):611–634

Yang H, Shan RL, Zhang JX, Wu FM, Guo ZM (2018) Mechanical 
properties of frozen rock mass with two diagonal intersected frac-
tures. Int J Rock Mech Min Sci 28:631–638

Yao C, He C, Yang JH, Jiang QH, Huang JS, Zhou CB (2019) A 
novel numerical model for fluid flow in 3D fractured porous 
media based on an equivalent matrix-fracture network. Geofluids 
2019:9736729

Zhang W, Chen JP, Chen HE, Xu DZ, Li Y (2013) Determination of 
RVE with consideration of the spatial effect. Int J Rock Mech Min 
Sci 61:154–160

Zhang W, Zhao QH, Huang RQ, Ma DH, Chen JP, Xu PH, Que JS 
(2017a) Determination of representative volume element consid-
ering the probability that a sample can represent the investigated 
rock mass at Baihetan Dam Site, China. Rock Mech Rock Eng 
50:2817–2825

Zhang W, Zhao QH, Chen JP, Huang RQ, Yuan XQ (2017b) Deter-
mining the critical slip surface of a fractured rock slope consider-
ing preexisting fractures and statistical methodology. Landslides 
14:1253–1263

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Two-Dimensional Discrepancies in Fracture Geometric Factors and Connectivity Between Field-Collected and Stochastically Modeled DFNs: A Case Study of Sluice Foundation Rock Mass in Datengxia, China
	Abstract
	1 Introduction
	2 Study Area and Data Acquisition
	2.1 Study Area
	2.2 Collection of Field Fractures
	2.3 Generation of Statistically Modeled DFNs

	3 Discrepancy in Fracture Geometric Parameters
	3.1 Trace Length Distribution
	3.2 Regular Pattern of Fracture Location

	4 Connectivity Analyses of Field-Collected and Modeled DFNs
	4.1 DFS Algorithm
	4.2 Results

	5 Discrepancy in Connectivity Analysis Results
	5.1 Discrepancies in Path Number and Length
	5.2 Influences of Length and Location Differences on Connectivity Discrepancies

	6 Discussion
	7 Conclusion
	Acknowledgements 
	References




