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Abstract
The quantification of surface roughness for the purpose of linking its effect to mechanical and hydrodynamic behavior has 
taken many different forms. In this paper, we present a thorough review of commonly used 2D and 3D surface roughness 
characterization methods, categorized as statistical, fractal, and directional. Statistical methods are further subdivided into 
parametric and functional methods that yield a single value and function to evaluate roughness, respectively. These statisti-
cal roughness metrics are useful as their resultant outputs can be used in estimating shear and flow behavior in fractures. 
Fractal characterization methods treat rough surfaces and profiles as fractal objects to provide parameters that characterize 
roughness at different scales. The directional characterization method encompasses an approach more closely linked to shear 
strength and is more suitable for estimating the influence of fracture roughness on mechanical responses. Overall, roughness 
characterization methods provide an effective objective measure of surface texture that describe its influence on the mechan-
ics of surfaces without requiring qualitative description.

Keywords  Roughness characterization · Rock joint roughness · Aperture · Joint shear strength · Fractal roughness · 
Synthetic roughness
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1  Introduction

Surfaces exhibit irregular geometries which can be described 
as roughness. Characterization of roughness is a wide-reach-
ing body of knowledge with implications in many disciplines 
that involve surface contact (e.g., tribology, precision engi-
neering, nanotechnology, etc.) with effects on wear, fric-
tion, fluid dynamics, etc. (e.g., Thomas 1981; Bhushan et al. 
1995). In rock surfaces, roughness can be estimated at the 
microscopic scale (Krohn and Thompson 1986; Chae et al. 
2004), laboratory scale (Poon et al. 1992; Belem et al. 2000; 
Fardin et al. 2001, 2004; Grasselli et al. 2002; Lanaro and 
Stephansson 2003; Grasselli and Egger 2003), and field scale 
(Power et al. 1987, 1988; Renard et al. 2006; Sagy et al. 
2007; Candela et al. 2009) and can affect the mechanical 
and hydromechanical characteristics of joints (Barton and 
Choubey 1977; Barton et al. 1985).

Although the effects of roughness can be considered in 
estimation of hydromechanical behavior of rock joints, its 
degree of influence varies with scale. Therefore, the scale of 
measurement, as a function of the measurement resolution 

and captured size, must be considered in roughness char-
acterization. The International Society of Rock Mechanics 
(1978) describes the different scales of rock roughness using 
“unevenness” to describe small-scale roughness features 
likely to break during shearing of rock and “waviness” as 
large-scale roughness features that are unlikely to break dur-
ing shearing. While materials can exhibit varying degrees of 
roughness at various scales, not all characterization meth-
ods developed can comprehensively describe the effects of 
scale. This work discusses a broad, but non-exhaustive list of 
roughness characterization methods. The assumptions these 
methods rely on must be well understood before they are 
introduced into analysis, since their suitability may be sensi-
tive to different applications (Thomas 1981; Reeves 1985; 
Power and Tullis 1991).

The existence of a vast variety of roughness characteriza-
tion methods is partly because there are many “dimensions” 
to describing surface characteristics. We discuss various 
methods by grouping those that share similar basic theories. 
In this work, we categorized these methods into statistical, 
fractal, and directional roughness methods. The statistical 
methods carry the methods directly applied to elevation data, 
while the fractal and directional methods require processing 
techniques beyond the general ideas of statistics. In Fig. 1, 
we provide a broad overview these methods and highlight 
the sections in which we describe their details. We also show 
several of the various relationships between these methods 
which are further detailed throughout this work. The variety 
of characterization methods can also be attributed to their 
development for different materials and surface creation pro-
cesses. The International Organization for Standardization 
(ISO) codifies many parameters for both profile and surface 
characterization (ISO 1997, 2010). Although most param-
eters are derived from precision machining and mechanical 
wear applications, they have characterization potential for 
rock surfaces since they are simple and easy to use, thus, 
they are discussed in this work with reference on their usage, 
features, and limitations.

Improvements to surface measurement technology have 
changed the way surface roughness is characterized. Within 
this work, the term “2D” refers to a linear profile extracted 
from the surface and “3D” refers to areal altitude maps. 3D 
measurements have an advantage over 2D profiles since pro-
files may (1) misestimate the real contact areas, potentially 
identifying locations that have little to no effect on shear 
strength, and (2) exaggerate or underestimate key surface 
features that affect the contacts and interactions out-of-plane 
with the profile orientation. The real contact area, which is 
important for mechanical and fluid flow behavior in rock dis-
continuities (Whitehouse and Archard 1970; Raven and Gale 
1985; Olsson and Brown 1993), is characterized by patches 
throughout the nominal joint surface and is always less than 
the total surface area as shown in direct observations with 
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light scattering and X-ray micro-CT imaging (Dieterich and 
Kilgore 1994; Zhao et al. 2018) and indirect lab observa-
tions (Grasselli et al. 2002). The areal distribution and the 
magnitude of real contact area is also sensitive to shearing 

direction as a result of the directional roughness (Jing et al. 
1992; Gentier et al. 2000; Belem et al. 2000; Grasselli et al. 
2002).
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Fig. 1   Visual summary of roughness characterization described in this work
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The goal of this paper is to review surface roughness 
characterization methods and provide examples and insights 
on their usage. The applications and sensitivities of rough-
ness characterization methods to scaling and resolution, and 
the prospect of measuring roughness in 3D surfaces in com-
parison to 2D profiles are discussed. The surface roughness 
characterization methods are summarized in Appendix 1, 
and an open-source roughness processing tool was devel-
oped and provided in Appendix 2 to ease data processing.

Throughout literature we found various inconsistencies 
pertaining to the terminology used for discussion, thus dif-
ferent variable names have also been used to refer to the 
same methods due to differences in naming conventions and 
standardization. The different variables are listed along with 
their description in the “List of Symbols”.

2 � Statistical Characterization

Although rough surfaces can have visible structural charac-
teristics (e.g., planarity, waviness, etc.), random variability 
is apparent within the geometry. Statistical concepts can 
be applied to provide structure to a random process (e.g., 
surface linear profile). Prior to parameter calculation from 
surface measurements, in 2D, for example, the profile must 
be pre-processed to establish an equal sampling interval 
throughout the profile and to set the best-fit line of the profile 
as the horizontal axis (ISO 1997; Tatone 2009; Tatone and 
Grasselli 2010). The ISO (1997) also outlines methods to 
obtain mean lines for the “waviness” of profiles and “rough-
ness” of profiles after using appropriate filters (ISO 1996), 
but these are not further discussed here.

2.1 � Parametric Methods

Attempts to characterize roughness using a single param-
eter have been made to incorporate roughness into equations 
describing mechanical behavior (e.g., shear strength) (Tse 
and Cruden 1979; Maerz et al. 1990; Yu and Vayssade 1991; 
Yang et al. 2001; Tatone and Grasselli 2010). These param-
eters are typically calculated using averaging methods such 
as the arithmetic mean and the root-mean-square (RMS). 
Here, we describe various equations used to quantify rough-
ness into a single parameter from profile (2D) measurements. 
Many of these parameters also have a surface (3D) analogue 
(ISO 2012). However, we do not discuss these in detail here 
since the purposes of these parameters remain the same.

2.1.1 � Amplitude Parameters

When profiles are extracted from a rough surface, point eleva-
tions relative to a plane are usually measured at a set inter-
val (e.g., profile comb measurement). Given the regularity in 

point measurements, an amplitude distribution function can 
be obtained mirroring the statistical concept of probability 
distribution assuming a normal distribution (Fig. 2). From the 
profile heights [ z(x) ], we obtain the resultant amplitude den-
sity function [ p(z) ] and cumulative amplitude density function 
[ P(z) ] (Fig. 2). Measures based on this concept are independ-
ent of the profile spacing length-wise and remove any localized 
geometric characteristics (Bhushan 2000).

The arithmetic average of the absolute height ( Ra ) is 
determined as

where z is the distance of the profile from the mean line, or 
the least-squares line crossing the profile (ISO 1997), x is the 
length axis, and L is the length of the profile. This is com-
plemented by the RMS of height ( Rq ) which is calculated as

These two parameters measure relative deviation of the 
profile from the mean line. While Ra is a simple average 
deviation, Rq provides a more familiar m elevation measure 
as it is essentially the standard deviation of the amplitude 
distribution. These two parameters are very close numeri-
cally (Krahn and Morgenstern 1979) and both describe the 
deviation from the mean line. The ratio of Rq∕Ra is approx-
imately 1.25 for a normal amplitude distribution but can 
be between 1.5 and 2.5 for a skewed height distribution 
(Bhushan 2000).

The profile shape can also be described using skewness 
and kurtosis which are the third and fourth central moments 
of a distribution (Fig. 3). Skewness ( Rsk ) is calculated as

with respect to the mean line. As its name suggests, this 
parameter is sensitive to the symmetry of the profile about 
the mean line. It is particularly useful in observing general 
trends in peaks or valleys of the amplitude depending on 
the sign of the parameter. Meanwhile, kurtosis ( Rku ) is cal-
culated by

and can characterize the tendency of the profile to con-
form with the mean line. It can also describe the difference 

(1)Ra =
1

L ∫
L

|z|dx,

(2)Rq =

√√√√1

L ∫
L

z2dx.

(3)
Rsk =

1

R3
q

⎛⎜⎜⎝
1

L ∫
L

z3dx

⎞⎟⎟⎠

(4)
Rku =

1

R4
q

⎛⎜⎜⎝
1

L ∫
L

z4dx

⎞⎟⎟⎠
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between broad and wavy or sharp and sudden peaks or val-
leys as a measure of profile sharpness. This parameter is 
referenced against the normal amplitude distribution that 
has Rku = 3 . The spread of the amplitude distribution is 
broader when Rku < 3 and sharper when Rku > 3 . Although 
these parameters are occasionally referenced in the precision 
machining industry, they are often not used (Bhushan 2000). 
This is likely because they are measures of deviation from 
the normal distribution and may not carry significance if 
the profiles measured show the height distribution is close 
to normal distribution (Thomas 1981). They still have value 

in characterizing surfaces that have experienced machin-
ing processes, or permanent surface alterations, since these 
types of surfaces can deviate from a normal distribution 
(Bhushan 2000).

2.1.2 � Textural (Spatial) Parameters

Amplitude parameters are too simplistic to fully describe 
roughness. They do not consider the local waviness and slop-
ing of the profile, which play important roles in the mechani-
cal behavior of surfaces. Myers (1962) proposes to estimate 

Fig. 2   A synthetic profile generated using the methodology of Candela et al. (2009) with its complementing amplitude density function, p(z) , 
and cumulative amplitude density function, P(z) . The line shown along with P(z) is the reverse cumulative amplitude density function, 1 − P(z)

Fig. 3   The measures of skew-
ness and kurtosis with respect to 
the amplitude density function 
provide indications of the shape 
of a profile. a The skewness 
is either positive or negative 
and determined with respect to 
the positive orientation of the 
z-axis. b Kurtosis corresponds 
to the spread along the z-axis 
and is compared against a 
normal amplitude distribution 
where Rku = 3 (modified from 
Gadelmawla et al. 2002)
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roughness with Z2 and Z3, which are the RMS of the average 
local slope and average local curvature, respectively. Z2 is 
mathematically described as

and Z3 is

Of these parameters, Z2 is the most useful as the local slope 
was shown to be the closest roughness descriptor based on 
correlations to the JRC (Tse and Cruden 1979; Maerz et al. 
1990; Yu and Vayssade 1991; Tatone and Grasselli 2010). 
However, both Z2 and Z3 parameters require profiles to show a 
persistent pattern along the mean line, or exhibit stationarity, 
since they are sensitive to the long-wavelength trends within 
the profile (Reeves 1985). This is a concern for smaller sam-
ples since non-stationarity becomes increasingly apparent as 
lab-scale surface samples become smaller. Filtering can be 
used to remove the non-stationarity and instrumentation noise 
affecting the results of Z2 and Z3 at both ends of the spectral 
range of roughness (Reeves 1985).

Z2 and Z3 are complemented by their arithmetically aver-
aged counterparts, RΔa and R�

Δa
 , which are calculated similar 

to the average slope as

and the average curvature as

As shown in Eq. (8), the calculation of R�

Δa
 can be simpli-

fied since the slope dz∕dx is usually a small value. While this 
may be the case for flatter profiles, rougher profiles may not 
experience the same simplification and the full formula should 
be used (Whitehouse 1994).

The average asperity inclination ( Ai ) is calculated by sum-
ming the vertical difference between adjacent points and divid-
ing it by the profile length (Tatone 2009):

where i is the index of each point. This represents an average 
local difference throughout the entire profile. Also, while 

(5)Z2 = RΔq =

√√√√1

L ∫
L

(
dz

dx

)2

dx

(6)Z3 = R
�

Δq
=

√√√√√1

L ∫
L

(
d2z

dx2

)2

dx.

(7)RΔa =
1

L ∫
L

||||
dz

dx

||||dx

(8)R
�

Δa
=

1

L ∫
L

d2z∕dx2

[
1 + (dz∕dx)2

] 3

2

dx ≅
1

L ∫
L

||||
d2z

dx2

||||dx.

(9)Ai = tan−1
(
1

L

∑||zi+1 − zi
||
)
,

this method is not affected by local horizontal changes in the 
profile, it is affected by the total profile length. This method 
appears similar to RΔa as they both estimate an average 
slope. However, the main difference is that the slope in Ai is 
calculated indirectly using the averaged heights while RΔa is 
calculated using the local segment slopes directly.

El-Soudani (1978) introduced the roughness ratio, Rp , 
which is the ratio of the true length of a profile to the nominal 
length of the profile. This is calculated as

where the sum of every segment length is divided by the 
length directly between the beginning and end points. This 
results in a value that will always be greater or equal to 1 
with value of 1 representing a completely smooth profile. 
The 3D surface version of this parameter, Rs , uses surface 
area instead of length. This is simply calculated as

where At is the true surface area and An is the nominal sur-
face area. The nominal surface area is the area of the surface 
after it is projected onto its best-fit plane. This characteriza-
tion method is relatively simple and intuitive and it has a 
very close correlation with the directional roughness met-
ric discussed in Sect. 4 (Grasselli et al. 2002; Grasselli and 
Egger 2003; Tatone and Grasselli 2009).

Whitehouse (1994) discusses spacing-based parameters, 
namely the mean peak spacing (Fig. 4a) and the mean 
zero-crossing spacing (Fig.  4b). These parameters are 
similar in that they represent an average spacing between 
features across a 2D profile. Mean peak spacing is defined 
as the average distance between peaks on a profile while 
the mean zero-crossing spacing is the average distance 
between intersections by the profile and the profile length 
axis (represented as the x-axis in this work) (Fig.  4). 

(10)Rp =
1

L

∑√(
xi+1 − xi

)2
+
(
zi+1 − zi

)2
,

(11)Rs =
At

An

,

(a)

l1 l2 l3 l4
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(b)

l2
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l4
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l6

z

z
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x

Fig. 4   a Selection of the peak spacing is chosen based on the pres-
ence of valleys. b Zero-crossing spacing is based on the intersection 
of the profile with the mean line (modified from Whitehouse 1994)
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Whitehouse (1994) further refines the mean peak spacing 
concept by implementing an “amplitude discrimination 
band” which counts peaks that pass from the bottom to 
the top of the band. This filters out small peaks leaving 
the larger asperities on a rock surface to be the focus of 
the parameter.

2.1.3 � Hybrid Parameters

Parameters can be combined to create new parameters 
that can describe both amplitude and spatial parameters. 
Spragg and Whitehouse (1970, 1972) proposes the use of 
a parameter sensitive to the wavelengths that consist the 
profile. The average profile wavelength ( R�q ) is

where Rq is the RMS of amplitude and RΔq is the average 
slope of the profile. This averaged parameter is representa-
tive of the wavelengths of the entire profile and can pro-
vide a sense of the shape of the PSD function (detailed in 
Sect. 2.2.2) of the profile (Fig. 5). However, this parameter 
is likely to be sensitive to the length of the sample and the 
resolution used for measurement just as its components are 
(i.e., the domain boundaries of the PSD function).

2.2 � Functional Methods

Although parameter methods have meaningful basis for their 
description, using single parameters may be insufficient to 
effectively characterize roughness (Spragg and Whitehouse 
1970, 1972). In the advances made to associate roughness 
with mathematical theory, functional methods are often 
discussed. The profile changes in rough surfaces appear to 
be a random spatially varying process which is observable 
using signal processing mathematics (Whitehouse 1994). 
These methods are capable of representing roughness at a 
large range of wavelengths (Bendat 1980), and, by observ-
ing changes in functions derived from profiles, processes 

(12)R�q =
2�Rq

RΔq

,

that affect roughness characteristics (e.g., shear, scratching, 
etc.) can be inferred (Rabinowicz 1956; Sayles and Thomas 
1977). Several of these methods have relationships with the 
statistical parameters discussed earlier which helps justify 
the usage of both methods.

2.2.1 � Autocovariance, Autocorrelation, and Structure 
Functions

The autocorrelation function is determined through the 
autocovariance function of the profile. The autocovariance 
function, ACVF(�) , is calculated directly from the profile as

where � is the autocovariance lag distance. This func-
tion is directly related to the autocorrelation function as 
ACF(�) = ACVF(�)∕R2

q
, , which normalizes the autocovari-

ance function. The limit L → ∞ implies that with larger 
sample lengths, the function would approach values more 
representative of the surface; thus, whole surface should be 
profiled and examined when possible.

This function can help determine the correlation length 
which is the distance at which any two arbitrary points 
become statistically independent. This can be determined 
as the �-axis intercept of the autocorrelation function 
(Poon et al. 1992) or the distance where the autocorrela-
tion function becomes less than 10% (Thomas 1981).

However, the autocorrelation function is not without 
drawbacks. Profiles with a non-stationary mean, which 
is to say a profile that has a trend or recurrent structure, 
would not be properly described by the autocorrelation 
function (Sayles and Thomas 1977). Also, the correlation 
length is sensitive to filtering of the profile, particularly in 
regards to long wavelengths (Thomas 1981).

To address the autocorrelation function’s disadvantages, 
Sayles and Thomas (1977) propose the structure function 
as an alternative since it can better show the effects of 
non-stationarity and easily detect filtering on the profile 

(13)ACVF(�) = lim
L→∞

1

L ∫
L

z(x)z(x + �)dx,

Fig. 5   The average profile 
wavelength ( R�q ) relates to the 
PSD function as a descriptor of 
the scale of observation (modi-
fied from Spragg and White-
house 1972)
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since it is insensitive to the actual mean line of the profile. 
However, Bhushan (2000) argues that the structure func-
tion provides no more information than the autocorrelation 
function. This is immediately apparent when observing the 
relationships between the equations

since the structure function is simply an algebraic transfor-
mation of the autocorrelation function involving the RMS 
amplitude ( Rq ) (Bhushan 2000).

Nonetheless, the structure function can be used to relate 
to the JRC by substituting the lag distance, � , with the 
profile sampling interval, creating a single parameter (Tse 
and Cruden 1979). This relationship has a strong quanti-
tative correlation with the JRC, proving its capability in 
estimating peak shear strength (Tse and Cruden 1979; Yu 
and Vayssade 1991; Jang et al. 2014). However, Yu and 
Vayssade (1991) cautions that this relationship is very sen-
sitive to the sampling interval. In their regression analy-
sis, differences between regression parameters for differ-
ent sampling intervals was very high indicating that small 
differences in the sampling interval could result in large 
variations in the calculated JRC.

(14)

SF(�) = lim
L→∞

1

L ∫
L

[z(x) − z(x + �)]2dx = 2R2
q
[1 − ACF(�)]

2.2.2 � Power Spectral Density

The power spectral density (PSD), denoted by G(f ) , can be 
used to describe the magnitudes of waves of different wave-
lengths that compose a signal or profile; this can distinguish 
the relative significance of waviness and unevenness (i.e., 
long and short wavelength roughness, respectively). The 
PSD can be obtained by applying the Fourier transform to 
the autocorrelation function (ACF) as

where f  represents the frequency of a wave as a compo-
nent of the autocorrelation function (Fig. 6) and i denotes 
an imaginary number. The wavelength ranges between the 
sampling frequency and the length of the sample (Power 
and Tullis 1991).

The PSD relates to the RMS roughness parameter, Rq , 
through

where �0 is the high cut-off frequency of the power spec-
trum (Sayles and Thomas 1978). Because of its relationship 
with Rq , the PSD demonstrates a greater degree of roughness 
characterization apart from profile variance. As with the 
ACF characterizations, the PSD is affected by sample non-
stationarity, making challenging to capture and detect large 
wavelength characteristics (Dight and Chiu 1981). However, 
longer wavelengths have a greater effect on roughness com-
pared to shorter wavelengths (Sayles and Thomas 1978). 
This makes the scaling of roughness parameters important 
to consider in surface roughness characterization.

The utility of the PSD is extended through the charac-
terization of roughness as fractals which describe the scale-
dependency of rough surfaces. This produces a linear trend 
in a log–log PSD plot (Fig. 6) as the Fourier transform natu-
rally deconstructs profiles into wavelengths ranging between 
the sample length and the measurement resolution. Fractal 
characterization using the PSD is further discussed along 
with several other fractal estimation methods in the next 
section.

The evolution of rough surfaces that undergo shear 
displacement or wear can be characterized through the 
comparison of the PSD before and after their deformation 
(Whitehouse 1997). Power et al. (1988) compared the PSD 
spectra of a ground surface and a newly fractured surface of 
a granite laboratory sample. Both PSDs exhibited the same 
slope at short wavelengths, but the ground surface started 
decreasing in slope and plateauing at larger wavelengths. 

(15)G(f ) =
1

L

∞

∫
−∞

ACF(�)e−i2�f �d�,

(16)R2
q
=

∞

∫
�0

G(f )df ,
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Fig. 6   An example of the PSD of a profile shown as the solid line 
with increasing wavelength. It should be noted that the synthetic pro-
file was generated using the inverse Fourier transform and this rep-
resentation may lack features that are not captured by the PSD. The 
dashed line is logarithmic linear regression that is further discussed 
as the PSD fractal characterization
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They suggested that the decrease in slope was due to the 
grit size used (within range of the slope decrease) and the 
plateau is indicative of the flatness of the surface. As another 
example, PSD analysis revealed that earthquakes nucleation, 
growth, and termination on evolved faults are fundamentally 
different than on new ones (Sagy et al. 2007).

3 � Fractal Characterization

Fractal mathematics were developed to describe phenomena 
that are seemingly random and are difficult to describe using 
Euclidean geometry. They are described as objects having 
a similar or identical pattern when observed at different 
scales (Mandelbrot 1967, 1982). In applying this to describ-
ing fracture roughness, studies found that surfaces exhibit 
self-affine fractal properties (Brown 1987; Power and Tul-
lis 1991; Kulatilake et al. 1995; Renard et al. 2006; Tatone 
2009). This contrasts from the more general class of fractal 
objects, self-similar fractals, in that self-affine fractals have 
different scaling values along the vertical and horizontal ref-
erence axes, whereas self-similar fractals scale isotropically 
(Power and Tullis 1991). This has implications on the meth-
ods used to analyze the rough surfaces since those based on 
self-similar fractals do not necessarily apply to self-affine 
fractals (Mandelbrot 1985; Kulatilake and Um 1999).

This scaling behavior is described as a power law 
observed as a line in logarithmic space in both the horizontal 
and vertical axes. The slope of this line is either directly or 
indirectly related to the fractal dimension, D , which can be 
used to describe the fractal’s complexity (Malinverno 1990; 
Power and Tullis 1991). The Hurst exponent, H (named for 
the work done by Hurst (1951)), is directly related to D as 
H = E − D , where E is the number of spatial dimensions 
in which the fractal is measured (i.e., 2 for profiles, 3 for 
surfaces). D values for rock discontinuities typically range 
between 1 and 1.5 for profiles (possible range of 1–2) and 
2–2.5 for surfaces (possible range of 2–3) (Brown 1987). 
This agrees with the definition of self-affine fractals where 
D = 1.5 for profiles compared to the self-similar definition 
where D = 2 (Brown 1987). The H value is more fundamen-
tal in describing fractals (Gallant et al. 1994). However, D 
and H are used interchangeably in literature (Brown 1987, 
1995; Barnsley et al. 1988; Malinverno 1990; Odling 1994).

Several methods have been proposed to determine the 
D value of surfaces but with sometimes conflicting results 
(Kulatilake et al. 1995). This can be attributed to inaccurate 
surface measurement or errors in applying fractal concepts 
(Kulatilake et al. 1995; Tatone 2009). Kulatilake and Um 
(1999) also suggest that the amplitude parameter, which is 
the coefficient of the fractal power law relationship, is neces-
sary to characterize roughness as a fractal.

In this work, we focus our discussion on those methods 
that have been proven for the quantification of rough sur-
faces: the roughness-length method (Malinverno 1990), the 
PSD method, and the root-mean-square correlation function 
(Renard et al. 2006; Candela et al. 2009). These methods 
approach the characterization of roughness through different 
principles and have their own advantages and drawbacks. A 
number of other fractal methods that can potentially char-
acterize rock roughness exist (Odling 1994; Kulatilake et al. 
1998; Candela et al. 2009; Ge et al. 2014; Ban et al. 2018) 
but are not discussed here.

3.1 � Roughness‑Length Method

The roughness-length method calculates a standard devia-
tion within local fitting lines or planes with respect to a 
“window”, defining local areas for best-fit planes. The 
method was originally applied to 2D profiles (Malinverno 
1990; Kulatilake and Um 1999) but was easily adapted for 
3D surfaces (Lanaro 2000; Fardin et al. 2001). The surface 
is first subdivided into “windows” with a pre-determined 
size appropriate for processing (Fig. 7). The standard devia-
tion relative to the local best-fit plane within each window 
is determined. A log–log plot relating the standard devia-
tion and the window size is produced by varying window 
sizes and calculating the mean for each. This relationship 
is defined as

(17)S(w) = RMS(w) =
1

nw

nw∑
i=1

√
1

mi − 2

∑
j∈wj

(
zj − z̄

)2
,

Fig. 7   Roughness-length method. Window subdivision on rock sur-
face is carried out with square windows that are afterwards fitted to 
the points within the local fitting plane (modified from Fardin et al. 
2001)
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where nw is the number of windows, mi is the number of 
points in the window, wj is the j th window, and zj − z̄ is the 
difference between the measured surface points and the best-
fit plane within window j (Fardin et al. 2001).

The fractal scaling behavior can be determined by apply-
ing a log–log linear regression to obtain fractal parameters 
from the equation

where w is the window width, S(w) is the average standard 
deviation for a given window length, H is the Hurst expo-
nent, and A is a proportionality constant (Fardin et al. 2001) 
(Fig. 8). While H is often expressed as a measure of rough-
ness, A is also a measure of roughness amplitude dependent 
on the scale of roughness being studied (Kulatilake and Um 
1999) and is similar to the statistical amplitude measured 
using Rq and Ra . While the windows used in this method are 
meant to be square, it has been suggested that anisotropic 
evaluation can be carried out with rectangular windows 
(Lanaro 2000).

Lanaro (2000) found that there is a window size above 
which rock surfaces can no longer be described as a frac-
tal but instead as a stationary random process; this window 
size is called the stationarity threshold. This was determined 
by finding the window size at which S(w) became constant. 
However, Fardin et al. (2001) suggest that the point where the 
fractal parameters, A and D , become constant with increas-
ing sample size provides a more reliable way to establish the 
stationarity threshold. Furthermore, due to their constancy 
above the stationarity threshold, A and D are potentially able 
to describe rock roughness. Based on this observation, Fardin 
(2008) suggests that rock samples of sizes below the stationar-
ity threshold are unable to fully characterize rock roughness 

(18)S(w) = AwH ,

and samples should be greater than this threshold to fully char-
acterize field-scale roughness.

Fardin et  al. (2001) suggest that the roughness-length 
method holds the advantage in removing the global trend 
of the entire rock surface. However, the choice of deciding 
where the windows should be located may be subjective and 
can change significantly the results if there are any significant 
departures from the regression plane.

3.2 � Power Spectral Density

The PSDs of rock surfaces commonly feature a linear trend 
when plotted on a log–log graph. Brown and Scholz (1985) 
refer to this pattern as “red noise” since longer “red” wave-
lengths dominate in the PSD function. This slope can be mod-
eled as a fractal relationship

where C is an amplitude parameter, f  is the dependent vari-
able of the fractal representing the waves that compose the 
profile autocorrelation function, and � is the spectral expo-
nent that is related to the Hurst exponent as � = 2H + 1 
(Berry and Lewis 1980; Power and Tullis 1991; Gallant 
et al. 1994). The value � usually ranges between 2 < 𝛽 < 3 
(Brown 1987). However, this relationship was contested and 
a different relationship D ≅

�

2
+ 2 was proposed, implying 

that H ≅
�

2
 in consideration of a profile fractal, and is sup-

ported by results from Power and Tullis (1991). For rough 
surfaces, C describes the steepness of the surface topography 
while � describes the change with scale.

Another parameter called the “crossover length” defines a 
particular property characterized by the sample length being 
equal to the standard deviation (Wong 1987) and obtained 
when the PSD is transformed into

where b is the crossover length, �0 corresponds to the largest 
wavelength, and D is the fractal dimension. The � refers to 
the standard deviation function of the profile with respect to 
�0 . Here, we see again the relationship with RMS roughness 
parameter, Rq , which was already discussed in the statistical 
context of the PSD. The crossover length is directly related 
to the “topothesy” ( � ) defined by Sayles and Thomas (1978) 
which can normalize the PSD of surfaces at different scales 
along a common slope (Berry and Hannay 1978; Brown 
1987). The form that topothesy takes is determined as

(19)G(f ) = Cf −� ,

(20)∫
f

G(f )df = Rq = �
(
�0
)
= b

(
�0

b

)2−D

,
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Fig. 8   Fractal dimension determination is conducted using log–
log linear regression. The results for the queried window sizes are 
labeled with circles. The slope of the linear regression (in dashed 
lines) denotes the exponent and the intercept denotes the coefficient 
of Eq. (18)
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where � is topothesy. The crossover length and topothesy 
relationship can be expressed as

since both relate to the PSD (Brown 1987). Upon closer 
inspection of these equations, we observe that the RMS 
roughness parameter, Rq , is dependent on the sample length 
scale, and that topothesy and crossover length are measures 
of the sample scale.

Candela et al. (2009) demonstrates the utility of the PSD 
in the determination of the Hurst exponent by comparison to 
different methods of estimation. Their findings show that the 
PSD does not exhibit any decrease of the H when comparing 
weathered and unweathered surfaces on the same fault. How-
ever, they successfully capture anisotropy and match the Hurst 
exponent determination over different scales.

3.3 � Root‑Mean‑Square Correlation Function

Renard et al. (2006) evaluate the anisotropy of roughness for 
a strike–slip fault by determining the fractal characteristics for 
the relationship between the RMS of profile height difference 
and the length-wise interval used to obtain height differences. 
They establish the fractal relationship as

where � is a fitting parameter, Δx is the interval for height 
difference, H is the Hurst exponent and �(Δx) is the RMS of 
the height difference calculated as

which is essentially the standard deviation of the absolute 
height difference along the profile.

This method was used to characterize fault surface rough-
ness anisotropy through comparisons with the Hurst expo-
nent evaluated using profiles captured along and perpendicu-
lar to the slip direction. Renard et al. (2006) use this method 
to characterize fault surface roughness anisotropy through 
comparisons with the Hurst exponent evaluated using pro-
files captured along and perpendicular to the slip direction. 
Candela et al. (2009) report similar results where RMS cor-
relation function is able to exhibit anisotropic roughness 
with respect to the slip surface in comparison with other 
fractal evaluation methods they utilized in their study. They 
find that slip direction can be identified from directional 
RMS correlation function roughness, and that changes in 
H obtained through RMS correlation function effectively 
capture the weathering processes of surfaces exposed to cli-
mate. This difference with respect to the PSD method dis-
cussed in Sect. 3.2 (analyzing the same dataset yet unable to 
distinguish between weathered and unexposed surfaces) is 

(22)� = b2D−2

(23)�(Δx) = �(Δx)H ,

(24)�(Δx) =

√
1

N

∑
L

|z(x) − z(x + Δx)|2,

attributed to the RMS correlation function method amplify-
ing short wavelength features caused by weathering (e.g., 
pitting) (Candela et al. 2009).

4 � Directional Characterization

Roughness characterization is recommended to be con-
ducted along the direction of slip whether it is known or 
estimated (ISRM 1978). However, the process to capture 
geometric anisotropy has been relatively limited to evalua-
tion of profiles set along different directions. For example, 
the PSD of profiles extracted parallel and perpendicular to 
fault slip has been of use to geophysicists in understanding 
faulting mechanisms (Power and Tullis 1991). RMS correla-
tion function has also been proven to characterize anisotropy 
in exposed fault structures although this also required the use 
of parallel profiles obtained along chosen directions (Renard 
et al. 2006; Candela et al. 2009).

The directional roughness metric method directly links 
the analysis direction (i.e., direction of interest) with the 
roughness and its shear response without requiring the 
extraction of profiles (Grasselli et al. 2002; Grasselli and 
Egger 2003; Tatone and Grasselli 2009). Shear resistance 
increases based on the relative area of steeply sloped contact 

Fig. 9   Surfaces are constructed using triangles which have an abso-
lute dip direction referred to as “true dip”, � . When analyzing rough-
ness along a given analysis direction ( � ), each shear-facing triangle 
produces “apparent dip”, �∗ , that is obtained as a relationship with � 
and � according to Eq.  (26). Each triangle’s �∗ is then used to con-
struct the cumulative distribution (after Tatone and Grasselli 2009)
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points found on a surface. The slopes and distribution of 
these contacts change depending on the analysis direction 
which changes the transmission of forces across the joint. 
This implies that only the potential contact areas should be 
considered in the evaluation of roughness influencing shear 
strength of rough joints (Grasselli et al. 2002). The core of 
this idea is similar to the Z2 statistical parameter where the 
slope of the function is directly measured from a profile. 
However, the directional roughness metric encompasses a 
three-dimensional approach with greater consideration to 
the potential contact areas. Z2 is also not selective of shear-
ing direction.

The analysis method begins with the surface being recon-
structed from point elevation measurements as a triangular 
polygon mesh. Triangles facing against the analysis direction 
are kept for analysis while the other triangles are filtered out 
since only the fraction of the surface facing against the anal-
ysis direction can provide shear resistance. The strike and 
dip concepts used in structural geology are used to describe 
each triangle’s influence on roughness. An apparent dip is 
determined based on a triangle’s normal vector in relation 
to the analysis direction. These are related as

where �∗ is the apparent dip angle, � is the true dip of the tri-
angle, and α is the angle between the normal vector azimuth 
and the analysis direction (Grasselli et al. 2002) (Fig. 9). A 
decreasing cumulative area fraction distribution with respect 
to �∗ is obtained by summing the triangular area fraction 
with an apparent dip greater than �∗ for each queried �∗ 
(Fig. 10). This provides a power distribution fitted as

(25)tan �∗ = − tan � cos �,

(26)A�∗ = A0

(
�∗
max

− �∗

�∗
max

)C

,

where A0 is the normalized cumulative area of all polygons 
facing the analysis direction, �∗

max
 is the maximum measured 

apparent dip angle, and C is the fitting parameter. The fit-
ting parameter, C , must be determined using a non-linear 
regression method since the log–log transformation of this 
equation results in a non-linear relationship. By obtaining 
these parameters based on a shearing direction, roughness 
anisotropy can be clearly observed (Tatone and Grasselli 
2009).

Fig. 10   The cumulative distribution of potential contact area, A�∗ , with respect to apparent dip, �∗ , and showing the fitted distribution, C

Fig. 11   Directional roughness metric plotted radially along the rock 
surface based on the direction along which roughness is calculated. 
The line corresponds to roughness and expresses the parameter 
A0�

∗
max

∕(C + 1)
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After determining the fitting parameter, C , the maximum 
apparent dip angle, �∗ , and the normalized potential contact 
area, A�∗ , for every given analysis direction, a radial plot 
can be created to describe directional roughness (Fig. 11). 
The parameter �∗

max
∕C was originally proposed by Grasselli 

et al. (2002) which has been shown to qualitatively reflect 
roughness anisotropy. However, Tatone and Grasselli (2009) 
found that the area under the fitted distribution curve, cal-
culated as A0�

∗
max

∕(C + 1) , better describes roughness ani-
sotropy since it considers the total potential contact area, 
the concavity of the fitting curve, and the steepest apparent 
dip experienced along the analysis direction. The parameter 
A0�

∗
max

∕(C + 1) carries a more rigorous mathematical expla-
nation by considering the area under the fitting curve with 
a range of C ∈ [0,∞) and avoids excessively large values as 
C → 0 . The parameter A0 provides a measure of the contact 
area but tends to vary slightly around the value 0.5 and may 
not carry much significance in characterizing directional 
roughness (Tatone and Grasselli 2009; Liu et al. 2017; Tian 
et al. 2018). However, in cases of significant differences of 
A0 along different directions (e.g., ripples), the roughness 
parameter can be described as 2A0�

∗
max

∕(C + 1) to be com-
parable with the simplified case of A0 = 0.5 that produces 
the parameter �∗

max
∕(C + 1).

The parameter �∗
max

 tends to vary significantly with con-
siderable dependency on the measurement resolution as it 
was observed that this parameter tends to approach 90° with 
increasing measurement resolution. Also, large variations of 
�∗
max

 have been measured from samples created as replicas 
of the same fracture surface (Tatone 2009; Tian et al. 2018) 
showing unreliability in using this parameter. With this con-
sidered, Tian et al. (2018) propose that �∗

max
 can be fixed as 90° 

and resultant fitting parameter denoted as C′ . The reasoning 
for this adjustment is that with increasing resolution eventu-
ally a 90° angle would be observed whereas C is a more con-
sistent parameter. Their study found little difference between 
the original parameter by Tatone and Grasselli (2009) and the 
modified directional roughness metric 90◦∕

(
C� + 1

)
 , implying 

that �∗
max

 is not significant in the estimation of roughness. For 
ideal situations where the fitting curve follows a power distri-
bution closely and the actual �∗

max
 is sufficiently high enough, 

this assumption in calculating C′ may be reasonable.

5 � Discussion

5.1 � Applications

The mechanical and fluid flow properties of a fracture are 
highly dependent on the surface roughness. It is known that 
contacting matched surfaces only connect at portions of the 
total surface (Dieterich and Kilgore 1994; Grasselli et al. 2002; 
Zhao et al. 2018). This complicates mechanical property esti-
mation in addition to the challenges already associated with 

roughness characterization. However, roughness characteriza-
tion and the mechanics of surface interaction have been dem-
onstrated to exhibit empirical correlation (Tse and Cruden 
1979; Brown and Scholz 1986; Maerz et al. 1990; Yu and 
Vayssade 1991; Olsson and Brown 1993; Yang et al. 2001; 
Tatone and Grasselli 2010; Jang et al. 2014). Thus, making 
correlations between roughness parameters and shear strength 
and aperture help reframe the variability of roughness into 
parameters suitable to estimate mechanical and hydromechani-
cal behavior for rough interfaces.

5.1.1 � Shear Strength Evaluation

Prediction of shear strength of rock joints accounting for 
roughness was pioneered by Barton (1973) through empirical 
relationships involving the JRC, which was back-calculated 
from direct shear test results. Example profiles exhibiting a 
range of JRC were later established by Barton and Choubey 
(1977). This relationship was implemented in determining 
the slope of the Mohr–Coulomb failure criterion using the 
equation

where the JRC is implemented in the friction angle term sen-
sitive to the joint wall compressive strength parameter ( JCS ) 
and the normal stress ( �n ). The parameter �r is defined as the 
residual friction angle meant to represent the shear strength 
after exceeding peak strength. Example profiles representing 
a range of JRC values empirically correlating roughness with 
the peak shear strength envelope was published by Barton 
and Choubey (1977). However, usage of these profiles to 
evaluate JRC is a qualitative and subjective procedure with 
significant variance observed between practitioners (Beer 
et al. 2002). This implies that JRC-related methods cannot be 
efficiently accounted for in design standards and highlights 
the need for an objective measure of roughness. To introduce 
objectivity in estimating JRC, correlations against rough-
ness parameters determined from digitized JRC profiles were 
proposed with relatively successful results (Tse and Cruden 
1979; Maerz et al. 1990; Yu and Vayssade 1991; Yang et al. 
2001; Tatone and Grasselli 2010; Jang et al. 2014).

Most roughness parameters used in estimating the JRC 
for shear strength do not explicitly consider directionality 
of roughness (i.e., roughness anisotropy) (Liu et al. 2018) 
and include parts of surfaces that theoretically should not 
contribute to shear strength with certain directions (leeward 
side of asperities). Tatone and Grasselli (2010) adapted the 
directional roughness metric �∗

max
∕(C + 1) for use in 2D pro-

files by simply obtaining the cumulative length distribution 
of increasing �∗ values in the analysis direction. This met-
ric was correlated with digitized and modified JRC profiles 

(27)� = �n tan

(
JRC × log

(
JCS

�n

)
+ �r

)
,
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derived from Barton and Choubey (1977) and provided 
fairly agreeable results. Anisotropy was observed since 
the directional roughness metric going both forwards and 
backwards in the same profile was different. This added to 
the variability in correlating �∗

max
∕(C + 1)2D to the JRC. To 

correlate the JRC with the directional roughness metric, the 
average of the forward and backward metric was used. Ani-
sotropy is expected as the direction of shear when selecting 
these profiles was not explicit or considered in Barton and 
Choubey (1977).

The peak shear strength criterion introduced by Grasselli 
and Egger (2003) and further updated by Cottrell (2009, as 
cited by Tatone et al. 2010) directly implements the direc-
tional roughness parameter in shear strength prediction as

where �n is the normal stress applied, �t is the tensile 
strength of the material, �b is the basic friction angle, B is 
an empirical fitting parameter, A0 is the normalized total 
potential contact area, and �∗

max
∕(C + 1) is the directional 

roughness metric. The fitting parameter B is sensitive to the 
resolution of the mesh and the length of the sample. This 
fitting parameter is discussed along with the effects of reso-
lution on shear strength in Sect. 5.3.

Further modification on the peak shear strength criterion 
by Grasselli and Egger (2003) was done while retaining the 
roughness parameters A0 , C , �∗

max
 (and subsequent modifica-

tions to these parameters) to expand the range of applicability 
to areas where Eq. (28) does not apply. These have typically 
taken the form

where �sr is referred to as the roughness contribution angle 
that is the subject of proposed modification. This form devi-
ates from Eq. (28) by removing the maximum peak friction 
angle term, 

[
1 + exp

(
−

�∗
max

C+1

�n

9A0�t

)]
 . �sr is used here as a 

catch-all term for surface roughness since the modifications 
made to the peak shear strength criterion in each study con-
sider different mechanisms for the shear strength contribu-
tion of roughness.

Xia et al. (2014) suggested a peak dilatancy angle function, 
ip , as the sole contributor of roughness to shear strength as

Tang and Wong (2016) expanded on Eq. (30) by applying a 
“joint contact state coefficient”, JCC , that considers the match-
ing between both sides of a joint as

(28)� =

[
1 + e

−
�∗max

C+1
×

�n

9A0�t

]
�n tan

[
�b +

(
�∗
max

C + 1

)B
]
,

(29)� = �ntan
(
�b + �sr

)
,

(30)

�sr = ip =
4A0�

∗
max

C + 1

[
1 + exp

(
−

1

9A0

×
�∗
max

C + 1
×
�n

�t

)]
.

where � = d∕l , or the ratio of the displacement between two 
matching surfaces ( d ) to the length of the sample ( l ). Yang 
et al. (2016) proposed a joint effective asperity angle, �e,that 
both considers the asperity angle and the JCS term used in 
Eq. (29) as

Liu et al. (2018) use a modified apparent dip distribution 
fitting considering the ratio of the initial contact area to the 
total potential contact area. While this fitting is similar to the 
directional roughness metric method discussed in Sect. 4, it 
instead produces a characteristic angle, �∗ , and a parameter 
representing the distribution, n . These parameters are used 
along with the average surface height from the fitting plane to 
obtain a peak dilatancy angle that tends to 0 as �n → ∞ . These 
parameters are implemented as a peak dilatancy angle which 
is used in Eq. (29) as

where �c is the unconfined compressive strength in MPa and 
h is the average joint height in mm with respect to the best-fit 
plane. The method to determine h is the 3D equivalent to Ra 
determined using Eq. (1). Tian et al. (2018) also propose a 
modification to the directional roughness metric parameters 
as mentioned in Sect. 4. This produces a peak shear strength 
criterion using C′ as the sole roughness parameter along with 
normal stress and tensile strength in determining the peak 
dilation angle as

5.1.2 � Aperture Evaluation

When two rough surfaces are placed against each other, 
void space will always exist between them regardless of 
their matching. This effect is often due to degree of mis-
matching of asperities that can exist at any scale dimen-
sion. When describing rock mass discontinuities, the space 
between two interacting surfaces is referred to as “aperture” 
(ISRM 1978). In rock masses, discontinuity apertures are 
capable of transporting fluids much faster than intact rock. 
While knowing the aperture may help understand fluid flow, 

(31)

�sr = JCC × ip =

[
1[

1 + 8A0�
∗
max

∕(C + 1)
]
× �

]

×
4A0�

∗
max

C + 1

[
1 + exp

(
−

1

9A0

×
�∗
max

C + 1
×
�n

�t

)]
,

(32)�sr = �e =
�∗
max

C0.45
exp

(
−

�n

JCS
C0.75

)
.

(33)�sr = ip =

(
�∗

n

)0.88

× h × exp

(
−
�n

�c
× h2

)
,

(34)�sr = ip =
160 × C�−0.44

�n∕�t + 2
.
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its estimation is made difficult with stresses and resultant 
displacements acting on the discontinuity since they are 
affected by surface roughness. Since this creates complexity 
on the fluid dynamics occurring in a rough fracture, aper-
ture effects on fluid flow can be simplified as two parallel 
plates. This concept is used in the cubic flow law which 
states that the laminar flow rate between two parallel plates 
is proportional to the cube of the aperture (Zimmerman and 
Bodvarsson 1996). This is typically valid for closed frac-
tures under high normal stress (Witherspoon et al. 1980); 
however, variations in aperture and turbulent flow due to 
roughness can cause significant deviation from the cubic 
flow law (Zimmerman and Bodvarsson 1996). Although this 
has provided a useful approximation, modern evaluation of 
fluid flow through joint apertures is possible using digitized 
surfaces from computed tomography scanning (Crandall 
et al. 2010; Jing et al. 2017) and direct surface scanning 
(Tatone and Grasselli 2012; Busse et al. 2015; McCraw et al. 
2016) in fluid dynamics simulations.

The effects of stresses on aperture are measurable but 
require consideration of the roughness of the contacting sur-
faces. As previously mentioned, fractured rock surfaces do not 
perfectly match when aligned back together as evidenced by 
contact area (Dieterich and Kilgore 1994; Zhao et al. 2018) 
and aperture studies (Yeo et al. 1998). The imperfect contact 
affects the way that normal stress, shear stress, shear displace-
ment, and roughness geometry are interrelated. For example, 
shear displacement of a rough surface causes dilation which 
can affect its normal stress given displacement constraints 
along the normal direction. Another example is when rough-
ness affects the contact area on which normal force is applied 
and can change the stiffness of rock across a joint (Raven and 
Gale 1985; Olsson and Brown 1993).

Roughness characterization has typically been used to 
either observe the mechanical and geometric effects to which 
aperture is sensitive or to directly account for those effects 
to explain deviations from the cubic flow law. When apply-
ing roughness characterization to a fracture, the combined 
effects of the two surfaces are analyzed by obtaining the dif-
ference between the surface heights. The resultant difference, 
which is essentially the aperture distribution, can be analyzed 
as a composite surface as it contains information from both 
surfaces of the fracture (Brown 1995; Matsuki et al. 2006). 
As the simplest of roughness characterization methods, sta-
tistical concepts can be easily applied to analyze the varia-
tion of aperture. Brown and Scholz (1986) demonstrated its 
potential use by fitting a negative exponential distribution on 
the upper tail of the aperture distribution for varying normal 
stress states to predict aperture closure. However, Olsson and 
Brown (1993) found that the predicted stiffness was higher 
than expected when the surfaces were matched at zero shear 
displacement yet agreed more closely with laboratory results 
when surfaces were displaced. This relationship is likely to be 

scale dependent as Koyama et al. (2006) found that the mean 
and standard deviations of aperture increase with sample size.

Functional roughness characterization methods, includ-
ing the PSD, variogram analysis, fractal characterization, and 
the aperture density distribution, have also been broadly used 
to characterize aperture. Brown et al. (1986) found that the 
PSD aperture distribution profile plateaus at lower frequen-
cies compared to the surface profile PSD. This causes the 
Rq value of the aperture profile to plateau even as the profile 
length increases. The corresponding wavelength at which this 
change occurs is called the “correlation distance”, represent-
ing the length above which two surfaces can be considered as 
“matched” (Brown and Scholz 1985). These are similar to the 
“mismatch length” discussed by Olsson and Brown (1993). 
Lanaro (2000) equated this to the stationarity threshold as the 
plateau in fractal parameters is closely related to the plateau 
found in the aperture PSD where wavelengths above the cor-
relation distance no longer match between each other. Brown 
et al. (1986) also used a frequency-dependent aperture/surface 
PSD ratio

to understand the relationship between the surfaces and their 
corresponding aperture. They show that R(f ) is equal to 2 
when approaching higher frequencies. This implies that the 
two surfaces become uncorrelated and independent at higher 
frequencies. As the variance of the sum of two independ-
ent random functions is equal to the sum of the respective 
variances of these functions, the aperture PSD would show 
twice the variance of the surface PSD when they become 
uncorrelated (Brown et al. 1986). A semivariogram analysis 
by Yeo et al. (1998) was done to compare the differences in 
correlation of the aperture distribution with respect to the 
shearing direction. The aperture was more closely correlated 
perpendicular to shear compared against parallel to shear.

5.1.3 � Synthetic Roughness

When obtaining quantitative measures describing surface 
roughness, the question may arise whether the relation-
ship between the data and the result is bidirectional or if 
there exists no inverse operation. Brown (1995) describes a 
methodology modified from Barnsley et al. (1988) to create 
an anisotropic surface and aperture by applying the inverse 
Fast Fourier Transform with the PSD. A surface generation 
program is used to create an initial surface and an aperture 
distribution. Using the power law relationship (Eq. 19), the 
PSD can be estimated if the proportionality constant ( C ) and 
exponent ( � ) are known. Rq can be used to approximate C 
through Eq. (16) due to its relationship with height variance. 

(35)R(f ) =
aperture PSD

surface PSD
=

Gaperture(f )

Gsurface(f )
,
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Similarly, � can be estimated through the fractal dimension, 
D = (7 − �)∕2 or the Hurst exponent, H . Brown (1995) con-
siders these two parameters to be sufficient in generating 
realistic surfaces.

The algorithm begins by defining complex number ampli-
tude spectrum using polar coordinates. Random number 
generators providing uniformly distributed numbers between 
0 and 2π are used in defining the phase coordinate while the 
radial coordinate ( r ) follows an equation derived from the 
PSD relationship as

where i and j relate to the spectral frequencies of the surface, 
the anisotropy factor controls the trend of the surface along 
the x and y coordinates, and H is the Hurst exponent related 
with the fractal dimension ( D ) and the spectral exponent ( � ). 

(36)r =

(
i2 +

j2

(anisotropy factor)2

)−
H+1

2

,

Candela et al. (2009) provide a similar algorithm that also 
considers anisotropy (Fig. 12).

While surface generation is relatively straightforward, 
generation of the opposite surface for aperture requires 
closer attention. Brown (1995) originally conceptualizes 
the second surface to be generated with consideration to 
the “mismatch length scale”. Two wavelengths are sug-
gested by Brown (1995) for the mismatch length scale. 
The first estimate is the wavelength at which the ratio of 
the aperture-surface PSD ratio, R(f ) , crosses unity and 
is denoted as �(1)c  . The second estimate of the mismatch 
length scale is made using R(f ) = 2 and is denoted as �(2)c  . 
The opposite surface is generally correlated at larger wave-
lengths. However, this correlation ends when wavelengths 
shrink below the mismatch length scale. Brown (1995) 
demonstrates the expected aperture PSD when this cor-
relation scheme is implemented, exhibiting a constant flat 
section at the larger correlated wavelengths (Fig. 13). This 
is achieved by using a second random number generator 
different from the one used for generating the initial sur-
face, thus, decorrelating the two surfaces and creating the 
characteristic spectral slope. Amplitudes for wavelengths 
larger than the mismatch length scale are determined 
with the same random numbers used to generate the first 
surface.

However, Glover et al. (1998) argued that the correlation 
change relating to the mismatch length scale should not be a 
sharp discontinuity but rather a frequency-dependent grada-
tion (Fig. 13). This would produce more realistic aperture 
PSD functions. The rate at which two surfaces match with 
respect to the frequency is governed by the weighting func-
tion, �(k),

(37)�(k) = �roll-off

(
1 −

k

2k
(2)
c

)
,

Fig. 12   Synthetic surface 
roughness can be produced 
with a anisotropic roughness 
and b isotropic roughness (after 
Candela et al. 2009)
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Fig. 13   PSD comparison showing the synthetic aperture genera-
tion methods suggested by Brown (1995) (solid) and by Glover et al. 
(1998) (dashed). A threshold for the PSD exists at the mismatch 
length frequency (where the discontinuity occurs) for aperture syn-
thesis
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where �roll-off is the roll-off parameter, k is the frequency (or 
wavenumber), and k(2)c  is the frequency (based on the cor-
responding wavelength �(2)c  ). �roll-off adjusts the sharpness 
of the bend in the PSD and k(2)c  adjusts the mismatch length 
frequency. Glover et al. (1998) found that k(2)c  produces more 
realistic surfaces. The weighting function is implemented as

where R1 and R2 are the random numbers generated inde-
pendently for each surface. When generating the aperture, 
R3 defines the random number used in determining the 
phase coordinate. This gradually increases the correlation 
between the two surfaces as the frequency decreases produc-
ing more realistic apertures. However, later work by Ogilvie 
et al. (2006) recognizes that algebraically combining sets 
of random numbers breaks down the uniform distribution 
produced by the random generators. Thus, they propose an 
algorithm gradually swapping numbers between these two 
sets with the goal of gradual correlation between the aper-
ture and the initial surface as the wavelength increases.

Matsuki et al. (2006) extend the use of the aperture-sur-
face ratio by fitting a curve along the R(f ) relationship to 
generate synthetic apertures larger than the measured sample 
through extrapolation. This assumes that a surface PSD will 
continue to follow a power law with increasing wavelength 
as the aperture approaches a limit. Although this approach 
may provide reasonable results, this relationship may be sen-
sitive to the stationarity threshold which has been observed 
to affect the scaling behavior of rough surfaces (Lanaro 
2000; Fardin et al. 2001, 2004; Fardin 2008).

5.2 � Parameter Selection

In earlier times, it was understood that a single roughness 
characterization method alone is insufficient to fully charac-
terize roughness (Spragg and Whitehouse 1970). However, 
depending on the application many parameters could be use-
ful, while others may not. For example, the averaged height 
parameter, Ra , provides only relative height information and 
does not consider spatial characteristics such as the RMS 
slope parameter, Z2 . The statistical parameters standardized 
by the ISO had greater relevance to the machining industry 
as they provided a quick and easy quality control methodol-
ogy when technology was not sufficiently advanced for more 
sophisticated calculations (Whitehouse 1994).

When using fractal characterization methods, the 
obtained values are sensitive to the method used in charac-
terizing the fractal. The selected input parameters for each 
method and the accuracy of surface measurement can signif-
icantly impact the calculated fractal parameters. As a result, 
there has been some controversy surrounding the suitability 
of fractal approaches for quantifying discontinuity rough-
ness. Some studies have shown different analysis methods 

(38)R3 = R1� + R2(1 − �),

to give conflicting values of D or the analysis method to give 
different results for the same surface when using different 
analysis input parameters (Tatone and Grasselli 2013).

Much of the other published conflicting results can be 
attributed to either poor measurement (i.e., high noise or 
coarse resolution) or erroneous analysis methods (i.e., appli-
cation of self-similar analysis methods to self-affine profiles 
or unsuitable parameter selection for self-affine methods). 
To overcome these problems and achieve consistent esti-
mates of self-affine fractal parameters, an attempt is made 
to create “suggested methods” for the variogram, spectral, 
and roughness-length methods to improve consistency in 
obtaining self-affine fractal parameters (Shirono and Kulati-
lake 1997; Kulatilake et al. 1998; Kulatilake and Um 1999).

Two-dimensional (2D) profiles are projections of the 
topographic elevation of three-dimensional surfaces cap-
tured by a given line on the surface. This process inher-
ently masks some features that the surface may exhibit, of 
which, some may play an important role in roughness shear 
strength (Grasselli et al. 2002). The process of selecting 
2D profiles may also introduce bias that may hide or exag-
gerate key roughness features (Tatone and Grasselli 2009). 
Consequently, a 3D roughness characterization method that 
can effectively integrate all features for surface roughness is 
required especially when shear strength must be estimated.

Surface measurement technologies have advanced to 
a state where detailed measurements can be taken almost 
instantaneously (Tatone and Grasselli 2009). A variety of 
surface measurement techniques have been employed includ-
ing photogrammetry (El-Soudani 1978), fringe projection 
stereo-camera (Grasselli et al. 2002; Tatone 2009; Tatone 
and Grasselli 2009), laser slit scanning (Lanaro 2000), lidar 
(Fardin et al. 2004; Sagy et al. 2007), and laser autosyn-
chronous triangulation scanning (Mah et al. 2013). Com-
puting power has also improved allowing consumer-level 
computers to feasibly process data on such a scale. These 
factors allow for larger, high-resolution surface roughness 
analysis of rock surfaces. Thus, 3D roughness characteriza-
tion methods should be considered, whenever possible, since 
they provide a more representative analysis of the surface 
characteristics and eliminate much of the bias inherent in 
the use of 2D surfaces (e.g., loss of significant asperities, 
relationship of features perpendicular to shear direction).

5.3 � Measurement Resolution and Scaling

Rough surfaces exhibit different patterns in geometry with 
changing scale and can be described using self-affine fractal 
concepts (Brown 1987). A surface that may appear smooth 
to the naked eye, may be described as rough at microscopic 
scales. It would follow that, because of the scale-dependency 
of roughness, changing scale indirectly influences surface 
contact mechanics such as shear strength and dilation. This 
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is especially important as it highlights one of the major bar-
riers in reconciling lab-scale testing and field-scale observa-
tions (Sayles and Thomas 1978; Brown and Scholz 1985; 
Renard et al. 2006; Sagy et al. 2007; Candela et al. 2009).

Tatone and Grasselli (2013) investigated the effects of reso-
lution and scaling on roughness parameters done by previ-
ous work. In their review, it was suggested that the roughness 
is highly sensitive to the resolution of the profile or surface 
measurement. Variation in measurement resolution between 
the various studies may have skewed results from scaling stud-
ies causing the conflict between reported results. For example, 
Fardin et al. (2004) and Fardin (2008) find to have consistent 
surface scanning throughout the work completed within their 
respective studies. However, the results they produced con-
flicted (the former with negative scale effects and the latter 
with positive scale effects) since the earlier study had a lower 
resolution. This sensitivity to resolution complicates rough-
ness analysis. As such, it is recommended that the measure-
ment resolution must be reported and that the highest resolu-
tion possible is used to capture a greater amount of roughness 
features (Tatone and Grasselli 2013). This would also allow 
for the investigation of roughness at lower resolutions as the 
surface can be resampled at a later time if necessary.

Since the measured roughness can change significantly 
with resolution, these effects should be accounted for when 
estimating physical behavior. The effects of sampling are 
apparent in work by Yu and Vayssade (1991) where they 
determined empirical relationships between roughness param-
eters and the JRC that yielded equations strongly sensitive 
to the sample interval. Tatone et al. (2010) suggest account-
ing for resolution in the calibration of the B parameter of the 
equation suggested by Cottrell (2009) (Eq. 28), which is the 
exponent of the roughness parameter �∗

max
∕(C + 1) within 

the friction angle term. A power relationship between B and 
the surface resolution of the form B = a(r)p can be made 
where r is the surface resolution while a and p are both fitting 
parameters. B for each surface resolution is determined from 
Eq. (28) using a single shear strength test and a series of sur-
face meshes corresponding to r . This allows for the prediction 
of shear strength using the roughness parameter given an arbi-
trary measurement resolution. However, this relationship must 
be further studied as it was only verified for a single series of 
surface roughness replicas and the best possible resolution 
should still be used to capture as many roughness features as 
possible (Tatone et al. 2010; Cottrell et al. 2010).

6 � Roughness Calculator Application

The analysis of roughness can be tedious and computation-
ally intensive especially considering the importance of hav-
ing higher quality resolution and larger sample sizes. To 
alleviate the time and effort put into the processing stage, 

a 2D and 3D roughness calculator was created as an open-
source package by the authors implementing many of the 
methods discussed in this work. The package is available 
on the Geomechanics Group @ University of Toronto web-
site (http://www.geogr​oup.utoro​nto.ca/?ddown​load=5130). 
The Qt C++ framework (The Qt Company 2018) was used 
to develop the graphical user interface and the QwtPolar/
Qwt libraries (Rathmann 2014; Rathmann and Wilgen 2016) 
were used for scientific plotting. Linear algebra operations 
were handled by the Armadillo Linear Algebra Library 
(Sanderson and Curtin 2016). This calculator accepts STL 
files for 3D surface processing and 2D CSV files for 2D 
profile processing. The spatial dimension is detected based 
on the type of file provided. The application is discussed in 
detail in Appendix 2.

7 � Conclusions

Three distinct categories of methods are described in this 
work: statistical, fractal, and directional characterizations. 
Although we categorize these methods into the mentioned 
types, many were developed with similar ideas between 
these categories. Statistical characterization draws from 
the branch of mathematics mentioned in the name to con-
strain the apparent random nature of the surface into a 
form of structure. This category was further subdivided 
into parameter and functional characterization. Parameter 
characterization provides singular values that describe the 
general height or spatial trends of the surface. Functional 
approaches provide a visual structure to describe rough-
ness with greater detail than single parameters, such as the 
PSD with its spectral description of different waves that 
comprise a rough surface.

The PSD also lends to fractal characterization which 
describes the relationship of roughness with different 
scales of observation. Rough surfaces are considered to 
be self-affine fractals which are described using a fractal 
dimension. However, there are many different methods that 
require deeper understanding of their individual approach. 
These differences in approach should be carefully consid-
ered when applying them to practice.

Directional characterization provides understanding of 
the anisotropy of roughness on surfaces. Early attempts to 
differentiate roughness anisotropy have amounted to sim-
ply orienting profiles along different directions of interest. 
However, this method of measurement potentially con-
strains localized features to few profiles when they may 
be critical to roughness characterization in all profiles. 
The directional roughness method presented in this work 
(Grasselli et al. 2002; Grasselli and Egger 2003; Tatone 
and Grasselli 2009) takes the entire surface into considera-
tion with exclusion only to areas considered not in contact 

http://www.geogroup.utoronto.ca/?ddownload=5130
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when considering a hypothetical shear displacement on the 
surface. However, this method is sensitive to measurement 
capabilities and care should be taken to ensure the surface 
quality before undertaking analysis.

Roughness has been relatively difficult to quantify and 
is apparent in the multitude of methods proposed. How-
ever, because these methods share similar ideas, it is not 
necessarily difficult to understand the mechanisms of their 
characterization. There is great value in having quantita-
tive measures of roughness that removes the dependence 
on subjective experience. The discussed roughness char-
acterizations can be applied to shear strength prediction, 
aperture evaluation for fluid transmissivity analysis, and 
synthesis of virtual rough surfaces. Moreover, the authors 

provide an open-source program to process roughness sur-
face data.
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Appendix 1

The formulas used and the works that they are derived 
from are listed below in Table 1.

Table 1   A summary of the roughness parameters and typical symbols seen in literature

Variable Formula Description 2D program 3D program Sources

CLA,Ra
CLA = 1∕L

x=L∫
x=0

|z|dx Average height from profile 
reference

Y – Whitehouse (1994) and ISO 
(1997)

RMS,Z1,Rq

RMS =

√
1

L

x=L∫
x=0

z2dx

Similar to CLA, variance of 
height

Y – Myers (1962) and Whitehouse 
(1994)

Rsk
Rsk =

1

R3
q

(
1

L
∫
L

z3dx

)
Profile skewness Y – Whitehouse (1994) and ISO 

(1997)

Rku
Rku =

1

R4
q

(
1

L
∫
L

z4dx

)
Profile kurtosis Y – Whitehouse (1994) and ISO 

(1997)

Z2,RΔq

Z2 =

√
1

L

x=L∫
x=0

(
dz

dx

)2

dx

RMS of profile slopes Y – Myers (1962)

Z3,R
�
Δq

Z3 =

√
1

L

x=L∫
x=0

(
d2z

dx2

)2

dx

RMS of profile curvature Y – Myers (1962)

Ai
Ai = tan−1

�
1

L

N−1∑
i=1

��zi+1 − zi
��
�

Average height increase 
angle

Y – Tatone (2009)

Rp
RP =

Lt

Ln
=

∑N−1

i=1

√
(xi+1−xi)

2
+(zi+1−zi)

2

Ln

Ratio of true length over 
nominal length

Y – El-Soudani (1978)

Rs RS =
At

An

Ratio of true surface area 
over nominal surface area

– Y El-Soudani (1978)

Sp Sp =
1

n

n∑
i=1

Sp,i
Mean peak spacing Y – Whitehouse (1994)

Sm Sm =
1

n

n∑
i=1

Sm,i

Mean zero-width spacing – – Whitehouse (1994) and ISO 
(1997)

RΔa
RΔa =

1

L

L∫
0

|||
dz(x)

dx

|||dx
Average slope Y – Whitehouse (1994)

R
�

Δa R
�

Δa
=

1

L

L∫
0

|||
d2z(x)

dx2

|||dx
Average curvature Y – Whitehouse (1994)

R�q R�q =
2�Rq

RΔq

Average wavelength Y – Spragg and Whitehouse (1970, 
1972)

http://www.geogroup.utoronto.ca/?ddownload=5130
http://www.geogroup.utoronto.ca/?ddownload=5130
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Appendix 2

To alleviate the time and effort put into processing roughness, 
a calculator application was developed as an open-source pack-
age by the authors implementing most of the methods dis-
cussed in this work (Table 1). The software and source code 
are open-source and can be obtained at the Geomechanics 
Group @ University of Toronto website (http://www.geogr​
oup.utoro​nto.ca/?ddown​load=5130). Statistical parameters are 
immediately calculated and are typically the fastest to process. 
Functional characterizations are displayed on graphs that can 
be generated then saved by the user. More complex characteri-
zation methods using fractal theory or shear-dependency tend 
to take a large amount of time depending on the number of 
points used. Further analysis on the outputs can be done as all 
raw data is output into text files and input surfaces are rotated 
and translated to align their mean plane along the x–y plane.

Synthetic surface roughness is also implemented based 
on the power spectrum methodology described in Sect. 5.1.3 
(Brown 1995; Candela et al. 2009). A computer generated 
pseudo-random seed is used to generate a 3D square surface 
complying with user-specified Hurst exponents along the 

x- and y-axes based on the code by Candela et al. (2009). 
Afterwards, the surface elevation is scaled down to match 
a target Rq value and the spacing between points scaled to 
match a user-requested length. The 3D surface can be saved 
and triangulated for input using the Delaunay triangulation 
algorithm. For 2D profiles, a slice can be selected from the 
surface along either the x- or y- axis and placed in the import 
queue for processing (Fig. 14).

Before attempting to use 3D characterization methods, 
the surface mesh should be inspected for any holes, gaps, 
and non-useful features. Cropping the surface may be nec-
essary to ensure that the mesh is contiguous. It is recom-
mended to use a third-party STL viewer such as GOM 
Inspect (GOM 2018) or MeshLab (Cignoni et al. 2008) 
prior to processing the data to ensure data quality. Under-
standing 3D characterization methods is important to 
ensure that the results given are not of poor quality as the 
results would have no indication of such. Surface rough-
ness fractal characterization using the roughness length 
method and the directional roughness characterization is 
computationally demanding. The implementations for both 
methods are briefly described below.

Table 1   (continued)

Variable Formula Description 2D program 3D program Sources

p(z) Amplitude density of z(x) Amplitude density function Y – Whitehouse (1994) and ISO 
(1997)

P(z)
P(z) =

z∫
0

p(z)dz
Cumulative amplitude den-

sity function
Y – Whitehouse (1994)

ACVF(�)
ACVF(�) = lim

L→∞

1

L

L∫
0

z(x)z(x + �)dx
Autocovariance function 

of the profile with lag 
distance �

Y – Sayles and Thomas (1977) and 
Thomas (1981)

ACF(�) ACF(�) =
ACVF(�)

R2
q

Autocorrelation function 
of the profile with lag 
distance �

Y – Sayles and Thomas (1977) and 
Thomas (1981)

SF(�) SF(�) = lim
L→∞

1∕L ∫
L

[z(x)

−z(x + �)]2dx = 2R2

q
[1 − ACF(�)]

Structure function of the 
profile with lag distance �

Y – Sayles and Thomas (1977)

D,A, S(w) S(w) = AwH

S(w) = RMS(w) =
1

nw

nw∑
i=1�

1

mi−2

∑
j∈wi

�
zj − z̄

�2

Roughness-length method 
fractal characterization

Y Y Malinverno (1990), Kulatilake 
et al. (1998), Lanaro (2000) 
and Fardin et al. (2001)

G(f )
G(f ) = lim

L→∞

1

L

|||||
L∫
0

z(x)e−i2�fxdx
|||||

2

G(f ) = Cf −�

Power spectral density from 
profile and fractal charac-
terization

Y – Sayles and Thomas (1978), 
Berry and Lewis (1980); 
Brown and Scholz (1985), 
Brown (1987) and Power and 
Tullis (1991)

H �(Δx) = �(Δx)H

�(Δx) =

�
1

N

∑
L

�z(x) − z(x + Δx)�2
Root-mean-square correla-

tion fractal characteriza-
tion

– – Renard et al. (2006) and Candela 
et al. (2009)

�∗
max

∕(C + 1) tan �∗ = − tan � cos �

A�∗ = A0

(
�∗
max

−�∗

�∗
max

)C

Directional roughness metric Y Y Grasselli et al. (2002), Grasselli 
and Egger (2003) and Tatone 
and Grasselli (2009)

http://www.geogroup.utoronto.ca/?ddownload=5130
http://www.geogroup.utoronto.ca/?ddownload=5130
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2.1 Fractal Characterization: Roughness Length 
Method

The roughness length method requires a range of speci-
fied “window sizes” on which the surface is analyzed. 
These windows are divisions of the surface as discussed 
in Sect. 3.1. Although window sizes can be specified, 
the actual windows themselves are sized to capture the 
minimum and maximum vertices along the x- and y-axes. 
This is done by dividing the surface with a set number of 
windows along the shortest side of the surface bounding 
box (defined by the minimum and maximum x- and y-axis 
coordinates) then dividing the surface accordingly. The 
windows are aligned based on the reference system given 
and along the bounding box of the surface.

2.2 Directional Roughness Characterization

In evaluating the directional roughness of a surface, the 
potentially contacting facets are determined by the differ-
ence between the triangle facet normal and the direction 
of shear (Eq. 25). Some differences to the mathematical 
description of the apparent dip angle used for calculation 
of potential contact areas are necessary. While Eq. (25) 
can be applied to each triangular facet of the 3D surface, 
reliance on trigonometric functions should be reduced 
especially with calculations sensitive to rotation. To pro-
vide a more consistent approach to calculating the appar-
ent dip angle, the relationship

(39)cos (�∗ + 90◦) =

�
n − proj

tnorm
(n)

�

‖�n − proj
tnorm

(n)
�‖ ⋅ t

is used, where n is the triangle facet normal vector, t is the 
analysis direction vector and tnorm is the vector normal to 
the analysis direction plane, and proj

tnorm
 is the projection 

function against tnorm . This equation provides mathemati-
cally equivalent results to Eq. (25) but with more robust 
computation than trigonometric functions.

After determining the apparent dip angle of each trian-
gular facet, the triangle areas are binned by the apparent 
dip angle to obtain a cumulative distribution on which 
Eq. 26 can be fitted. A non-linear fitting method is required 
since logarithmic transformation of the equation yields a 

Fig. 14   Synthetic profile gener-
ated in the program using the 
algorithm presented by Candela 
et al. (2009)

Fig. 15   Directional roughness distribution for a 2D profile along the 
positive direction
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non-linear relationship (Tatone and Grasselli 2009). As 
such, the Gauss–Newton fitting algorithm (Björck 1996) 
was directly implemented for the cumulative distribution 
fitting curve. The fitting process is iterative and is stopped 
once the change in the calculated value is less than a user-
defined threshold.

2.3 Graphical Output

In addition to providing the results of roughness data using 
the various methods, the program can provide graphical 
imaging of data. Graphical imaging for 2D profiles is more 
developed due to the simplicity of 2D characterization. 
These graphs provide a view of the fitting performed to 
provide some quality assurance of the resultant param-
eters. Amplitude density characterization is immediately 
comparable with the provided profile and can be used 
to visually judge the validity of the obtained statistical 
parameters (Fig. 2). The apparent angle distribution and 
fitting for the directional roughness method is also pro-
vided to ensure the quality of the fitting (Fig. 15). Frac-
tal roughness characterization with the roughness-length 
method is plotted along with the regression function. The 
autocovariance function, autocorrelation function, and 
structure function are also provided graphically. Finally, 
the PSD can be viewed either with respect to wavelength 
(Fig. 6) or wavenumber.

Graphical presentation in 3D does not have the same vari-
ety of graphs that the 2D version produces, but its usefulness 
is best shown with directional characterization. Radial plots 
can be generated to see the directional change in roughness 
and the roughness metric’s components (Fig. 16a) and a 3D 
graphic of a surface can be produced given that the com-
puter’s rendering capabilities are sufficient (Fig. 16b).
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