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Abstract
This paper investigates the mechanical properties and permeability of chemically corroded rock during deep underground 
tunneling. Nuclear magnetic resonance tests are carried out to quantify the chemical damage of limestone samples at the 
microscopic scale. Coupled hydrostatic pressure-unloading tests at different unloading rates are also conducted on these 
chemically corroded limestone samples to investigate permeability changes and chemical effects on mechanical behaviours. 
Magnetic resonance imaging, T2 spectrum distribution and porosity of the samples are obtained, and the chemical micro 
damage is visualized and quantified. The relationship between permeability and mechanical behaviors of the rock under 
hydrochemical–mechanical coupled effects is investigated. The results show that the permeability development process of 
the chemical corroded samples can be divided into three stages: at the first stage, the permeability initially decreases, and the 
second stage starts at the inflection point of the permeability curve, from where the permeability begins to increase slightly. 
At the third stage, the permeability of the limestone increases dramatically until the sample is ruptured. Chemical corrosion 
and unloading rates have a combined and significant influence on the development of micro cracks in rocks, which is the 
root cause of the permeability changes. A stress-permeability model is proposed to describe the permeability and stresses 
in chemical-corroded limestone; this can be adopted for other sedimentary rocks.

Keywords  Nuclear magnetic resonance (NMR) · Micro damage · Hydrochemical–mechanical coupled effects · Unloading · 
Permeability

List of Symbols
NMR	� Nuclear magnetic resonance
MRI	� Magnetic resonance imaging

ESP	� Stress-permeability model
Dp	� Unloading percentage
�s	� Peak strength of the limestone samples
�i	� Unloading stress
D	� Damage variable
n0	� The porosity of the intact sample
n	� The porosity of the sample after suffered external 

damage
nr	� The residual porosity of the sample under external 

stress
k	� Permeability of the sample
Q	� Flow rate
u	� Kinematic viscosity
L	� The length of the test sample
p	� Water pressure
A	� The cross-sectional area of the sample
a	� The stress sensitivity coefficient
b	� Material constant
Rate	� The reaction rate of calcspar
K	� The equilibrium constant
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Ω	� The solution saturation index
pl	� The density of limestone
pc	� The density of calcspar
Vc	� The molar volume of the calcspar
r	� The chemical reaction equivalent parameter
Vc	� Molar volume of the calcspar
t	� The chemical corrosion time

1  Introduction

Major structures such as reservoir dams, tunnels and nuclear 
power plants are constructed in/on rock mass. Engineering 
rock masses are often surrounded by water, containing complex 
chemical ions with different pH values (Jeffery and Hutchison 
1981). The chemical environment can cause great changes at 
the microscopic level in rock, such as an increase in poros-
ity or micro-structure weakening (Kawakata et al. 1999; Sato 
and Obara 2017; Grgic et al. 2013). These changes may cause 
macroscopic degradation of mechanical properties (Zhou et al. 
2015; Hu et al. 2012; Rohmer et al. 2016) and an acceleration 
of the failure process, leading to further decrease in mechanical 
characteristics and the tendency towards geological disasters 
such as landslides and earthquakes (Steefel and Van Cappel-
len 1990; Croizé et al. 2010). There are several studies on the 
mechanical characteristics of rocks under chemical–mechanical 
coupled conditions (Chai et al. 2014; Chen et al. 2004; Feng 
et al. 2004; Feng and Ding 2007; Gaus 2010; Wojtacki et al. 
2017). However, previous studies are mainly conducted at the 
macroscopic scale and focus on rock under continuous loading, 
such as uniaxial loads or triaxial compression.

During excavations in underground constructions, exter-
nal stresses generate micro cracks inside the rock near the 
working surface, which can be a significant factor affect-
ing the degradation of its mechanical properties (Friedman 
1975). These cracks also enhance the path of chemical ions 
transfer and the permeability of rocks, so that the chemical 
reactions between the rock material and chemical ions are 
accelerated (Cui and Fall 2015), which also hastens changes 
in the mechanical properties of the rock. The damaged zone 
is always near the excavation surface of underground con-
structions, and can be called “the excavation damaged zone 
(EDZ)” (Tsang et al. 2005; Kruschwitz and Yaramanci 2004). 
The fracturing process both at the micro- and macroscopic 
level and stress redistribution, etc., may take place in the EDZ 
during the excavation of rocks, resulting in changes in its per-
meability and mechanical behavior. Permeability also has a 
significant and attenuating influence on mechanical properties 
of rock masses (Sulem et al. 2007). Thus, chemical effects on 
mechanical properties and permeability characteristics of rock 
under external loading conditions are complex.

EDZ occurs in almost all underground structures, e.g. 
tunnels and nuclear waste storage tanks. The mechanical 

properties of the rock in EDZ and its permeability are 
important research areas in different geological engineer-
ing applications such as nuclear waste storage (Zhu and 
Bruhns 2008), gas injection (Rutqvist and Tsang 2002; 
Bouc et al. 2009; Gaus 2010; Gaus et al. 2005), geologi-
cal disasters (Wibberley and Shimamoto 2005) and fluid 
modeling (Cappa and Rutqvist 2011; Rutqvist 2011; Zhang 
et al. 2011). For example, the EDZ in nuclear waste storage 
may provide a pathway for chemical water flow which trans-
ports radioactive wastes to other places thereby accelerating 
the process of degradation of the mechanical properties of 
surrounding rocks (Zhu and Bruhns 2008). Moreover, the 
permeability and mechanical characteristics of the rocks is 
important for CO2 migration predictions and geologic car-
bon sequestration (GCS) site (Rutqvist and Tsang 2002).

During excavation in underground construction works such 
as deep-buried tunnels or caverns, the radial stress (corre-
sponding to the confining pressure in lab tests) of the sur-
rounding rock mass near the working face always suffered 
a cycle of loading and unloading conditions. These loading 
and unloading conditions could lead to EDZ, or even failure 
or the yielding of the surrounding rock masses, such as rock 
burst, bulking, spalling or landslide (Martin et al. 2003). Lots 
of studies have demonstrated that mechanical characteristics 
of rocks are significantly influenced by loading rates, stress 
path, stress and loading history, and chemical corrosion (Ju 
et al. 2019; Kaiser et al. 2001; Martin et al. 1999b; Cantieni 
and Anagnostou 2009; Chen et al. 2016b). According to con-
tinuous mechanism theories (Martin et al. 1999a; Westergaard 
1952; Vutukuri 1974), changes in the internal variables of 
the rock under unloading conditions have a great effect on its 
strength, deformability performances and failure characteris-
tics. Some lab tests also demonstrate that internal variables, 
such as unloading rate or unloading point, are significantly 
associated with the mechanical characters of the rocks (Shal-
abi 2005; Sharifzadeh et al. 2013; Zhang et al. 2010; Qiu et al. 
2010; Liu and Li 2011). In tunnel constructions, unloading 
characters, such as unloading point or unloading rate, have a 
close relationship with construction footage and construction 
timing, which could affect the stability of the tunnel.

In laboratory tests, the triaxial unloading tests, in which 
the axial stress �1 increases or remain unchanged after the 
unloading point, while the confining stress ( �3) decreases, 
are used to simulate the unloading phenomenon during 
tunneling (Brady and Brown 2013; Xue et al. 2017). The 
influence of unloading-confining pressure on the mechani-
cal properties of rock has been investigated through experi-
mental tests (He et al. 2010; Huang et al. 2001; Lemaitre 
and Desmorat 2005; Xie and He 2004; Moradian et  al. 
2016; Munoz et al. 2016; Adushkin et al. 2016). However, 
studies about unloading tests rarely take chemical envi-
ronments into consideration, and the microscopic-scale 
investigations of chemically corroded rocks under states 
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of unloading-confining pressure are few. The mechanical 
behavior of chemically corroded rocks near the excavation 
surface of tunnels has not been clearly understood.

Moreover, as discussed before, external stresses gener-
ate micro cracks inside the rock, which could enhance the 
path of chemical ions transfer thus amplifying the chemi-
cal effects on mechanical characteristics degradation. The 
challenge in understanding the relationship between perme-
ability and mechanical properties as well as the relation-
ship between micro damage and permeability of the rocks 
is long-standing. Some studies have proposed relationships 
between hydro-mechanical properties, permeability and 
rock fracturing (Liu et al. 2009; Chen et al. 2016a; Zhang 
et al. 2015; Li et al. 2014; Zou et al. 2016). Other stud-
ies have investigated and predicted permeability as well 
as its relationship with external loads or porosity of rocks. 
Examples of this include a seepage test on jointed sandstone 
samples under different confining pressures, conducted by 
Wong et al. (2013); investigations by Zhang et al. (2015) 
to establish stress–permeability, stress–porosity and per-
meability–porosity relationships in rock; investigations by 
Meng et al. (2012) to determine the effects of unloading on 
permeability of water and changes in mechanical properties 
of rock based on a coupled thermal–hydromechanical test.

Although previous studies have contributed to the 
understanding of permeability and its relationship with the 
mechanical properties of intact rock under external loads, 

they are seldom about chemical effects on both mechani-
cal properties and permeability of rock during unloading, 
at the microscopic scale. In this study, hydrostatic tests are 
conducted involving chemically corroded limestone samples 
under different unloading rates of confining pressure. The 
NMR system is used to obtain magnetic resonance imaging 
(MRI), T2 values (transverse relaxation time distribution, 
which depends on the size of water-saturated pores) and 
porosities of the chemically corroded limestone samples. 
The test data are used to analyze the mechanism for the 
change of permeability in chemically corroded limestone 
under unloading conditions and the relationship between 
the permeability and microstructure of limestone. Finally, 
a stress–permeability (ESP) model is proposed to correlate 
permeability with stresses and used to predict relationships 
between both variables in chemically corroded limestone.

2 � Sample Information and Experimental 
Setup

2.1 � Limestone Samples and Chemical Solutions

Limestone was used as the test sample in this experiment. 
Samples were collected from a tunnel construction site in 
Chongqing, called Jinyun Mountain Tunnel, in southwest 
China, as shown in Fig. 1a. Jinyun Mountain Tunnel is in 

Fig. 1   Location and micro structure of the sample
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Jinyun Mountain, which is located in the low-mountain hilly 
area in Sichuan Basin, dominated by sedimentary rocks 
such as limestone. Jinyun Mountain Tunnel is near Yangtze 
River and Jialing River. It starts at K38 + 616 and ends at 
K42 + 270 with a total tunnel length of 3654 m.

All the limestone samples were selected at Jinyun Moun-
tain from a single rock block without macroscopic cracks 
and prepared carefully to minimize the development of 
micro cracks before mechanical testing including triaxial 
and unloading confining pressure tests. X-Ray diffraction 
(XRD) analysis was used to determine the composition of 
the limestone samples consisting of 90% calcspar and quartz, 
and 10% cements and accessory minerals, including Fe2O3 
and O2 . The limestone is oolithic, as shown in Fig. 1c. A pol-
ishing machine was used to cut the limestone samples into 
smooth-ended cylindrical shapes with a length of 100 mm 
and a diameter of 50 mm (Fig. 1b).

Water was collected from the same construction site and 
analyzed. The pH value of the water is 6.5, and the main 
ions are Na+, Ca2+, Mg2+, SO2−

4
 , Cl− and HCO−. To simplify 

the experimental study, a Na2SO4 solution was chosen as a 
substitute for the complex ionic composition of the water. To 
accelerate the chemical reaction without affecting the trend 
in corrosion and the basic chemical reaction mechanism, 
the hydrogen ion, H+, in the chemical solution in the labora-
tory test was augmented to be higher than that obtainable in 
nature (Jeffery and Hutchison 1981; Lasaga 1984; Seto et al. 
1997). Thus, two pH values (3 and 5) of the Na2SO4 solution 
were used and all initial concentrations of the chemical solu-
tions were 0.01 mol L−1, as shown in Table 1.

2.2 � Experimental Measurement System

The NMR system was used to determine the micro-prop-
erties of the limestone samples, including T2 spectrum dis-
tributions, magnetic resonance imaging (MRI), as well as 
porosity. The system (Fig. 2a) measures the signal inten-
sity of hydrogen atoms in the fully water-saturated rock, 

then outputs transverse the relaxation time distribution (T2 
spectrum).

All mechanical and permeability tests were conducted 
using a rock testing system, as shown in Fig. 2b; the testing 
cell is sketched in Fig. 2c, e. The pressure in the cell of the 
rock testing machine was generated by an oil pressure appa-
ratus. All the samples were put into polyolefin tubes (2 mm 
in thickness) in the testing cell (Fig. 2c, d) of the system 
prior to the tests. To improve the accuracy of permeability 
measurements, two groove spacers with several pores were 
placed in the upper and bottom surface of the rock sample, 
as shown in Fig. 2d.

Stresses (axial stress, confining stress, etc.) were meas-
ured and recorded by computer in the rock testing system. 
The axial strain was measured by two sensors (no. 1 and 
no. 2) (Fig. 2e), which were fixed between the bottom and 
top surfaces of the sample inside the cell. The radial strain 
and the volumetric strain were measured by three chains 
and axial strain was measured by two sensors (Fig. 2e). The 
chemical solution or distilled water was steadily injected 
from the bottom of the sample with the outflow occurring at 
the top surface. During the tests, the axial permeability was 
measured by Darcy’s law, expressed as follows:

where Q is the flow rate, u is the kinematic viscosity, L is 
the length of the test sample, Δp is the pressure difference 
between the upstream and downstream end of the sample 
and A is the cross-sectional area of the sample.

2.3 � Experimental Setup and Test Procedure

In this test, the permeability evolution of chemically cor-
roded limestone is investigated through the whole loading 
and unloading processes. The permeability characteristics 

(1)k =
uQl

AΔp
,

Table 1   Groups of limestone samples

No. of 
sample

pH value Dp (%) Permeability 
stress (MPa)

Unloading 
rates

No. of sample pH value Dp (%) Permeability 
stress (MPa)

Unloading rates

A-1 3 100 4 – C-2 3 70 4 0.03
A-2 5 100 4 – C-3 3 70 4 0.05
A-3 Distilled 

water
100 4 – D-1 5 70 4 0.01

A-4 Intact 100 4 – D-2 5 70 4 0.03
B-1 Intact 70 4 0.01 D-3 5 70 4 0.05
B-2 Intact 70 4 0.03 E-1 Distilled water 70 4 0.01
B-3 Intact 70 4 0.05 E-2 Distilled water 70 4 0.03
C-1 3 70 4 0.01 E-3 Distilled water 70 4 0.05
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of samples under an unloading confining pressure are com-
pared with those under a constant confining pressure.

First, samples were fully saturated using a vacuum satura-
tion device. After saturation for 24 h in vacuum saturation 
machine, samples were tested by NMR system to obtain its 
porosity and T2 distribution . Samples with similar poros-
ity distribution were selected in this study. Then these sam-
ples were categorized into five groups to be immersed for 
60 days, either in distilled water or Na2SO4 solutions with 
two pH values (3 and 5). When the samples reached the 
designed corrosion period, NMR tests were conducted to 
analyze porosity changes. After the NMR tests, the samples 
were put into the testing cell of the rock testing machine 
(Fig. 2). The loading and unloading paths were designed 
based on stress redistribution characteristics, as shown in 
Fig. 3.

To simulate the hydrostatic pressure condition of the rock 
masses during tunneling, the same value (10 MPa) for the 
confining pressure and axial stress was firstly loaded. Then, 
the Na2SO4 solution or distilled water was injected from 
the bottom of the sample with a pressure of 4 MPa. This is 
the first stage of the test, corresponding to the loading path 
O–A in Fig. 3. When the solution starts to flow out from the 
upper face of the sample, the test comes to the second stage. 
The axial stress was loaded at a rate of 0.02 mm min−1 until 
reaching the unloading point of the test, while the confining 
pressure and flow pressure were maintained at constant val-
ues. This is the second stage of the test, which corresponds 
to the loading path A–B in Fig. 3.

The unloading point B, in stage 2, is defined by the 
unloading percentage, Dp, which can be calculated as 
follows:

Fig. 2   Testing system
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where �s is the peak strength of the initial samples and �i is 
unloading stress for a designed test.

The loading percentage Dp in this test is 70% of the cor-
responding peak strength of the samples; thus, the loading 
stress at the unloading point B can be calculated based on 
Eq. (2):

To obtain the unloading point, which is fixed by the 
unloading percentage (Dp), the peak strength ( �s ) of the sam-
ple in each chemical condition (Table 1) should be tested. 
Thus, the triaxial test (without unloading stage) was firstly 
conducted: after the loading path A–B, the axial stress was 
loaded at a rate of 0.02 mm min−1 until the sample ruptured. 
This corresponds to loading path A–B–C, and �s , Dp will be 
obtained, so that by using Eq. (3), the unloading stress ( �i ) 
of the limestone sample in each group can be calculated.

Then, the unloading tests were conducted: the initial 
loading path in each case follows the same path: O–A–B. 
At point B, the confining pressure was gradually unloaded, 
while the axial loading was simultaneously applied the 
same rate of 0.02 mm min−1 until the sample was ruptured. 
Three unloading rates of the confining pressure were chosen: 
0.01 MPa s−1 (B–D path), 0.03 MPa s−1 (B–E path) and 
0.05 MPa s−1 (B–F path) (Huang and Huang 2008; Qiu et al. 
2010). During all tests, the solution flow rate at the outlet 
was measured continuously during the loading process.

(2)Dp =
�i

�s
× 100%,

(3)�i = Dp × �s,

3 � Results Analysis and Discussion

3.1 � Micro‑ damage Caused by Chemical Effects

Microscopic structure changes, including discontinuities 
growth, porosity changes and skeleton softened by water, 
etc., are the root cause of the mechanical properties deg-
radation and permeability changes of the rocks. Damage 
may cause properties changes in rocks, e.g. peak strength, 
deformation characters, elastic modulus, permeability as 
well as acoustic emission parameters, etc. (Kirby 1984; 
Lasaga 1984). To investigate and calculate the damage 
caused by chemical effects and establish a damage theory 
for these chemically corroded rock, the definition and 
choice of damage variable has to be addressed.

A reasonable damage variable of the chemical corroded 
rocks should meet the following requirements: (1) it has 
distinct physical meaning; (2) it can be measured easily 
and applied in engineering conveniently; (3) its evolution 
law coincides well with the actual degradation process of 
material; (4) it can take the initial damage into account 
(Lasaga 1984; Jeffery and Hutchison 1981; Lafrance et al. 
2016; Seto et al. 1997). Thus, to quantify the micro-dam-
age, porosity is selected as the parameter to define the 
damage variable, D. Damage rates can be expressed as 
(Kachanov 1999):

where D is the damage rate, n0 is the porosity of the intact 
sample, and n is the porosity of the sample after external 
damage, such as chemical corrosion or loads.

T2 spectrum distribution, porosity and MRI (which is 
the inner section images of the limestone samples), are 
obtained through NMR tests. The T2 spectrum distribution 
and MRI of the intact sample (A-1), water soft sample 
(D-1) and samples corroded by chemical solution (B-1 
and C-1) are shown in Fig. 4, as an example, similar trends 
are found in other groups. The signal strength of the T2 
spectrum depends on the size of water-saturated pores. The 
area between the curve and the horizontal axis is the T2 
spectrum area, which has a close relationship with poros-
ity and pore size distribution of the rock, i.e., the porosity 
increases with the T2 spectrum area and the peak point of 
the curve increases when the pore size increase. Moreo-
ver, the bright areas in MRI correspond to pores inside 
the limestone samples, i.e., an increase in the brightness 
and the number of white points indicates an increase in 
porosity.

The T2 spectrum distribution for limestone sample has 
three peaks, as shown in Fig. 4. The left peak and the 
middle peak indicate small pores and the right indicates 

(4)D =
n − n0

1 − n0
,

Fig. 3   Illustration of the loading and unloading paths
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bigger pores. It can be observed that after limestone sam-
ples are immersed in a chemical (acid) solution or distilled 
water, there is an increase in the T2 spectrum area and a 
noticeable change in the curve shape. Also, the MRI of the 
chemical corroded sample becomes brighter and clearer, 
which indicates increasing porosity inside the sample. 
The largest change of T2 spectrum is found in samples 
immersed in solution with pH 3 values, while the smallest 
spectrum change occurs in samples immersed in distilled 
water. Porosity changes of the limestone samples are listed 
in Table 2.

Using Eq.  (1), the micro damage variable, D, can be 
specified, which is shown in Fig. 5. It can be observed that 
the micro damage of the limestone samples corroded by 
pH3 solution (group C, including sample no. C-1, C-2 and 
C-3) are always greater than other solutions, which is 0.017, 
0.016, 0.018, respectively; micro-damage smallest in sam-
ples immersed in distilled water (group E, including sample 
no. E-1, E-2 and E-3), which is 0.0009, 0.0004 and 0.0005, 
respectively. This is due to the chemical corrosion.

The mechanism of the micro structure changes of the 
rocks under chemical effects lies in the corrosive action 
caused by the chemical ions inside the water, which will 

Fig. 4   T2 spectrum distribution and MRI of limestone samples

Table 2   Limestone samples porosity change after chemical corrosion

No. of samples Initial porosity Corrosion porosity Increment (%) No. of samples Initial porosity Corrosion 
porosity

Increment (%)

B-1 5.42 Sample in air – D-1 5.40 6.12 13.33
B-2 5.46 Sample in air – D-2 5.38 6.08 13.01
B-3 5.39 Sample in air – D-3 5.41 6.25 15.52
C-1 5.32 6.94 30.45 E-1 5.33 5.42 1.68
C-2 5.39 6.99 29.68 E-2 5.37 5.38 0.75
C-3 5.35 7.12 33.08 E-3 5.39 5.44 0.93
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weaken the skeleton of the rocks and corrodes the mineral 
particles, eventually leading to a change in the mechanical 
properties of corroded rock. With the help of XRD analysis, 
the composition of the limestone samples includes oolite, 
calcite, quartz, cement, bioclastic and metal minerals, 

including iron oxide and silicon dioxide. The mineral com-
ponents of limestone samples easily react with acid ions, 
H+. Moreover, some of these mineral components, such as 
cement, calcite, can soften or be dissolved in water, which 
cause the skeleton of the rock to become softer.

The main chemical reactions can be expressed as follows:

The reaction of iron oxide is:

The main mineral composition of quartz is SiO2, the reac-
tion in distilled water is:

3.2 � HydroChemical–Mechanical Effects 
on Permeability Changes of the Sample

The permeability changes during the whole loading and 
unloading process were obtained during the test, and the 
relationship between axial strain and permeability of the 
corroded limestone samples (pH3) subjected to unloading 
conditions is shown in Fig. 6a, in comparison to samples 
softened with water, shown in Fig. 6b, due to the trends of 

(5)CaCO3 + 2H+
→ Ca2+ + H2O + CO2 ↑,

(6)Fe2O3 + 6H+
→ 2Fe3+3H2O.

(7)SiO2 + 2H2O → H4SiO4.

Fig. 5   Damage rates (D) of the limestone samples

Fig. 6   Permeability vs axial strain of the limestone sample (A: stage 1 of the permeability; B: stage 2 of the permeability; C: stage 3 of the per-
meability)
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permeability evolution and its relationship with the mechani-
cal properties of all groups of the limestone samples are 
similar.

The evolution of permeability in chemically corroded 
limestone samples can be divided into three stages, which 
is observed from Fig. 6. In the first stage, the permeability 
initially decreases with increasing deviatoric loads. The sec-
ond stage starts at the inflection point of the permeability 
curve, which are enlarged in Fig. 6a, from where the perme-
ability begins to increase slightly with increasing deviatoric 
stress. The second evolution stage is relatively short and 
the permeability of the sample during this period increases 
slightly and gradually. In the third stage, the permeability of 
the limestone increases dramatically until the sample rup-
tures. The permeability of all samples during these three 
stages are shown in Table 3.

From Fig.  6 and Table  3, the following can also be 
observed: Firstly, under the same unloading rates, the per-
meability of limestone samples which are corroded by the 
pH 3 solution are always greater than those of water-sof-
tened and intact samples. Water-softened samples have the 
lowest permeability. Secondly, the permeability of chemi-
cally corroded limestone samples is much more sensitive to 
unloading rates than water-softened and intact samples. This 
is because micro structural changes, including micro crack 
development and pore alteration caused by loading condi-
tions, have significant effects on rock permeability. Micro 
cracks are more easily formed inside chemically corroded 
rocks. Thirdly, there are inflection points noted in red in 
the enlarged diagrams in Fig. 6. The inflection points are 
very important for permeability analyses, which are useful 
for investigating damage effects caused by the environment, 
such as the impact of chemical conditions and stress history 
on rock permeability and porosity (Kwon et al. 2004). The 
inflection points shown in Fig. 6 are the thresholds of the 
permeability evolution under unloading condition; before 
this point, the permeability decreases slightly, and after that 
begins to increase. The inflection points indicate the sam-
ples are already fully compacted; after these points, micro 
cracks begin to form some interconnections amongst them 
(Li et al. 2018). The mechanism governing changes in the 

permeability of chemically corroded limestone samples 
under external stress is discussed in Sect. 3.3 .

3.3 � The Relationship Between the Mechanical 
Behavior and the Micro Damage of Limestone 
Under Hydrochemical–Mechanical Conditions

Beyond a certain threshold, external stresses generate micro 
cracks, which enhance the path for the transfer of chemical 
ions and the permeability of the rock. Chemical reactions 
between the rock material and chemical ions are therefore 
accelerated. With increased permeability and chemical 
effect, the rock matrix is softened and there is a degradation 
of its mechanical properties (Alonso et al. 2013; Chai et al. 
2014; Feng and Ding 2007). Porosity–strain and stress–strain 
curves (calculated by Eq. 1) for pH 3- and pH 5-solution 
samples, and water-soft samples are shown in Fig. 7a–c. T2 
distribution and MRI (illustrating the porosity of the inner 
section of the limestone sample) for chemically corroded 
samples (pH 3) are shown, as an example, in Fig. 7d, e. 
Samples of other pHsolutions are not shown because their 
damage evolution is similar.

Under the effect of external compressive stresses the 
micro damage of limestone can be divided into four stages 
(Li et al. 2018), as shown in Fig. 7a–c, which also has a 
close relationship with the permeability changes of the 
rock sample. Micro pores in limestone are compacted ini-
tially, resulting in a reduction in permeability (Fig. 6). As 
the external stress increases, there is an emergence of new 
micro cracks. At a later stage, some micro cracks intersect 
and connect with each other, which contribute to permeabil-
ity increase. With further increase in external loading, these 
micro cracks propagate and coalesce, and some develop into 
macro cracks, gradually forming shear zones, which gener-
ate localized preferential paths for fluid flow. At this point, 
permeability increases dramatically to its maximum.

Based on these micro damage development processes, 
peak strength and failure model of the samples are also 
influenced by chemical effects. Chemical corroded samples 
are also more sensitive to external stress: the micro damage 
develops faster in samples immersed in the pH 3 solution 

Table 3   Permeability of the limestone samples

No. of sample Initial perme-
ability

Permeability at 
inflection point

Rupture per-
meability

No. of sample Initial perme-
ability

Permeability at 
inflection point

Rupture 
perme-
ability

C-1 75.2 56.3 270.5 D-3 55.9 42.6 228.6
C-2 74.3 55.9 210.4 E-1 44.3 39.2 225.4
C-3 70.5 55.3 202.3 E-2 43.6 38.9 223.5
D-1 54.4 42.3 230.5 E-3 45.1 39.4 223.8
D-2 56.2 36.2 226.4
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than in other groups, as presented before in this section. 
Thus, the degradations in peak strength of the chemical cor-
roded samples under different unloading rates are higher 
than those in other groups. The smallest degradation is 
observed in samples softened by distilled water (Fig. 8). 
It can also be observed from Fig.  8, the peak strength 
decreased with the increasing unloading rates.

The fracturing pattern of chemically corroded samples 
as compared with water soften samples is given in Fig. 9. 
For better viewing, the images of the fracture patterns are 
also processed using Adobe Photoshop CS5 to empha-
size the contrast. Irrespective of the extent of exposure to 
chemical conditions, the unloading failure mode tends to 
be a single planar shear fracture at high unloading rates 

Fig. 7   MRI and micro damage evolution of the limestone samples under external stress (Li et al. 2018)
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(Fig. 9c, f). When the unloading rate is low, the rock rup-
tures with some shear fractures accompanied by many 
tensile cracks along the shear fracture surface, (Fig. 9a, 
d). The failure mode of limestone is not only affected by 
unloading rates, but also chemical effects. For the chemi-
cally corroded sample (pH 3), when the unloading rate is 
0.01 MPa s−1 and 0.03 MPa s−1 (Fig. 9a, b) the sample 
exhibits a mixed tensile and shear fracturing mode. When 
the unloading rate is 0.05 MPa s−1, it is ruptured by a 
single shear fracture (Fig. 9c). For water-softened sam-
ples, when the unloading rate is 0.01 MPa s−1, multiple 
tensile and shear cracks contribute to its failure model 
(Fig. 9d). When the unloading rate is 0.03 MPa s−1 and 
0.05 MPa s−1, the rock fails with a single shear fracture, 
which is a shear band with certain thickness (Fig. 9e, f).

The mechanical behavior of rock is influenced by micro 
structures, and confining pressure (You 2014). The fail-
ure development in rock initially consists of micro cracks 
closure, followed by micro cracks initiation and connec-
tion. Finally, macro crack occurs and connects resulting 
in sample rupture (Li et al. 2018). Confining pressure 
unloading leads to an increase in tensile stress near the 
tip of micro cracks inside the rock samples and decrease 
in shear strength. Thus the potential of tensile and shear 
developments in rock increase (Huang and Huang 2014). 
With the increasing unloading rates of the confining pres-
sure and chemical effects, stable crack development trans-
forms relatively quickly into unstable crack development, 
degrading the peak strength of the limestone sample. Thus, 
the peak strength of the limestone sample decreased with 
the increasing unloading rates (Liu et al. 2017; Wang et al. 
2011; Kaiser et al. 2001).

4 � Stress–Permeability (ESP) Model for Rocks 
Under HydroChemical–Mechanical 
Coupled Effects

In this section, based on the data obtained from the mechani-
cal and permeability test on limestone samples under cou-
pled hydrochemical–mechanical conditions, the derivation 
process of the ESP model is initially presented. To analyze 
and verify the utility of the ESP model, theoretical results 
obtained from the ESP model as well as those from literature 
are then compared.

4.1 � Derivation of the ESP Model

Figure 10 shows the relationship between stress and perme-
ability for the chemically corroded samples (pH 3) at dif-
ferent unloading rates, the water-softened samples are also 
shown for comparison. Combining the conclusions of the 
damage developments obtained from the previous sections 
and Fig. 10, it is observed that the set of stress induced per-
meability curves also has three stages (described in Fig. 6) 
corresponding to the damage development stages of the 
chemical corroded samples under external stress. The three 
stages are defined by inflection and unloading points. The 
first part mainly consists of the compaction-induced perme-
ability changes of the rock (Fig. 10), the second stage begins 
with an inflection point and represents the crack develop-
ment-induced permeability and the third stage begins at the 
unloading points and ends when the sample ruptures.

Several mathematical methods were made to describe 
the relationship between external stress and mechanical 
behaviors associated with the corresponding micro structure 
changes (Jaeger et al. 2009). Some empirical equations were 
proposed, which were always based on power law (Kilmer 
et al. 1987), and can be expressed as follows (David et al. 
1994):

where k0 and n0 are permeability and porosity of the original 
sample, respectively, and b is a material constant named the 
porosity sensitivity exponent.

The limestone samples in our tests are mainly composed 
of calcspar, which can easily react with acid ions (e.g. 
H+), mainly resulting in increase in porosity. The reactions 
between calcspar and chemical ions occurring in the acidic 
solution can be expressed by Eqs. (10) and (11), proposed 
by Steefel and Van Cappellen (1990):

(8)k = k0

(

n

n0

)b

,

(9)Rate = Ak(�m − 1)n,

(10)� =
IAP

K
,

Fig. 8   Peak strength at different unloading rates
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Fig. 9   Fracture modes of the chemical corroded and water-softened limestone samples under unloading condition (A: axial tensile cracks; B lat-
eral tensile cracks; C shear cracks)
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where Rate is the reaction rate of calcspar, A is the reaction 
area of the sample, k is the chemical reaction rate parameter, 
K is the corresponding equilibrium constant, � is the solu-
tion saturation index, m and n are parameters, and IAP is the 
normalized saturation ratio, which is found that the effect of 
IAP on the overall behavior of the chemical reaction system 
is relatively small (Steefel and Van Cappellen 1990).

The density of calcspar in the limestone sample can be 
expressed as (Steefel and Van Cappellen 1990):

(11)
�(1 − n)pl

�t
= −∇(plnv) + pcVc Rate,

Fig. 10   Stress vs permeability for the limestone samples
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where n is the porosity of limestone, pl is the density of 
limestone, pc is the density of calcspar, Vc is the molar vol-
ume of the calcspar, v is the flow rates of chemical ions.

The porosity increment caused by chemical corrosion 
can be expressed as follows (Steefel and Van Cappellen 
1990):

where r is the chemical reaction equivalent parameter, Vc is 
the molar volume of the calcspar, t is the corrosion time, and 
nc is the porosity caused by chemical reactions of calcspar.

Due to chemical corrosion, there is an increase in 
porosity of the rock, so that the permeability of the rock 
changes. From Eqs. (8) to (12), after chemical corrosion, 
the permeability (kc) of the sample can be expressed as 
follows:

Under external stress, the micro structure of the rocks 
could change, such as crack development. The compac-
tion stage of the permeability model can be expressed by 
David et al. (1994):

where k is the permeability at the effective stress σ, k0 is the 
original permeability of the sample, and a is the stress–sen-
sitivity coefficient. Thus, after chemical corrosion, the per-
meability of the rock sample can be expressed as:

The second part of the ESP model is the development 
of micro cracks inside the rock sample under external 
stress, which can be fitted by Fig. 10 as follows:

Thus, the ESP model can be expressed as follows:

where �n is the transition point of stress for the micro cracks 
from the compaction stage to the development stage, which 
is about 30% of the peak strength of the rock sample; and �s 
is the peak stress.

Using data from both Li et al. (2018) and this study, the 
parameters of the ESP model can be obtained, as shown 
in Table 4.

(12)
�nc

�t
= rVc Rate,

(13)kc =

(

trVcRate

n0

)b

k0.

(14)k = k0 exp(−��),

(15)k1 = kc exp(−��) =

(

trVcRate

n0

)b

k0 exp(−��).

(16)k2 = k1 + �1 exp(−�∕w1),

(17)

{

k1 =
(

rVcRate

n0

)b

k0 exp(−𝛼𝜎) 𝜎 < 𝜎n

k2 = k1 + 𝛽1 exp(−𝜎∕w1) 𝜎n < 𝜎 < 𝜎s

,

4.2 � Verification and Prediction

To validate the ESP model for sedimentary rocks, such as 
limestone in this study or sandstone, the permeability curve 
calculated by the model is compared with the laboratory test 
data in literature. Meanwhile, to find an appropriate experi-
mental data, several criteria are taken into consideration: 
firstly, the test process is well documented, and the data is 
well presented. Secondly, the samples collected from con-
struction sites surrounded by water are preferred, because 
they have it has more close relationships with underground 
water and can be better used in underground engineering 
applications. Thirdly, the porosity change is measured and 
presented. Last, the chemical solution is acid. After the 
chemical corrosion (solution CaCl2, pH 2), the porosity 
changes of the sample, theoretical results obtained from the 
ESP model, and that obtained from laboratory test are pre-
sented in Fig. 11. The parameters of the model can be fitted, 
as shown in Table 4. Since the chemical corroded samples 
in laboratory test were different, there is a slight difference 
between the theoretical results and that obtained from the 
laboratory test, and it can be concluded that this model 

Table 4   Parameters for the proposed ESP model for limestone

Reaction area 
(m2 g−1)

Log K m n Molar volume 
of the calcspar 
(g mol−1)

7.07 × 10−3 10.34 1 1 100
k mol−1 m2 s−1 Density of 

calcspar/
kg m−3

a b

1.724 × 10−6.8 2650 0.112 0.001

Fig. 11   Theoretical curve vs test data of the chemical corroded rock
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can reflect the permeability changes of the rock (Fig. 11; 
Table 5).

5 � Conclusions

NMR techniques are used to determine the T2 values, poros-
ity, MRI, permeability and mechanical characteristics of 
limestone samples under chemical effects. The effects of 
unloading rate and hydrochemical–mechanical coupled 
conditions on the mechanical behavior and the permeability 
of the corroded limestone are also explored, including the 
mechanism for permeability changes. Based on the experi-
ments, the following conclusions are drawn:

1.	 In variance to the impact of constant confining pressure, 
the strength of limestone decreases under an unload-
ing confining pressure. Under the same chemical dam-
age rates, a higher rate of unloading confining pressure 
corresponds to a lower failure strength. For the same 
unloading rates, a higher chemical induced damage 
leads to higher degradation of mechanical properties.

2.	 There are three stages of permeability evolution in lime-
stone under unloading conditions: at the first stage, the 
permeability of limestone initially declines with increas-
ing axial stress, then at the second stage the permeability 
increases slightly. At the third stage, the permeability 
of limestone increases dramatically until the sample is 
ruptured.

3.	 The development of micro cracks in limestone changes 
the rock permeability. The inflection point of the perme-
ability curve is the threshold indicating a change from 
rock compaction to the development of micro cracks. 
Chemical corrosion and unloading rates have signifi-
cant influence on the inflection point: the duration of 
the compaction stage of chemically corroded lime-
stone samples experiencing slower unloading rates of 
confining pressure is more extensive in comparison to 
non-chemically corroded limestone samples and those 
exposed to faster unloading rates.

4.	 Based on the experimental results, an ESP model is 
established to describe the relationship between stress 
and permeability of the rock.
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