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Abstract
We explore different aspects of the multi-stage fracturing process such as stress interaction between growing hydraulic frac-
tures, perforation friction, as well as the wellbore flow dynamics using a specifically developed numerical solver. In particular, 
great care is taken to appropriately solve for the fluid partition between the different growing fractures at any given time. We 
restrict the hydraulic fractures to be fully contained in the reservoir (fractures of constant height) thus reducing the problem 
to two dimensions. After discussions of the numerical algorithm, a number of verification tests are presented. We then define 
via scaling arguments the key dimensionless parameters controlling the growth of multiple hydraulic fractures during a single 
pumping stage. We perform a series of numerical simulations spanning the practical range of parameters to quantify which 
conditions promote uniform versus non-uniform growth. Our results notably show that, although large perforations friction 
helps to equalize the fluid partitioning between fractures, the pressure drop in the well along the length of the stage has a 
pronounced adverse effect on fluid partitioning as a result on the uniformity of growth of the different hydraulic fractures.

Keywords Multi-stage fracturing · Well stimulation · Fluid partitioning

List of Symbols
�in, � in  Normal and shear tractions at � 

located on the fracture surface
�n, �s  Normal and shear displacement 

discontinuities
�  Union of all fracture surfaces
Nfrac  Number of fractures in the stage
Knn, Kns, Kss, Kss  Elastic fundamental influence func-

tion for normal and shear components 
of tractions due to unit displacement 
discontinuities

�o, �o  Normal and shear stresses at � located 
on the fracture surface

E,E′, �  Elastic Young’s modulus, plane-strain 
elastic modulus, and Poisson’s ratio

H  Fractures height
p  Fluid pressure
w  Fracture opening w = �n

s  Curvilinear coordinate (along the 
fracture or along the wellbore)

t  Time
q  Fluid flux
cf  Fluid compressibility
�  Fluid density
�  Fluid viscosity
V  Cross-sectional average fluid velocity
A  Cross-sectional area of the wellbore 

tubing
a  Wellbore tubing radius
�  Wellbore tubing roughness
g  Gravitational earth acceleration
Re  Reynolds number in the well
�  Wellbore local deviation
Qo  Surface pump fluid flow injection rate
QI  Flow rate entering fracture # I
Q̃I = QI∕H  Flow rate entering fracture # I divided 

by fracture height
sI  Curvilinear coordinate of the entrance 

to fracture # I (along the fracture or 
along the wellbore)

pw,I  Fluid pressure in the wellbore in front 
of the entrance to fracture # I
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pin,I  Fluid pressure inside the fracture at 
the entrance to fracture # I

�  Near-wellbore tortuosity exponent
ft  Near-wellbore tortuosity coefficient
fp  Perforation pressure drop coefficient
np  Number of perforations for a given 

fracture entry
Dp  Diameter of perforations
KIc  Rock fracture toughness
KI  Mode I stress intensity factor
vtip  Local fracture velocity
�  fracture half-length
pi, �

o
i
, �o

i
  Fluid pressure, in-situ normal, and 

shear stress in element i
Akl
il

  Displacement discontinuity methods 
influence matrices ( k, l = n, s)

hi  Size of element i-fracture mesh
qi−1∕2, qi+1∕2  Left- and right-edge flux for element i
Ci−1∕2, Ci+1∕2  Left and right fluid conductivity for 

element i
�  Displacement discontinuity matrix
�o  Initial traction vector on all elements
�  Finite-difference lubrication matrix
�p  Matrix related to fluid pressure 

increment
�  Entry fluxes vector
�s  Matrix related to fracture volume 

increment
�c  Matrix related to fracture volume
�mk  Near-tip viscosity-toughness transi-

tion lengthscale
h̃i±1∕2  Size of element i-wellbore mesh
Ai−1∕2, Ai+1∕2  Left and right cross-sectional area of 

wellbore for element i of the wellbore 
mesh

ai−1∕2, ai+1∕2  Left and right wellbore radius value 
for element i of the wellbore mesh

Vi−1∕2, Vi+1∕2  Left and right fluid velocity for ele-
ment i of the wellbore mesh

pH  Hydrostatic fluid pressure
p̃  Fluid pressure in excess of the hydro-

static pressure
Rei−1∕2, Rei+1∕2  Left and right Reynolds number for 

element i of the wellbore mesh
Cw
i−1∕2

, Cw
i+1∕2

  Left and right fluid conductivity for 
element i of the wellbore mesh

�w  Finite-difference matrix for the well-
bore mesh

�cw  Matrix for wellbore volume
M   Dimensionless viscosity for plane-

strain hydraulic fracture

K
KGD  Dimensionless viscosity for plane-

strain hydraulic fracture
S  Spacing between fractures along the 

wellbore
�H �h  Maximum and minimum principal 

horizontal stresses magnitude
Qn = Qo∕Nfrac  Evenly divided surface flow rate
�   Ratio between the characteristic stress 

interaction and characteristic pressure 
drop through perforation

L  Fracture characteristic lengthscale
�

(KGD)

k
  Expression of �  in the toughness-

dominated regime for plane-strain 
fractures

� (KGD)
m

  Expression of �  in the viscosity-domi-
nated regime for plane-strain fractures

�m  Expression of �  for a PKN fracture
�  Ratio between the characteristic pres-

sure drop in the wellbore along the 
length of the stage and the characteris-
tic pressure drop through perforation

��  Expression of � under the assumption 
of fully turbulent flow in the wellbore

1 Introduction

Multi-stage fracturing is the completion of choice of hori-
zontal wells in unconventional reservoirs. It consists in the 
stimulation of the horizontal portion of the well from its 
end (i.e., the well toe) in sequences referred to as stages. 
Each stage typically has several (typically from three to six 
or more) clusters of perforations, and is hydraulically iso-
lated from the previous stages by a bridge plug. The design 
of a stage aims at propagating multiple hydraulic fractures 
during a single injection often performed at a constant rate. 
The number of perforation clusters controls the maximum 
number of hydraulic fractures that can initiate and simulta-
neously propagate during a stage.

A number of contributions in the past years have inves-
tigated simultaneous propagation of several hydraulic 
fractures during a pumping stage (see, e.g., Bunger and 
Lecampion (2017) for a review). These contributions have 
notably highlighted the importance of the horizontal in-
situ stress contrast (Kresse et al. 2013b), stress interac-
tion between the fractures (i.e., stress shadow) (Roussel 
and Sharma 2011; Xu and Wong 2013; Wu and Olson 
2015b), hydraulic fracture propagation regimes (Bunger 
2013; Kresse et al. 2013a; Bunger et al. 2014), as well as 
the importance of the well perforation friction and near-
wellbore friction (Desroches et al. 2014; Lecampion and 
Desroches 2015c, 2018). The key to ensure simultaneous 
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growth of all the fractures within one stage is to achieve 
equal fluid partitioning. In other words, the rates entering 
all the hydraulic fractures should be equal throughout the 
injection duration. From the previously mentioned con-
tributions, it notably appears that the coupling between 
wellbore hydraulic and hydraulic fracture mechanics is 
extremely important. Moreover, the local pressure drop 
at the hydraulic fracture entrance—denoted as entry fric-
tion—is in most cases critical for stability of the fluid par-
titioning. Notably, for the simple case of strictly axisym-
metric hydraulic fractures, it appears that large entry 
friction—as typically used in practice—is often sufficient 
to counteract the stress interaction between growing frac-
tures, thus promoting simultaneous growth (Lecampion 
and Desroches 2015b, c).

In this contribution, we focus on the case of multiple 
blade-like hydraulic fractures (constant height fractures) 
that may curve due to their stress interactions (Fig. 1). 
Such a geometry—like the case of solely axisymmetric 
fractures (Lecampion and Desroches 2015c)—is an end 
member. Whereas the hypothesis of axisymmetric frac-
tures is relevant at early time or within a reservoir of 
infinitely homogeneous properties, a blade-like geometry 
will be encountered in a reservoir of finite height bounded 
by layers with significantly larger in-situ confining stress 
that restrict fracture growth to occur solely in the reser-
voir layer. As a result, fluid flow is uni-dimensional inside 
the fractures with a strictly horizontal velocity. Such a 
model assuming constant height is not geared to explore 
the early time of growth from a horizontal wellbore where 
the fractures typically have a axisymmetric shape. It starts 

to be valid when the length of the fracture has reached the 
height of the reservoir.

We explore different aspects of the multi-stage stimula-
tion problem for blade-like fractures using a specifically 
developed numerical model that solves, in a fully coupled 
implicit manner, the propagation of multiple blade-like 
hydraulic fractures (and their stress interactions), the fluid 
flow in the wellbore, and the fractures as well as the fluid 
partitioning between fractures.

Although, in this model, the fractures are assumed to be 
of constant height, the fractures are allowed to curve due 
to stress interactions or in-situ stress heterogeneities. We 
restrict our discussion here to the zero leak-off case for 
simplicity—which corresponds to tight rocks for which the 
diffusion time-scale is smaller than the injection duration. 
The wellbore-fracture entry connection is modeled using 
engineering perforation friction and near-wellbore tortuosity 
terms which impose a non-linear relationship between the 
flux entering the fracture and the fluid pressure difference 
between the well and the fracture entry (Lagrone and Ras-
mussen 1963; Economides and Nolte 2000).

After presenting several verifications of the numerical 
model, we explore the parameters controlling the stability of 
simultaneous propagation of hydraulic fractures from a hori-
zontal well drilled in the direction of the minimum horizon-
tal in-situ stress. In particular, we investigate through com-
bined numerical simulations and scaling arguments what 
controls the uniform growth of all fractures compared to the 
growth of only a subset of the desired fractures. We quantify 
the impact of the different competing physical processes: 
stress shadow/interactions between fractures, perforation 
friction, as well as pressure drop in the wellbore along the 

Qo

Qo

Fig. 1  A schematic view of multiple blade-like hydraulic fractures growing simultaneously from a horizontal well. Scales in meters
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stage length. We also highlight the numerical difficulties 
associated with the coupling of the wellbore flow with the 
simultaneous propagation of multiple hydraulic fractures—
a problem that we may refer to as the fluid partitioning 
problem.

2  Problem Formulation

Under the assumption of blade-like geometries of the dif-
ferent hydraulic fractures, we account for the mechanical 
deformation of the rock, its coupling with fluid flow in the 
different fractures, fracture propagation, as well as fluid flow 
in the wellbore and its partitioning between the different 
propagating fractures. We assume the rock to be linearly 
elastic with uniform properties and restrict ourselves to the 
impermeable case (i.e., a rock hydraulic diffusion time-scale 
smaller than the injection duration) for clarity.

2.1  Solid Deformation

Restricting to an isotropic elastic homogeneous material, the 
quasi-static balance of momentum allow for an integral rep-
resentation. The normal �in and shear � in tractions induced 
at a point � (on the fracture surface with known orientation) 
by displacement discontinuities (DD) distributed over the 
fracture surface S are given by the following (Crouch and 
Starfield 1983):

where �n is the normal DD (fracture opening) and �s is the 
shear DD (shear slip). Note that Eq. (1) directly extends to 
the case of multiple fractures (in that case, � denotes the 
union of the Nfrac fracture surfaces). It gives the interaction 
stress induced by multiple fractures at a point � located on 
the crack surface (provided that the normal and shear com-
ponents of tractions and DD are defined in the appropriate 
local normal and tangent system of coordinates).

The elastic kernel Kkl(� − ��, H), k, l = n, s used here cor-
responds to a simplified 2D approximation obtained from the 
full three-dimensional kernel for a rectangular DD with appro-
priate corrections factors to account for a given fracture height 
as suggested by Wu and Olson (2015a). It is chosen here as 
a computationally effective alternative to the direct integra-
tion of the full 3D kernel over the height of the fracture(s). 
Normal and shear displacement discontinuities �n , �s , and the 

(1)

�in(�) =∫�

(
Knn(� − ��, H)�n(��)

+Kns(� − ��, H)�s(��)
)
d��

� in(�) =∫�

(
Ksn(� − ��, H)�n(��)

+Kss(� − ��, H)�s(��)
)
d��,

corresponding tractions are taken in the horizontal mid-plane 
of the blade-like fractures. The displacement discontinuity are 
thus uniform over the fracture height. It is, however, important 
to keep in mind that such an approximate kernel leads to erro-
neous stress predictions (about 10–15% difference compared 
to a full 3D solution) when the spacing between fractures are 
lower than 0.25 the fracture height according to Wu and Olson 
(2015a). We believe that it is a proper approximation only for 
fracture spacing larger than half the fracture height. We will 
thus not report simulations for lower spacing-to-height ratio in 
the following. Another possible choice for blade-like fractures 
(constant height) is to assume an elliptical variation of DD in 
the vertical direction, therefore, allowing to also reduce the 
problem from 3D to 2D—see Adachi and Peirce (2008) and 
Protasov et al. (2018) for details. We solely report here results 
using the approximated kernel described in Wu and Olson 
(2015a).

Superposing the interaction stress with the in-situ stress 
field �o(�), �o(�) and taking into account the balance of nor-
mal traction with the net fluid pressure p(�) − �o(�) , we obtain 
the following set of boundary integral equations on all fracture 
surface:

where p denotes the fluid pressure.

2.2  Fluid Flow in the Fractures

The mass conservation per unit of fracture height H averaged 
over the width of fracture I ( I = 1,… ,N ) in the absence of 
leak-off reduces to the following one-dimensional equation 
along the curvilinear coordinate system defined by the local 
tangent to the fracture, we denote s the corresponding curvi-
linear coordinate:

where cf  denotes the fluid compressibility, p is the fluid pres-
sure, w = wo + �n is the total hydraulic width of the fracture, 
where wo is a small constant initial aperture only active in 
the initial flaw, Q̃I =

QI

H
 is the entry volume rate per unit frac-

ture height H, sI denotes the coordinates of the intersection 
of the well with fracture I, and �(s) is the Kronecker delta.

Assuming laminar flow inside the fracture, the width 
averaged fluid balance of momentum reduce to Poiseuille’s 
law. The local fluid flux q(s) is given as:

(2)

p(�) − �o(�) =∫�

(
Knn(� − ��, H)�n(��)

+Kns(� − ��, H)�s(��)
)
d��

−�o(�) =∫�

(
Ksn(� − ��, H)�n(��)

+Kss(� − ��, H)�s(��)
)
d��,

(3)�w

�t
+ cf w

�p

�t
+

�q

�s
= Q̃I(t)�(s − sI),
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where � is the fracturing fluid viscosity.

2.2.1  Fluid Flow in the Wellbore

To solve for the simultaneous propagation of several hydrau-
lic fractures from a horizontal well, fluid flow inside the 
wellbore must be solved for. The aim is to properly solve for 
the partitioning of the fluid injected from the well head into 
the different fractures. Neglecting fluid flow inertial effects 
that may be associated with short transient pressure changes 
(water hammer etc.), the mass and momentum balance in the 
wellbore after integration over the wellbore cross-section 
reduce in the curvilinear coordinate s along the well trajec-
tory to:

where a is the wellbore radius and A is the well pipe cross-
section area ( A = �a2 ). � denotes the fracturing fluid density 
and V is the average fluid velocity. Qo(t) is the volumetric 
pump rate imposed at the well head (i.e., at s = 0 ), whereas 
QI(t) is the flow rate entering the Ith fracture. f (Re, �) is the 
Darcy friction factor which is function of the Reynolds num-
ber Re = 2�a|V|

�
 and pipe relative surface roughness � . We use 

the Churchill (1977) approximation [fitting the experimental 
data of Nikuradse (1950)] to estimate the friction factor 
f (Re, �) . Churchill approximation has the advantage of being 
explicit (thus does not require the solution of a non-linear 
equation) at the expense of slight inaccuracies in the lami-
nar–turbulent transition region. Other models are possible 
(see, e.g., (Lecampion and Desroches 2015c; Zia and 
Lecampion 2017) for discussion)—the results being quali-
tatively similar.

2.3  Fracture Entry Friction: Coupling Between 
Wellbore and Fracture Flow

We account for a local pressure drop due to entry friction 
between the wellbore and the fracture. Such a local pressure 
drop is related to the fluid going through the perforations 
connecting the cased and cemented wellbore with the frac-
ture. An additional pressure drop is also usually related to 
the tortuosity of the fracture geometry near the wellbore—
see Bunger and Lecampion (2017) for discussions. We use 

(4)q(s) = −
w3

12�

�p

�s
,

(5)

A cf
�p

�t
+

�AV

�s
+ AV cf

�p

�s
= Qo(t)�(s)

−

N∑
I=1

QI(t)�(s − sI),

(6)
�p

�s
= −

2�a

A
×
f (Re, �)

4
×
�V|V|

2
+ �g sin �(s),

here an accepted relation for such entry friction (Lagrone 
and Rasmussen 1963; Economides and Nolte 2000). It 
relates the pressure drop between the wellbore and the frac-
ture I to the fluid flux entering the fracture I as follows:

where pw,I = p(sI) is the fluid pressure inside the wellbore 
at the location of the perforation clusters in front of fracture 
I and pin,I is the fluid pressure at the inlet of fracture I (just 
inside the fracture). QI is the total fluid flux entering fracture 
I which is an unknown function of time resulting from the 
fluid partitioning between the different propagating hydrau-
lic fractures. The first quadratic term in Eq. (7) corresponds 
to a classic turbulent pressure drop associated with the per-
forations connecting the fracture to the well. The coefficient 
fp is function of the fluid density � , diameter Dp , and number 
np of the perforations. It can be estimated using an empirical 
formula fp = 0.807249

�

n2
p
D4

p
C2

 (in SI units) (see, e.g., 

Crump and Conway (1988); Economides and Nolte (2000) 
for details) where the dimensionless discharge coefficient C 
is typically between 0.5 and 0.9. Typical number of perfora-
tions and diameters used provide values of fp in the range 
[106–1010] Pa/(m3/s)2 . The second term in Eq. (7) is added to 
account for additional pressure drop associated with near-
wellbore-fracture tortuosity (see Bunger and Lecampion 
(2017) and Lecampion and Desroches (2015c) for more 
details). The coefficient ft and � can be estimated from step-
down tests in-situ (Economides and Nolte 2000; Lecampion 
et al. 2015; Desroches et al. 2014).

2.4  Fracture Propagation Criteria/Tip Asymptotic

Under the hypothesis of linear elastic fracture mechan-
ics (lefm), the quasi-static fracture propagation condition 
reduces for pure mode I fracture to:

where KI is the mode I stress intensity factor and KIc is the 
rock fracture toughness. vtip denotes the local crack tip veloc-
ity. We account for the possibility of fracture curving under 
mixed mode (I and II) loading. Mode II emerges from stress 
interactions between fractures. We use here a maximum 
tensile stress direction criteria to solve for the propagation 
direction. A maximum tensile stress criterion is known to 
give similar predictions than the principle of local symmetry 
(minimum KII)—see, e.g., Pham et al. (2017).

Locally at the fracture tip, we thus assume condition of 
pure mode I, such that the fracture width of a propagating 
fracture results in the well-known lefm asymptote (Rice 
1968):

(7)pw,I − pin,I = fp × Q2
I
+ ft × Q

�

I
,

(8)vtip × (KI − KIc) = 0, vc ≥ 0,
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This near-tip behavior may be visible only over a very small 
characteristic length near the tip for a propagating hydrau-
lic fracture where an outer viscous asymptote may domi-
nates (Desroches et al. 1994; Garagash et al. 2011). This 
renders the use of a sole linear elastic fracture mechanics 
criteria extremely demanding computationally as the mesh 
size must then resolve the small lengthscale where the lefm 
asymptote is valid (see Lecampion et al. 2013; Detournay 
and Peirce 2014; Lecampion et al. 2018 for discussion). For 
this reason, we use the complete multi-scale solution for a 
steadily propagating plane-strain hydraulic fracture as an 
“universal” tip asymptote (Garagash et al. 2011; Dontsov 
and Peirce 2015) covering toughness-, viscosity-, and leak-
off-dominated regimes near the fracture tip. The use of such 
complete asymptotic solution is similar to the previous con-
tribution e.g. (Lecampion and Desroches 2015c; Peirce and 
Detournay 2008; Peirce 2015; Dontsov and Peirce 2017). 
Further details on the fracture propagation scheme are pro-
vided in Sect. 3.1.1.

2.5  Initial/Boundary Conditions

Prior to the start of the injection, at time t = 0 , the well 
is under hydrostatic pressure: p(s, t = 0) = � g z(s) and 
V(s, t = 0) = 0 . At the scale of this 2D model which assumes 
a constant fracture height, the details of fracture initiation 
from the perforations are obviously not properly captured. 
We thus assume a small pre-existing fracture transverse to 
the well axis at the location of each perforation clusters. 
In other words, each fracture is pre-initiated with an initial 
length ( �I(t = 0) = Lo ) and assumed initially closed at t = 0 . 
The fluid flux at the end of stage (at the location of the bridge 
plug) is assumed to be zero at all times V(s = Splug, t) = 0 , 
while we assume that the surface pump rate is prescribed 
Q(s = 0, t) . We notably restrict here our discussion to the 
case of a constant pump rate.

3  Numerical Scheme Description

The numerical solution of the previously described model 
must couple the solution of the propagation of multiple 
hydraulic fractures with the wellbore fluid flow to notably 
solve for the rates QI(t) entering the different fractures at 
any given time. We have developed an implicit time dis-
cretization scheme. From a known solution at time tk−1 , 
we solve at time tk = tk−1 + �t for the increment of dis-
placement discontinuities, fluid pressure, and increment 
of length of all the fractures tips as well as fluid pressure 

(9)w =
√
32∕𝜋

KIc

E�

√
� − x � − x ≪ �.

increment and flow rates entering each fracture during the 
time-step. For one time-step, we solve such a highly non-
linear problem iteratively using three nested loops. The 
most outer loop solves iteratively for the fluid partitioning 
between fractures, i.e., for the flow rates QI entering the 
different fractures by minimizing the residuals of Eq. (7) 
describing the relation of rates and the well-fracture entry 
pressure drop. For a given set of rates QI , the wellbore flow 
and multiple hydraulic fracture increment problems can 
be solved separately. The solution of the propagation of 
the multiple hydraulic fractures is achieved via two nested 
loops: the outer loop iterates on the fracture length incre-
ment, while the inner loop solves (for a given new trial 
position of the fractures tip) the elasto-hydrodynamics 
system.

We describe below the numerical discretization of the 
different equations and the steps of the different parts of 
the algorithm over one time-step.

3.1  Elasto‑Hydrodynamics Flow Inside the Fractures

For each time-step, elasto-hydrodynamics equations are 
solved iteratively assuming known the new fracture tip 
locations (these are iterated for in an external loop, see 
3.1.1). In other words, while iterating for �n(x) , �s(x) , and 
p(x) within a time-step, the fracture length is fixed. Yet, 
the opening �n in the tip region may be imposed to enforce 
mass conservation in line with the near-tip hydraulic frac-
ture solution, see 3.1.1.

After discretization using piece-wise constant displace-
ment discontinuity elements (Crouch and Starfield 1983; 
Wu and Olson 2015a), the elasticity equations reduce to 
the following linear system:

where �n
j
= −dn

j
 is the fracture width in the middle of ele-

ment j taken positive in opening, and �s
j
= −ds

j
 is the shear 

slip (+ minus −). �o
i
 is the normal component of the in-situ 

traction on the element i and �o
i
 the shear component along 

the tangential direction s (with the convention of in-situ 
stress positive in compression). The coefficients 
Akl
ij
, k, l = n, s are integrals of Kkl(z − z�, H) over the element 

j—see Wu and Olson (2015a) for the simplified 3D kernels 
for constant fracture height used here.

The lubrication Eq. (3) is integrated over an element 
(cell), thus resulting in a finite volume discretization. 
Restricting to the case of zero leak-off case for simplicity, 
one obtains:

(10)

pi − �o
i
=
∑
j

Ann
ij
�n
j
+ Ans

ij
�s
j

−�o
i
=
∑
j

Asn
ij
�n
j
+ Ass

ij
�s
j
,
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where hi is the size of the ith element and wI is the index of 
the element of the Ith fracture where the well is located. We 
discretize the fluid fluxes through the left and right bounda-
ries of the cell (element) via centered finite difference:

where for the “right” edge conductivity Ci+1∕2 (function of 
the edge width obtained by harmonic mean), we have:

Similarly, for the “left” edge:

Finally, the discretized lubrication equation becomes:

for all elements i except for tip ones where qi+1∕2 = 0 (or 
qi−1∕2 = 0 depending on the tip orientation). For a tip ele-
ment, e.g., the “right” one, we have:

Finally, we can re-write the coupled elasto-hydrodynamics 
system in matrix-vector format, using the increment of vec-
tor displacement discontinuities ��(k) =

(
�
(k) − �

(k−1)
)
 and 

fluid pressures ��(k) = (�(k) − �(k−1)) over the time-step 
tk = tk−1 + �t as the primary unknowns:

with the following matrices:

• elastic DDM influence matrix 

(11)hicf �
n
i

�pi

�t
+ hi

��n
i

�t
+ qi+1∕2 − qi−1∕2 = Q̃I(t)�iwI

,

(12)qi+1∕2 = −Ci+1∕2

pi+1 − pi

(hi + hi+1)∕2
,

(13)Ci+1∕2 =
1

12�
× 2

w3
i
w3
i+1

w3
i
+ w3

i+1

wi = �n
i
+ wo.

(14)qi−1∕2 = −Ci−1∕2

pi − pi−1

(hi + hi−1)∕2
.

(15)

hicf �
n
i

�pi

�t
+ hi

��n
i

�t
−

Ci−1∕2

(hi + hi−1)∕2
pi−1

+

(
Ci+1∕2

(hi + hi+1)∕2
+

Ci−1∕2

(hi + hi−1)∕2

)
pi

−
Ci+1∕2

(hi + hi+1)∕2
pi+1

= Q̃I(t)�iwI
,

(16)

hicf �
n
i

�pi

�t
+ hi

��n
i

�t
+

Ci−1∕2

(hi + hi−1)∕2
pi −

Ci−1∕2

(hi + hi−1)∕2
pi−1 = 0.

(17)

� ⋅ ��(k) − �p ⋅ ��
(k) = −�o − � ⋅ �

(k−1)

�s ⋅ ��
(k) +

(
�t�(�(k)) + cf �c

)
⋅ ��(k) = �t� − Δt� ⋅ �(k−1),

• fluid pressure increment on elasticity 

• initial tractions vector 

• Lubrication finite-difference matrix (non-linearly 
dependent on the current opening displacement discon-
tinuities) 

 where hi±1∕2 =
hi+hi±1

2
 is the neighboring element centroid 

distance.
• local volume increment 

• the fracture local volume matrix 

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ass
11

Asn
11

Ass
12

Asn
12

… Ass
1N

Asn
1N

Ans
11

Ann
11

Ans
12

Ann
12

… Ans
1N

Ann
1N

Ass
21

Asn
21

Ass
22

Asn
22

Ans
21

Ann
21

Ans
22

Ann
22

⋮ ⋮

⋮ ⋮ ⋱

Ass
N1

Asn
N1

… Ass
NN

Asn
NN

Ans
N1

Ann
N1

… Ans
NN

Ann
NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

�p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 …

1 0 0 …

0 0 0 …

0 1 0 …

0 0 0 …

⋮ ⋱ ⋮

… 0 0

… 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�o =
[
�o
1
�o
1
�o
2
�o
2
… �o

N

]T
.

�(�(k)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ 0

⋱

0 −
Ci−1∕2

h
i−1∕2

�
Ci+1∕2

h
i+1∕2

+
Ci−1∕2

h
i−1∕2

�
−

Ci+1∕2

h
i+1∕2

0

⋱

0 0 −
CN−1∕2

h
N−1∕2

CN−1∕2

h
N−1∕2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�s =

⎡⎢⎢⎢⎢⎢⎢⎣

0 h1 0 0 0 …

0 0 0 h2 0 …

0 0 ⋱ 0

⋮ 0 hi 0 ⋮

⋮ ⋱ ⋮

… 0 0 hN

⎤⎥⎥⎥⎥⎥⎥⎦

;

�c =

⎡⎢⎢⎢⎣

h1�
n
1

0 0 …

0 h2�
n
2

0 …

⋮ ⋱ ⋮

… 0 hN�
n
N

⎤⎥⎥⎥⎦
;
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• and the inlet flow rate vector (entering the different frac-
tures) 

 where QwI
= Q̃I = QI∕H, I = 1,… ,Nfrac.

The superscripts (k) and (k − 1) correspond to the current 
and the previous time-steps. At each time-step, the mixed 
system is solved iteratively using fixed-point iterations, with 
back-substitution of the new estimate of �n

i
 into the matrices 

�c and � via the conductivity coefficients Ci+1∕2 and Ci−1∕2 . 
The matrices � , �p , and �s do not change for a fixed fractures’ 
geometry. Convergence is achieved when the relative dif-
ference of the solution for the increment of DDs and fluid 
pressure between two subsequent iterations is below 10−5
–10−6 . Convergence of such non-linear system typically 
takes between five and ten fixed-point iterations.

3.1.1  Fracture Propagation

Once a fracture is initiated, we assume quasi-static equilib-
rium KI = KIc (yet, KI can be less than KIc for an arrested 
fracture). To solve for the advancement of each hydraulic 
fracture tips, we use an approach combining an explicit 
scheme for the propagation direction (updated at the end 
of every time-step) and an implicit algorithm to obtain the 
increment of fracture length during the time-step.

We determine at the end of the time-step (i.e., when the 
solution has converged) the new propagation direction for 
each fracture tip using the maximum tensile stress direc-
tion. To do so, we minimize the dot product of the proposed 
direction of propagation and the first principal stress direc-
tion at a finite distance from the tip node (1.5 element size). 
This minimization is performed iteratively using a classical 
quasi-Newton method with bracketing. Once determined, 
the propagation direction (for all the different fracture tips) 
for the next time-step is fixed.

Over one time-step (with a given propagation direction 
for each tip), the increment of fracture length is obtained 
implicitly using an one-dimensional approach similar to the 
implicit level set algorithm (ILSA) originally developed in 
Peirce and Detournay (2008). Such an implicit scheme relies 
on the use of a survey element located just behind the tip ele-
ment (see Fig. 2). Knowing the width of this survey element, 
we invert the hydraulic fracture tip asymptotic solution to 
estimate the new distance from this survey element to the 
fracture tip. The width in the tip element is then imposed 
according to the near-tip asymptote, and the elasto-hydro-
dynamic system is resolved with this new trial position of 
the fracture tips. This is repeated until convergence of the 

� =
[
0 … 0 Q̃1 0 … 0 Q̃2 0 … 0 Q̃Nfrac

0 … 0
]T

new position of the fracture tips in relative term between two 
subsequent iterations. A tolerance of 10−3 is used.

The determination of the new distance between the survey 
point (where width is known) and the fracture tip relies on the 
inversion of the near-tip asymptote (which provide width as 
function of distance to the fracture tip). Since the near-tip 
behavior of a hydraulic fracture is intrinsically multi-scale 
(Garagash et al. 2011); using the classical linear elastic frac-
ture mechanics (lefm) square root asymptote may lead to over-
estimation of the distance from the ribbon element to the tip 
and, subsequently, to non-physical oscillations in the solution 
(Lecampion et al. 2013). To avoid these numerical effects, the 
fracture mesh should be sufficiently fine to capture the region 
of validity of lefm asymptote (at least the cell size should be 
less than the characteristic lefm-viscous transition scale 

�mk ∝
K6
Ic

E�4�2v2
tip

 ). This can considerably raise computational 

costs (Lecampion et al. 2013, 2018). The use of the complete 
tip asymptote (Garagash et al. 2011; Dontsov and Peirce 2015, 
2017), which covers the different asymptotic regions (tough-
ness-, viscosity-, and leak-off-dominated regimes) as well as 
the transition between them, helps to relieve requirements on 
the mesh. Since this tip asymptotic solution is given as an 
implicit function of the current fracture velocity, its inversion 
(i.e., knowing the opening and inverting for the corresponding 
distance to the tip) is performed via a root-finding scheme. We 
use here a Brent root-finding method (see, e.g., Quarteroni 
et al. 2000). More details on the inversion of such tip asymp-
totic solution can be found in Peirce and Detournay (2008), 
Peirce (2015), and Lecampion and Desroches (2015c) 
notably.

Fig. 2  Schematic of the fracture mesh: tip region and ribbon element 
and evolution of the fracture tip position over a time-step. The ribbon 
element allows to couple the tip region [where the solution follows 
the near-tip hydraulic fracture asymptotes (Garagash et  al. 2011)] 
with the rest of the fracture (e.g., channel region). The number of ele-
ments in the tip region can increase during a propagation step
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3.2  Wellbore Flow and Fracture Entry Flow Coupling

3.2.1  Wellbore Flow Solver

The wellbore fluid flow mass balance equation (5) is discre-
tized using a classical finite volume approach with piece-
wise approximation of fluid pressure similar to the one 
described above for the lubrication in the fracture(s). One 
difference is that the radius and the cross-section of the well 
are assumed to not change due to the well pressurization, 
and thus, no hydro-mechanical coupling is needed. Another 
difference is the use of Darcy friction factor approach to 
determine the cross-sectional conductivities Ci±1∕2 for lami-
nar, turbulent, or transient flow regime (indeed, Poiseuille 
model corresponds to laminar regime with f = 64

Re
 ). We 

obtain for element i along the curvilinear 1D mesh of the 
well:

where

�si is the length of the i-th element and p̃ denotes the fluid 
pressure in excess over the hydrostatic pressure: p̃ = p − pH . 
The superscripts (k) and (k − 1) correspond to the current 
and the previous time-steps. At each time step, Eq.  (18) 
is solved by fixed-point iterations, while back-substituting 
the average velocity V re-calculated via Eq. (20) into (19). 
The friction factor f is also updated, since it depends on the 
Reynolds number. At each iteration, one has to solve a linear 
system with a three-band matrix constructed similarly to the 
lubrication matrix � (see above) with the well over-pressure 
increment 𝛥�̃(k)

w
= �̃(k)

w
− �̃(k−1)

w
 as the primary unknowns:

with

(18)
�siAicf ×

p
(k)

i
− p

(k−1)

i

�t
+ qi+1∕2 − qi−1∕2

= Qo�(si) −

N∑
I=1

QI�(si − sI),

(19)qi±1∕2 =Ai±1∕2Vi±1∕2

(20)Vi+1∕2 = −
4ai+1∕2

�f (Re, �)|Vi+1∕2| ×
p̃
(k)

i+1
− p̃

(k)

i

(�si + �si+1)∕2
;

(21)
(
cf �cw + 𝛥t�

�

)
⋅ 𝛥�̃(k)

w
= 𝛥t� − Δt�

�
⋅ �̃(k−1)

w
,

where

We have used here Churchill (1977) approximation which 
provides an explicit equation for the friction factor f (Re, �).

3.2.2  Wellbore Fractures Entry

In Eqs. (15) and (18), the volume rates Qi entering each 
fracture are assumed to be known at each time step. In case 
of injection into multiple fractures via the well, to close the 
system of equations, one needs to relate these volume rates 
to the entry pressures in each fracture, which are parts of the 
solution of the results of the mixed elasto-hydrodynamics 
system, and the pressure in the corresponding well locations. 
It is performed via introducing the pressure drop associated 
with perforations and near-wellbore tortuosity of the frac-
tures (entry friction):

where fp,I and ft,i can vary from perforation clusters to clus-
ters. In all the examples presented further, we assume zero 
near-wellbore tortuosity, i.e., ft,i = 0.

The solutions of the elasto-hydrodynamics equations in 
the different fractures of the fluid flow in the wellbore and 
the coupling via fracture entry friction can be represented 
schematically as the following system of residuals:

�cw =

⎡
⎢⎢⎢⎢⎢⎣

�s1A1 0 …

0 ⋱ 0

⋮ 0 �s1Ai 0 ⋮

0 ⋱ 0

… 0 �s1ANw

⎤
⎥⎥⎥⎥⎥⎦

,

Ai =
Ai+1∕2 + Ai−1∕2

2

�w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⋱ 0

⋱

0 −
Cw

i−1∕2

h̃i−1∕2

�
Cw

i+1∕2

h̃i+1∕2
+

Cw

i−1∕2

h̃i−1∕2

�
−

Cw

i+1∕2

h̃i+1∕2
0

⋱

0 0 −
Cw

Nw−1∕2

h̃Nw−1∕2

Cw

Nw−1∕2

h̃Nw−1∕2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

h̃i±1∕2 =
�si + �si±1

2
, Cw

i±1∕2
= −

4ai±1∕2Ai±1∕2

�f (Rei±1∕2, �)|Vi±1∕2| ,

Rei±1∕2 =
2�ai±1∕2|Vi±1∕2|

�
.

(22)
�pI(QI) = pw,I(QI) − pf ,I(Qi) = fp,IQ

2
I
+ ft,iQ

�I
I
,

I = 1,… ,Nfrac,
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This system of non-linear equations that solves for pressure 
(and DDs) in the fracture, in the well, as well as the flow rate 
entering the different fractures is actually extremely stiff. 
Practically, fixed-point iterations on these equations do not 
converge. We, therefore, use a quasi-Newton scheme, which 
involves finite-difference estimation of the Jacobian matrix. 
To reduce the time needed for re-calculation of the Jacobian 
matrix (at the price of some reduction of convergence rate), 
the latter is re-used in several (in our implementation, up to 
4) iteration steps.

4  Verifications

4.1  Toughness‑ and Viscosity‑Dominated 
Plane‑Strain Benchmark (KGD Geometry)

First, two verification tests of spanning toughness and vis-
cosity-dominated propagation have been performed with 

(23)Rf (�) = �f , Rw(�) = �w, C(�w, �f ) = �. two fractures of sufficiently large height (100 m) located 
far enough from each other (1000 m) to ensure (1) that any 
stress interaction between them is negligible and (2) that 
the fracture geometry can be assumed to be in state of plane 
strain. The flow rates entering both fractures were forced 
to be equal (i.e., wellbore flow was not considered). We 
compare our results to the known semi-analytical solutions 
for a plane-strain hydraulic fracture propagating in both the 
viscosity (Garagash and Detournay 2005) and toughness-
dominated regimes (Garagash 2006).

The parameters for the toughness-dominated case were 
as follows: E� = 10GPa , � = 0.01 Pa s , KIc = 2MPam1∕2 , 
Qo (per unit height) = 0.0001m2∕s (which corresponds to a 
dimensionless viscosity M = 12�QoE

�3∕K�4 = 0.0072—see 
Detournay (2004) for definition). As can be seen in Figs. 3 
and 4, the accuracy of the scheme is excellent with at most 
5% error compared to the analytical solution.

For the viscosity-dominated example, the param-
eters were set as follows: E� = 10GPa , � = 0.1 Pa s , 
KIc = 0.5MPa m1∕2 , Qo = 0.0001m2∕s ( M = 18.5 ). Except 
for an early transient associated with the initial conditions 
set in the scheme, the agreement between the numerical 
results and the semi-analytical solution is always below 4% 
of relative error, both on inlet pressure, width and fracture 
length as can be seen in Figs. 5 and 6.

4.2  Viscosity‑Dominated KGD‑to‑PKN Transition

This test was performed for a single fracture of constant 
height H = 10m and initial length L0 = 1m , ensuring 
that the injection time is long enough for the fracture to 
evolve to a final length much larger than its height. The 
aim is here to observe the transition from an initially plane-
strain (KGD) geometry where the fracture height is much 
larger than its length to a blade-like (PKN) geometry at 
large time/for large length compared to height. The other 
parameters were set as follows: rock properties E = 25GPa , 
� = 0.3 , KIc = 1MPa m1∕2 , zero leak-off, confining stress 

Fig. 3  Toughness-dominated fracture propagation of two far-apart 
hydraulic fractures (constant equal rate): fracture length vs. time (for 
the four different tips); numerical vs. analytical solution. Relative 
error in inset

(a) (b)

Fig. 4  Toughness-dominated fracture propagation of two far-apart hydraulic fractures (constant equal rate): a inlet pressure vs. time; b inlet 
width vs time; numerical vs. analytical solution. Relative error in insets
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�h = 10MPa , �H = 12MPa , injection fluid viscosity 
� = 0.01 Pa s , and entry rate Q = 0.05m3∕s ( ∼ 20BPM ). It 
is interesting to note that for such a choice of parameters, the 

propagation of the hydraulic fracture is viscosity dominated 
for the plane-strain geometry. We compare here the numeri-
cal results, therefore, to the viscosity-dominated KGD solu-
tion and the classical PKN/blade-like solution which does 
not account for toughness (and is, thus, restricted to the 
viscosity-dominated regime).

As can be seen in Fig. 7, the scheme properly captures 
the transition between the KGD geometry solution (where 
the height of the fracture is much larger than its length) and 
the PKN solution (solution for a constant height fracture).

5  Competition Between Stage Length, Entry 
Friction, and Stress Interaction

We now turn to study the competing effects of the length of 
the stage, stress interaction between fractures (stress shad-
owing), and entry friction on the uniform versus non-uni-
form growth of multiple fractures during a stages. We focus 
our numerical investigation to the case of three fractures and 

Fig. 5  Viscosity-dominated fracture propagation of two far-apart 
hydraulic fractures (constant equal rate): fracture length vs. time; 
numerical vs. analytical solution. Relative error in inset

(a) (b)

Fig. 6  Viscosity-dominated fracture propagation of two far-apart hydraulic fractures (constant equal rate): a inlet pressure vs. time; b inlet width 
vs time; numerical vs. analytical solution. Relative error

(a) (b)

Fig. 7  KGD-to-PKN transition (viscosity-dominated regime), numerical vs. analytical solutions: a fracture length vs. time; b fracture inlet open-
ing vs. time
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a wellbore aligned with the minimum principal horizontal 
stress for the sake of simplicity. We first discuss via scaling 
arguments the controlling dimensionless parameters govern-
ing the simultaneous growth of multiple hydraulic fractures.

5.1  Scaling Arguments

One can argue that, in case of a homogeneous medium and 
small/negligible leak-off, 11 parameters define the problem:

where S denotes the spacing between fractures along the 
wellbore, and �H and �h are the maximum and minimum 
principal horizontal stress magnitude.

From the Buckingham-Pi theorem, we thus see that 
at most 7 dimensionless parameters control the problem. 
Moreover, focusing on viscosity-dominated regime, only 
six dimensionless parameters define the parametric space. 
In other words, the dimensionless solution of the problem 
(represented as � ) depends on the following dimensionless 
parameters:

The �  parameter expresses the ratio of characteristic interac-
tion stress �int to the pressure drop due to perforation fric-
tion (at the well—fracture connection) at the time when the 
length of the fracture(s) L is of the same order as spacing S:

The time t when the length of the fracture(s) L is of the 
same order as spacing S can be estimated by order of mag-
nitude from the system parameters using the estimate of L 
for a specific geometry and regime of propagation (Detour-
nay 2004; Garagash and Detournay 2005; Garagash 2006). 
Thus, for a KGD fracture geometry ( L ≪ H ) propagating in 
the toughness-dominated regime, we obtain the following 
estimate for �  that we denote � (KGD)

k
:

(24)E�, �, KIc, �, fp, S, H, Nfrac, �H − �h, Qo, t,

(25)

� = �
�
�, Nfrac,

S

h
, KKGD =

K�

(E�3 Qo �)
1∕4

,

�H − �h

KIc

√
S, � =

�int

fp(Qo∕Nfrac)
2
,

� =
�Pwell

fp(Qo∕Nfrac)
2

�
.

(26)
𝛤 =

𝜎int

fpQ
2
n

=
E� < w > LH

4𝜋 S3 fp Q
2
n

=
E� Qn t

4𝜋 S3 fp Q
2
n

;

Qn =
Qo

Nfrac

.

(27)L ∼

(
E�(Qn∕H)

K�

)2∕3

t2∕3; �
(KGD)

k
=

K�H

4� fp Q
2
n
S3∕2

.

For viscosity-dominated regime in KGD geometry ( L ≪ H ), 
we obtain the following estimate for �  that we denote � (KGD)

m

:

For a PKN geometry ( L ≫ H ) (see, e.g., Kemp (1990); 
Economides and Nolte (2000)), we have the following esti-
mate for �  that we denote � (PKN)

m
:

Note that in Eqs. (28) and (29), all power exponents are 
the same except those of S and H. In the following, we use 
the PKN estimate dropping the factor 2

√
2�1∕4 (which is of 

order 1) to quantify such competition between stress interac-
tions and perforation friction, and thus choose:

The � parameter expresses the ratio of the pressure drop 
between clusters in the well to the pressure drop due to 
perforation friction. The order of magnitude of the pres-
sure drop along the well (in steady-state conditions) can be 
estimated as �P(well) ∼ �Q2

o
SRe−�∕D5 where � depends on 

the flow regime in the well (turbulent vs laminar). The fric-
tion factor scales as f ∝ Re−� . The pressure drop across the 
perforation scales as �P(perf ) ∼ fp(Qo∕Nfrac)

2 . We can thus 
estimate � as:

In the following, we use � = 1∕4 corresponding to the fully 
turbulent scaling of Blasius (1913), valid for turbulent flow 
in a smooth pipe. This assumption is realistic for industrial 
hydraulic fracturing conditions.

5.2  Numerical Simulations

In these simulations, we considered three fractures ini-
tiated from the horizontal part of the well at a depth of 
1 km ; the height of the fractures was taken to H = 20m 
and the initial half-length of the fractures as L0 = 2.5m . 
The following rock properties were assumed: E = 25GPa , 
� = 0.2 , KIc = 1Mpa m1∕2 , negligible leak-off. The other 

(28)

L ∼

�
E�(Qn∕H)3

12�

�1∕6

t2∕3; � (KGD)
m

=

�
3E�3 �H3

�1∕4

2
√
2� fp Q

7∕4
n S3∕2

.

(29)

L ∼

�
E� Q3

n

4�3 �H4

�1∕5

t4∕5; � (PKN)
m

=
E�3∕4 �1∕4 H

2
√
2�1∕4 fp Q

7∕4
n S7∕4

.

(30)� (PKN)
m

= �m =
E�3∕4 �1∕4 H

fp Q
7∕4
n S7∕4

.

(31)

�� =
�P(well)

�P(perf)
=

� SQ2
o
Re−�∕D5

fp(Qn)
2

=
� SN2

frac
Re−�

D5 fp
; Re =

�Qo

�D
.
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parameters are as follows: in-situ minimum and maximum 
compressive stresses �h = 10MPa , and �H = 10.1–12MPa , 
injection fluid viscosity � = 0.01 Pa s , and pump rate 
Q = 0.15m3∕s (0.05m3∕s per fracture) . The entry friction 
fp was the same for all clusters. We varied its value between 
102 and 109 Pa (s∕m3)2 (from small to large friction). The 
injection time was limited to 5 min for all cases. To account 
for pressure drop between the clusters numerically, the mesh 
density for the well flow solver was chosen to provide about 
ten cells between the clusters in all the considered cases of 
cluster spacing. The geometry of the well and location of the 
clusters are sketched in Fig. 1.

Here, we provide detailed results on fracture growth 
and fluid partitioning for some extreme cases: close 
( S = 10m ) and far ( S = 40m ) cluster spacing, low 

( fp = 102 Pa (s/m3)2 ), and high ( fp = 109 Pa (s/m3)2 ) perfo-
ration friction, low ( �H∕�h = 1.01 ) and high ( �H∕�h = 1.2 ) 
in-situ stress contrast). Figures 8, 9, 10, 11 illustrate the 
case of initial fracture spacing of 10 m ( S∕H = 0.5 ). Fig-
ure 12 illustrate the case of initial fracture spacing of 40 
m ( S∕H = 2).

As seen in these figures, in general, high perforation 
friction promotes even fluid partitioning and high in-situ 
stress contrast suppresses fracture curving due to stress 
interaction. Note the change in localization pattern as the 
in-situ stress contrast grows.

With increasing cluster spacing/stage length, the moder-
ating effect of perforation friction starts to concede to the 
effect of pressure gradient in the well (Figs. 13, 14, 15).

(a) (b)

Fig. 8  Top view of fractures after 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 10.1 MPa, fracture height H = 20 m, and initial frac-

ture spacing S = 10 m; perforation friction: a fp = 102 Pa (s∕m3)2 , b fp = 109 Pa (s∕m3)2 . Scales in meters

(a) (b)

Fig. 9  Fracture volume rate evolution during 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 10.1 MPa, fracture height H = 20 m, and 

initial fracture spacing S = 10 m; perforation friction: a fp = 102 Pa (s∕m3)2 , b fp = 109 Pa (s∕m3)2

(a) (b)

Fig. 10  Top view of fractures after 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 12 MPa, fracture height H = 20 m, initial fracture 

spacing S = 10 m, and perforation friction: a fp = 102 Pa (s∕m3)2 ; b fp = 109 Pa (s∕m3)2 . Scales in meters
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5.3  Short Summary

To summarize these results, let us study the effect of the 
most important dimensionless parameters ( �m and �� ) on 
variation (relative standard deviation) of fractures’ length 
and injected volumes after given time of injection.

As one can see from Figs.  16 and 17, in general, at 
values of 𝛤m ≪ 1 , fracture growth/fluid partitioning is 

equalized; localized growth/fluid partitioning occurs at val-
ues of 𝛤m > 1 ; for larger �m , the values of 𝛿L∕ < L > and 
𝛿Q∕ < Q > stay around 25–30% showing some noticeable 
but minor effect of cluster spacing and in-situ stress contrast. 
Yet, the parameter �m does not fully account for the effect of 
cluster spacing/stage length (and the corresponding pressure 
gradient in the well) on fracture localization. For larger spac-
ing, localization occurs at smaller values of �m.

(a) (b)

Fig. 11  Fracture volume rates evolution during 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 12 MPa, fracture height H = 20 m, initial 

fracture spacing S = 10 m, and perforation friction: a fp = 102 Pa (s∕m3)2 ; b fp = 109 Pa (s∕m3)2

(a) (b)

Fig. 12  Top view of fractures after 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 10.1 MPa, fracture height H = 20 m, initial fracture 

spacing S = 40 m, and perforation friction: a fp = 102 Pa (s∕m3)2 ; b fp = 109 Pa (s∕m3)2 . Scales in meters

(a) (b)

Fig. 13  Fracture volume rate evolution during 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 10.1 MPa, fracture height H = 20 m, ini-

tial fracture spacing S = 40 m, and perforation friction: a fp = 102 Pa (s∕m3)2 ; b fp = 109 Pa (s∕m3)2
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Figures 18, 19 show the variation of L and Q against the 
parameter �� (scaled pressure drop between the clusters).

5.4  Neglecting Stage Length‑Related Effects

This configuration corresponds to the case of a relatively 
short stage length, such that the pressure gradient along the 
well can be neglected. To do so, we coarsen the 1D wellbore 
mesh to fit all clusters in one element, so the pressure in all 

cluster entries (on the well side) is equal, since a piece-wise 
approximation is used for pressure in the well.

The results on variation of injected volume between the 
clusters with and without the effect of pressure gradient 
along the well are displayed in Fig. 20.

It is clear from these results that when the pressure gra-
dient along the well is neglected, the variation of injected 
volume between fractures is under-predicted even in case of 
relatively close cluster spacing. The larger the cluster spac-
ing, the larger the discrepancy.

(a) (b)

Fig. 14  Top view of fractures after 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 12 MPa, fracture height H = 20 m, initial fracture 

spacing S = 40 m, perforation friction a fp = 102 Pa (s∕m3)2 , b fp = 109 Pa (s∕m3)2 . Scales in meters

(a) (b)

Fig. 15  Fracture volume rates during 5 min of injection; confining stress �
h
= 10 MPa, �

H
= 12 MPa, fracture height H = 20 m, initial fracture 

spacing S = 40 m, and perforation friction: a fp = 102 Pa (s∕m3)2 ; b fp = 109 Pa (s∕m3)2

Fig. 16  Effect of parameter �
m
 on localization of fracture growth (rel-

ative standard deviation of length after 5 min of injection)
Fig. 17  Effect of parameter �

m
 on fluid partitioning (relative standard 

deviation of injected volume after 5 min of injection)
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Here, we should recall that in case of too small a ratio 
of fracture spacing to fracture height (less than 0.25), the 
chosen elastic kernel fails to produce trustworthy results 
for elasticity (see Wu and Olson 2015a) making it hard to 
explore the cases with shorter stage length. Yet, the above 
considered range of ratios of cluster spacing and fracture/
reservoir height were chosen to reflect typical values for 
industry applications, thus, the given example is a good 
demonstration of importance of the wellbore- and stage 
length-related effects on fluid partitioning and localization 
of the fracture growth.

6  Conclusions

We have developed a fully coupled numerical solver for the 
simultaneous propagation of multiple blade-like hydraulic 
fractures due to fluid injection in a horizontal well. The pro-
posed scheme properly solves the fluid partitioning problem 
at any given time by coupling wellbore flow and hydraulic 
fracture propagation.

Our results are in line with the previous studies restricted 
to the growth of simultaneous radial hydraulic fractures 
(see Lecampion and Desroches 2015c, b) that were intrinsi-
cally confined to the early stage of growth (axisymmetric 
fractures).

Low entry friction [large �m dimensionless parameter 
defined in Eq. (30)] promotes uneven fluid partitioning and 
fracture growth localization; generally, for 𝛤m ≪ 1 , fluid 
partitioning and fracture growth are even, yet the boundary 
between uniform and non-uniform growth depends on the 
stage length [the �� dimensionless parameter defined in 

Fig. 18  Effect of parameter �� on localization of fracture growth 
(relative standard deviation of length after 5 min of injection)

Fig. 19  Effect of parameter �� on fluid partitioning (relative standard 
deviation of injected volume after 5 min of injection)

Fig. 20  Effect of parameter �
m
 on fluid partitioning (relative standard deviation of injected volume after 5 min of injection) with pressure gradi-

ent in the well-neglected (dashed lines) and accounted for (solid lines)
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Eq. (31)]. On the other hand, the effect of parameter �� 
on fluid partitioning and fracture length shows little-to-
no dependence on �m . For low in-situ stress differential 
( �H ∼ �h ), fracture curving helps balancing the flow rate 
between the fractures, as stress interactions between the 
growing fractures decrease as they move away from one 
another. Yet, the effect of in-situ stress/fracture curving 
on variation of fluid entry rates and fractures length is 
minor compared to the first two. However, as expected, 
the pattern of fracture growth is highly sensitive to the 
in-situ stress contrast and entry friction. Notably, large 
entry friction appears to always counteract the adverse 
effect of stress interaction between the fractures, yet the 
pressure drop along the stage (i.e., the length of the stage) 
can have a more pronounced negative effect than the stress 
interaction on fluid partitioning. As a result, one cannot 
disregard it to obtain a proper picture of fluid partitioning 
and growth of multiple fractures during a pumping stage.

In this contribution, we restricted our numerical investi-
gations to the case of even (spatially homogeneous) entry 
friction. However, the fluid partitioning and the conse-
quent fractures’ propagation rates will most likely be 
highly sensitive to spatial variations of the entry friction, 
especially the term associated with near-wellbore-fracture 
tortuosity. Such variations are likely to happen and hard 
to control (see the examples reported in Desroches et al. 
(2014); Lecampion and Desroches (2015a)). Investiga-
tion of the effect of heterogeneous entry friction should 
be investigated further.

We should also highlight the importance of accurate 
coupling of the fractures propagation with the wellbore 
fluid flow: being a non-linear process that directly con-
trols the fluid partitioning, it is particularly hard to han-
dle numerically: precision is crucial to handle such a stiff 
non-linearity. On one hand, simple fixed-point iteration 
schemes for such non-linear coupling are typically unsta-
ble. On the other hand, evaluation of the partial derivatives 
of pressure vs. entry rates (to implement a quasi-Newton 
or higher order iteration scheme) is necessarily numerical 
(and, therefore, costly) due to the non-local nature of the 
fracture propagation process. We believe that more work is 
required to speed up the solution of such highly non-linear 
problems (e.g., a typical simulation reported in Sect. 5.2 
run for about 5 h on a 10 cores desktop) while keeping the 
robustness of the solver presented here.
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