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Abstract
As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete ele-
ment method (FDEM) has become widely accepted since Munjiza (2004) published his comprehensive book of FDEM. This 
study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device 
architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM 
IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE 
code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that 
in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-
static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then 
conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode 
I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, 
respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only 
possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic 
fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the 
GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final 
fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive 
wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between 
them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than 
its sequential version and can achieve the computational complexity of O(N). The results demonstrate that the GPGPU-
parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-
static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element 
size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled.

Keywords  Rocks · 3D fracture process analysis · FDEM · Quasi-static loading · Dynamic loading · Parallel computation · 
GPGPU · CUDA C/C++
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1  Introduction

Understanding the mechanism of the fracturing process in 
rocks is important in civil and mining engineering and sev-
eral other fields, such as geothermal, hydraulic, and oil and 
gas engineering, in which rock fractures play an important 
role. Numerical methods have been increasingly applied to 
analyze the fracturing process of rocks (e.g., Mohammadne-
jad et al. 2018). Due to the limitations of computing power/
environments and the difficulty in extending some numerical 

techniques to three-dimension, numerous previous studies of 
rock fracture modelling using various numerical methods 
have been limited to two-dimensional (2D) analyses. How-
ever, successful simulation of the three-dimensional (3D) 
fracturing process is essential for better understanding and 
solving many practical rock engineering problems because 
rock fracturing essentially involves complex 3D processes. 
Moreover, meaningful developments and applications of 
3D numerical methods for 3D rock fracture modelling have 
been limited in the past, except those that had full access 
to the most advanced high-performance-computing (HPC) 
environments, such as supercomputers. This situation has 
been dramatically improved due to the recent advancements 
in computer technology, such as general-purpose graphic-
processing-unit (GPGPU) accelerators and the many inte-
grated cores architecture, which can be installed even in a 
personal computer (PC) or a workstation and can achieve 
HPC environments in ordinary computer environments with 
relatively low costs. These improvements have allowed sci-
entists and engineers to apply and develop 3D rock fracture 
computational methods that were not tractable previously.

Recent advances in computational mechanics have 
resulted in modelling complex rock fracturing processes 
using various numerical approaches. Generally, these 
approaches can be classified mainly into continuous and 
discontinuous methods. In the framework of rock fracture 
process analysis, the continuum-based methods include 
the finite element method (FEM), finite difference method 
(FDM), boundary element method (BEM), scaled boundary 
finite element method (SBFEM), extended finite element 
method (XFEM), several mesh-less/mesh-free methods, 
such as smoothed particle hydrodynamics (SPH), and those 
based on peridynamics and phase-field method. The discon-
tinuum-based methods include the distinct element method 
(DEM), discontinuous deformation analysis (DDA), lattice 
model and molecular dynamics. Comprehensive reviews 
of recent advances in computational fracture mechanics 
of rocks can be found in recent review articles (Lisjak and 
Grasselli 2014; Mohammadnejad et al. 2018). For a realistic 
simulation of the rock fracturing process, numerical tech-
niques must be capable of capturing the transition of rock 
from a continuum to a discontinuum through crack initia-
tion, growth and coalescence. Therefore, increasing atten-
tion has been paid in recent years to these techniques, which 
can combine/couple the advantages of the aforementioned 
continuum-based and discontinuum-based methods while 
overcoming the disadvantages of each method (Lisjak and 
Grasselli 2014; Mohammadnejad et al. 2018).

The combined finite-discrete element method (FDEM) 
proposed by Munjiza et al. (1995) has recently attracted 
the attention of many engineers and researchers in the field 
of rock engineering which deals with rock fracturing and 
fragmentation. The method incorporates the advantages of 
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both continuous and discontinuous methods and is able to 
simulate the transition from a continuum to a discontinuum 
caused by rock fracturing. The two main implementations 
of the FDEM include the open-source research code, Y 
code (Munjiza 2004), and the commercial code, ELFEN 
(Rockfield 2005). Due to the open-source nature of the Y 
code, several attempts have been made to actively extend 
it, such as Y-Geo (Mahabadi et al. 2014), Y-Flow (Yan and 
Jiao 2018; Yan and Zheng 2017), Irazu (Lisjak et al. 2018; 
Mahabadi et al. 2016), Solidity (Guo 2014; Solidity 2017) 
and HOSS with MUNROU (Rougier et al. 2011, 2014). 
Moreover, the authors have developed Y-HFDEM IDE (An 
et al. 2017; Liu et al. 2015, 2016; Mohammadnejad et al. 
2017). In addition, using user-defined subroutines in the 
explicit module of the commercial software ABAQUS, Ma 
et al. (2018) recently implemented the FDEM to investi-
gate the effects of different fracture mechanisms on impact 
fragmentation of brittle rock-like materials. The principles 
of all of the FDEM codes are based on continuum mechan-
ics, the cohesive zone model (CZM) and contact mechanics, 
which make the FDEM extremely computationally expen-
sive. Thus, few practical rock engineering problems can be 
solved using the 3D FDEM based on sequential central-pro-
cessing-unit (CPU)-based implementations. Therefore, it is 
imperative to develop robust parallel computation schemes 
to handle large-scale 3D FDEM simulations with massive 
numbers of nodes, elements and contact interactions.

To date, several successful parallel implementations of 
FDEM codes have been reported using the message-passing 
interface (MPI) (Elmo and Stead 2010; Hamdi et al. 2014; 
Lei et al. 2014; Lukas et al. 2014; Rockfield 2005; Rogers 
et al. 2015; Rougier et al. 2014) and shared memory pro-
gramming, such as OpenMP (Xiang et al. 2016). Among 
these, Lukas et al. (2014) proposed a novel approach for the 
parallelization of 2D FDEM using MPI and dynamic domain 
decomposition-based parallelization solvers, and they suc-
cessfully applied the parallelized Y code to a large-scale 
2D problem on a PC cluster, which should be able to be 
applied to practical 3D problems, although future develop-
ments are needed. In addition, Lei et al. (2014) successfully 
developed the concept of the virtual parallel machine for 
the FDEM using MPI, which can be adapted to different 
computer architectures ranging from several to thousands 
of CPU cores. Rougier et al. (2014) introduced the HOSS 
with MUNROU code, in which they used 208 processors 
for parallel computation controlled by MPI and developed 
novel contact detection and contact force calculation algo-
rithms (Munjiza et  al. 2011). The MUNROU code was 
then successfully applied to perform 3D simulations of a 
dynamic Brazilian tensile test of rock with a SHPB appa-
ratus. ELFEN (Elmo and Stead 2010; Hamdi et al. 2014; 
Rockfield 2005; Rogers et al. 2015) uses MPI in its paral-
lelization scheme and has been employed successfully in 2D 

and 3D simulations of rock fracturing process. For example, 
analyses of the 3D fracturing process in conventional labora-
tory tests using up to 3 million elements have been reported 
(Hamdi et al. 2014). Xiang et al. (2016) optimized the con-
tact detection algorithm in their Solidity code and paral-
lelized the code using OpenMP. Although they modelled a 
packing system with 288 rock-like boulders and achieved 
a speedup of 9 times on 12 CPU threads, the details of the 
applied algorithm and its implementation were not given. 
In general, MPI requires large and expensive CPU clusters 
to achieve the best performance. In addition, the application 
of shared memory programming such as OpenMP is limited 
by the total number of multiprocessors that can reside in a 
single computer; thus, MPI is still required for large-scale 
problems, in which each computer uses both OpenMP and 
MPI to transfer the data between multiple computers. This 
means that the hybrid MPI/OpenMP is necessary. In all of 
these approaches, more than 100 CPUs are necessary to 
achieve a speed-up of more than 100 times compared with 
sequential CPU-based FDEM simulations, which results in 
the need for a larger space or expensive HPC environments.

In addition to the CPU-based parallelization schemes, 
a GPGPU accelerator controlled by either the Open Com-
puting Language (OpenCL) (Munshi et al. 2011) or the 
Compute Unified Device Architecture (CUDA) (NVIDIA 
2018) can be considered as another promising method for 
the parallelization of FDEM codes. Hundreds and thousands 
of GPU-core processors can reside and concurrently work 
in a small GPGPU accelerator within an ordinary laptop/
desktop PC or a workstation, which also has lower energy 
consumption than CPU-based clusters. Zhang et al. (2013) 
developed a CUDA-based GPGPU parallel version of the 
Y code (2D) without considering the fracturing process 
and contact friction. Batinić et al. (2018) implemented a 
GPGPU-based parallel FEM/DEM that is based on the Y 
code to analyze cable structures using CUDA. However, 
none of these implementations have been employed to simu-
late rock fracturing. In this regard, a GPGPU-based FDEM 
commercial code, namely Irazu (Lisjak et al. 2017, 2018), 
has just been developed with OpenCL and used success-
fully in rock fracture simulations. Irazu is the only available 
commercial GPGPU-based FDEM code with OpenCL that 
is currently capable of modelling the rock fracturing pro-
cess (Lisjak et al. 2017, 2018). In addition, the authors have 
developed a free FDEM research code, Y-HFDEM IDE (An 
et al. 2017; Liu et al. 2015, 2016; Mohammadnejad et al. 
2017), and parallelized its 2D implementation using GPGPU 
with CUDA C/C ++ (Fukuda et al. 2019). This paper focuses 
on parallelizing the 3D implementation of the Y-HFDEM 
IDE code using GPGPU with CUDA C/C ++, which is com-
pletely different from Irazu’s GPGPU parallelization using 
OpenCL. Additional studies are required to verify and vali-
date the GPGPU-based 3D FDEM code. Furthermore, for 
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any newly implemented GPGPU-based codes, it is desirable 
to describe their complete details because the implementa-
tion of any GPGPU-based code is generally different from 
that of CPU-based sequential codes. Most importantly, there 
are no freely available GPGPU-based FDEM codes, whereas 
the GPGPU-based Y-HFDEM IDE is free to use, and the 
freely available GPGPU-parallelized 2D/3D Y-HFDEM IDE 
software may significantly contribute to researches in the 
field of rock engineering.

To validate and calibrate newly developed codes in the 
field of rock mechanics, two standard rock mechanics labo-
ratory tests, the uniaxial compressive strength (UCS) tests 
and Brazilian tensile strength (BTS) tests, have often been 
modelled to simulate the fracturing process and associated 
failure mechanisms of rock materials under quasi-static 
loading conditions. Although the UCS and BTS tests have 
been actively modelled using 2D FDEM, their modelling in 
the framework of 3D FDEM has been very limited and less 
well explained. For example, UCS and BTS tests were three-
dimensionally simulated using Y-Geo (Mahabadi et al. 2014) 
with a relatively large element size (2 mm for both tests) and 
a very high loading velocity (1 m/s) resulting in the appear-
ance of dynamic effects in the model, such as multi-fracture 
propagation around the center of the BTS models, which 
is also shown in the dynamic BTS simulation discussed 
in Sect. 3.3. Moreover, although Mahabadi et al. (2014) 
observed splitting fractures in their BTS modelling, the post-
peak behavior of the stress–strain curve was not well demon-
strated. Later, Lisjak et al. (2018) introduced IRAZU based 
on GPGPU parallelization and three-dimensionally simu-
lated UCS and BTS tests using a finer element size (1.5 mm 
for both tests) and slower loading rate (0.1 m/s). In compari-
son with the aforementioned simulations by Mahabadi et al. 
(2014), many reasonable results were achieved by Lisjak 
et al. (2018). Mahabadi et al. (2014) may have chosen the 
relatively high loading rate because 3D FDEM modelling 
using Y-Geo is computationally demanding, which may have 
required them to find ways to reduce the running time and 
accordingly the time required for calibration, although any 
remedies should not significantly affect the obtained results. 
Moreover, Lisjak et al. (2018) claimed that the effect of their 
high loading rates was compensated for by the critical damp-
ing scheme. However, it should be noted that the critical 
damping scheme implemented in almost all FDEM simula-
tions is intended to model the quasi-static loading conditions 
using the dynamic relaxation method, which cannot reduce 
the effect of the loading rate, unlike what was claimed by 
Lisjak et al. (2018). Guo (2014) investigated 3D FDEM 
modelling of BTS tests at different loading rates using the 
critical damping scheme and showed that both the fracture 
pattern and obtained peak load were affected by the loading 
rate when the velocity of the loading platens is higher than 
0.01 m/s (i.e., loading rate = 0.02 m/s). Correspondingly, the 

findings of Guo (2014) support the statement that “the criti-
cal damping scheme used in almost all FDEM simulations 
cannot reduce the effect of the loading rate”. Therefore, for 
an accurate simulation with quasi-static loading conditions 
in the framework of the FDEM, the loading rate should be 
selected correctly to avoid the dynamic effects of the loading 
rate before selecting any input parameters, which is another 
strong motivation for this study to conduct 3D simulations 
of UCS and BTS tests using the GPGPU-parallelized 3D 
Y-HFDEM IDE.

Furthermore, 3D FDEM simulations of dynamic frac-
turing processes of rock materials under dynamic loads, 
such as SHPB tests (e.g. Zhang and Zhao 2014), have been 
much more limited; in particular, 3D FDEM simulations 
of the full system of the SHPB test are rare. However, 
for any qualitative and quantitative discussion, accurate 
modelling and reasonable calibration of the SHPB test are 
paramount for any meaningful numerical simulations of 
the dynamic fracturing process in rock such as blasting. In 
fact, to date, only four peer-reviewed international journal 
papers have been reported for modelling SHPB tests in the 
framework of the 2D/3D FDEM. Using the 2D FDEM, 
Mahabadi et al. (2010) modelled the dynamic fracturing 
process of Barre granite in a dynamic BTS test with an 
SHPB apparatus and found good agreement between the 
numerical simulations and experiments. In their model-
ling, each of the SHPB bars was modelled as a large single 
triangular element, and not only was the element assigned 
mechanical properties, but velocities were prescribed to 
all nodes. This may cause the given mechanical properties 
except for the contact penalty and contact friction to have 
no meaning and the element used to model the SHPB bar 
to become rigid. Moreover, the mode I and mode II frac-
ture energies cannot be distinguished, which has generally 
been recognized as important for reasonable simulations 
of rock fracturing by the current FDEM community. Using 
the 3D FDEM (HOSS), Rougier et al. (2014) modelled 
the dynamic BTS tests of weathered granite documented 
in Broome et al. (2012) by explicitly considering elasti-
cally deformable SHPB bars. The results showed remark-
ably good agreement with those from the experiment. 
Subsequently, although 2D HOSS was applied, Osthus 
et al. (2018) proposed a novel and detailed calibration 
procedure based on a general and probabilistic approach 
for numerical simulations of dynamic BTS tests of the 
weathered granite modelled by Rougier et al. (2014) with 
the SHPB apparatus. Furthermore, by targeting the same 
SHPB-based dynamic BTS tests of the same weathered 
granite, Godinez et al. (2018) conducted several sensitivity 
analyses with different combinations of input parameters 
using 2D HOSS. They showed that the simulation results 
are most sensitive to the parameters related to the tensile 
and shear strengths and the fracture energies, which are 
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valuable information. In this way, additional knowledge 
has gradually been accumulated for the realistic model-
ling of dynamic BTS tests with the SHPB apparatus in the 
FDEM community. However, although the target rock in 
previous studies (Mahabadi et al. 2010; Osthus et al. 2018; 
Rougier et al. 2014) was granite, in which heterogeneity 
and anisotropy generally play important roles, none of the 
studies considered or discussed these important charac-
teristics. In light of these results, further investigation of 
FDEM modelling is needed, especially for 3D modelling 
of dynamic fracturing of rocks of various types, because 
only one case of the 3D dynamic fracturing of granite in 
a dynamic BTS test has been modelled using the FDEM 
to date.

Based on this background, this paper aims to first 
explain the theory and algorithm of the recently devel-
oped GPGPU-parallelized FDEM implemented in the 3D 
Y-HFDEM IDE code. The capability of the 3D Y-HFDEM 
IDE code in rock engineering applications is then dem-
onstrated by modelling the fracturing process of rocks 
and the movements of the resultant rock fragments under 
a series of quasi-static and dynamic loading conditions. 
Thus, this paper may provide a basis for further improve-
ment and development of the FDEM codes based on 
GPGPU parallelization for modelling rock fracturing, 
especially the dynamic fracturing of rock. Many previ-
ous publications have focused on the advantages of the 
FDEM. However, although the FDEM is very useful, there 
is currently no universal/perfect method to simulate rock 
fracturing/fragmentation processes, so the disadvantages 
of this method other than the high computational burden 
must also be carefully addressed. In fact, the calibration 
of the FDEM, which is the most fundamental procedure 
for any meaningful numerical simulation, tends to be more 
complex than in non-combined methods. Although the 
calibration method for the 2D FDEM has been reported 
in the literature (e.g., Tatone and Grasselli 2015), it was 
found during the development of the 3D FEM/DEM code 
that the calibration of 3D simulations requires more care-
ful treatment and is more sensitive to the input parameters 
than the 2D counterparts. Especially in 3D simulations of 
the fracturing process of rocks due to dynamic loading 
involving significant fragmentation of hard rock, special 
care must be paid to avoid spurious fracture modes, which 
have sometimes been misunderstood or omitted/hidden in 
the literature.

This paper is organized as follows. The theory used in 
the 3D FDEM, i.e., Y-HFDEM IDE code, is first intro-
duced, and its implementation in the framework of the 
GPGPU parallel computation is then explained in detail. 
Subsequently, the accuracy and capability of the devel-
oped code are investigated by modelling several common 
examples in rock mechanics, including modelling the 3D 

fracturing process of rocks in BTS and UCS tests, which 
have been used to benchmark new computational methods 
for rock fracturing. The entire SHPB testing system of 
3D dynamic BTS tests is then simulated using the newly 
developed GPGPU-parallelized hybrid FDEM, and the 
numerical results are compared with those from SHPB 
experiments by focusing on the dynamic fracturing pro-
cess of rock in the 3D dynamic Brazilian tests. Finally, 
conclusions are drawn from this study.

2 � GPGPU‑Parallelized 3D FDEM

The FDEM code “Y-HFDEM 2D/3D IDE” was originally 
developed using object-oriented programming with visual 
C++ (Liu et al. 2015) based on the CPU-based sequen-
tial open-source Y 2D/3D libraries (Munjiza 2004; Mun-
jiza et al. 2010) and OpenGL. The Y-HFDEM 2D/3D IDE 
code can significantly simplify the process of building and 
manipulating the input models and greatly reduce the pos-
sibility of erroneous model setup, and it can also display the 
calculated results graphically in real time with OpenGL. The 
code has been successfully employed in simulations of rock 
fracturing in various geotechnical engineering problems (An 
et al. 2017; Liu et al. 2015, 2016; Mohammadnejad et al. 
2017). Because of the nature of sequential programming, it 
has mainly been applied to small-scale 2D problems using 
relatively rough meshes. To overcome this limitation, the 
parallel programming scheme using the GPGPU controlled 
by CUDA C/C++ was implemented in the code in a recent 
study by the authors (Fukuda et al. 2019) for 2D model-
ling and in this study for 3D modelling. Because the vari-
ous FDEM-based codes reviewed in Sect. 1 were indepen-
dently developed by each research institute/organization and 
have different features, the fundamental features of the 3D 
Y-HFDEM IDE code and its GPGPU-based parallelization 
scheme are explained in detail in the following subsections.

2.1 � Fundamental Theory of 3D Y‑HFDEM IDE

The principles of the FDEM are based on continuum 
mechanics, nonlinear fracture mechanics based on the CZM 
and contact mechanics, all of which are formulated in the 
framework of explicit FEM (Munjiza 2004). Therefore, this 
section focuses on introducing the features of 3D Y-HFDEM 
IDE unavailable in other FDEMs such as the hyperelastic 
model, the irreversible damage during unloading, and the 
extrinsic cohesive zone model. Of course, these features 
need to be introduced in context and some of the fundamen-
tal FDEM theory is reviewed here to provide the context, 
which is also motivated by the fact that there are some poor, 
unclear and even incorrect descriptions in some literatures 
of the FDEM community.
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The continuum behavior of materials, including rocks, is 
modelled in 3D by an assembly of continuum 4-node tetra-
hedral finite elements (TET4s) (Fig. 1a). Two types of iso-
tropic elastic constitutive models have been implemented. In 
the first type, which was implemented in the original Y-code 
and has been widely used, the isotropic elastic solid obeys 
Eq. (1) of the neo-Hookean elastic model:

where σij denotes the Cauchy stress tensor, Bij is the left 
Cauchy–Green strain, λ and µ are the Lame constants, J is 
the determinant of the deformation gradient, η is the viscous 
damping coefficient, δij is the Kronecker delta, and Dij is the 
rate of deformation tensor. However, Eq. (1) cannot model 
anisotropic elasticity, which is important in the field of rock 
engineering. Thus, in the second type, a hyperelastic solid 
obeying Eqs. (2) and (3) is also implemented:

where SKL denotes the second Piola–Kirchhoff stress ten-
sor, CKLMN is the effective elastic stiffness tensor, EMN is the 

(1)

�ij =
�

2

(
J −

1

J

)
�ij +

�

J

(
Bij − �ij

)
+ �Dij (i, j = 1, 2, 3),

(2)SKL = CKLMNEMN(K, L,M,N = 1, 2, 3),

(3)�ij =
1

J
FiKSKLFjL + �Dij (i, j,K, L = 1, 2, 3),

Green–Lagrange strain tensor, and FiK is the deformation 
gradient. The Einstein’s summation convention applies to 
Eqs. (2) and (3). By properly setting CKLMN in Eq. (2), both 
isotropic and anisotropic elastic behaviors can be simulated 
although only isotropic behavior is considered in this study 
since the rocks used in this study are better modelled as 
isotropic materials. The small strain tensor is not used in 
Eqs. (1) and (2); therefore, large displacements and large 
rotations can be simulated. Equation (1) is used for the 3D 
UCS and BTS modellings presented in Sect. 3.2 while both 
Eq. (1) and Eqs. (2, 3) are used for the 3D dynamic BTS 
modelling presented in Sect. 3.3 and no noticeable differ-
ences between Eq. (1) and Eqs. (2, 3) are observed since rock 
deformation is small. To simulate the deformation process of 
materials under quasi-static loading, η = ηcrit = 2 h√(ρE) is 
used to achieve critical damping (Munjiza 2004), where h, ρ, 
and E are the element length, density and Young’s modulus, 
respectively, of the target material. The value of σij within 
each TET4 is converted to the equivalent nodal force fint 
(e.g., Munjiza et al. 2015).

Fracturing of rock under mode I and mode II loading 
conditions (i.e., opening and sliding cracks, respectively) 
is modelled using the CZM with the concept of a smeared 
crack (Munjiza et al. 1999). To model the behavior of the 
fracture process zone (FPZ) in front of the crack tips, tensile 
and shear softening is applied using an assembly of 6-node 

Fig. 1   Two types of finite ele-
ments (TET4 and CE6) and the 
mechanical behaviors of CE6 
during the failure process: a two 
TET4s surrounding a CE6, b 
tensile/shear softening curves in 
the ICZM
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initially zero-thickness cohesive elements (CE6s) (Fig. 1a) 
as a function of the crack opening and sliding displacements, 
(o, s), respectively (Fig. 1b). Two methods can be used for 
the insertion of the CE6s. One is to insert the CE6s into all 
of the boundaries of the TET4s at the beginning of the analy-
sis, which is known as the intrinsic cohesive zone model 
(ICZM), and the second is to adaptively insert the CE6s into 
particular boundaries of the TET4s with the help of adap-
tive remeshing techniques where a given failure criterion 
is met, which is referred to as the extrinsic cohesive zone 
model (ECZM) (Zhang et al. 2007; Fukuda et al. 2017). 
Many existing FDEM codes, such as the family of Y codes 
that includes 3D Y-HFDEM IDE, have employed the ICZM, 
whereas some codes, such as ELFEN, use the ECZM. One of 
the advantages of the ICZM is that the implementation and 
application of parallel computing algorithms is straightfor-
ward, but an “artificial” intact and elastic behavior of CE6s 
before the onset of fracturing must be specified, which 
requires the introduction and correct estimation of penalty 
terms for CE6s and the careful selection of the time step 
increment, Δt, to avoid numerical instability. In the GPGPU-
based 3D Y-HFDEM IDE, the normal and shear cohesive 
tractions, (σcoh and τcoh, respectively), acting on each face 
of the CE6s are computed using Eqs. (4) and (5) assuming 
tensile and shear softening behaviors, respectively:

where op and sp are the “artificial” elastic limits of o and s, 
respectively, ooverlap is the representative overlap when o is 
negative, Ts is the tensile strength of a CE6, c is the cohesion 
of a CE6, and ϕ is the internal friction angle of a CE6. Posi-
tive o and σcoh values indicate crack opening and a tensile 
cohesive traction, respectively. Equation (5) corresponds 
to the Mohr–Coulomb shear strength model with a tension 
cutoff. The cohesive tractions σcoh and τcoh are applied to the 
opposite directions of the relative opening and sliding in a 
CE6, respectively. The artificial elastic behavior of each CE6 
characterized by op and sp along with ooverlap is necessary 
when the ICZM is used to connect the TET4s to express the 
intact deformation process, which is given as follows and 
has been used in most FDEM codes (Munjiza et al. 1999):

(4)𝜎coh =

⎧
⎪⎪⎨⎪⎪⎩

2o

ooverlap
Ts if o < 0�

2o

op
−
�

o

op

�2
�
f (D)Ts if 0 ≤ o ≤ op

f (D)Ts if op < o

,

(5)

𝜏coh =

⎧⎪⎨⎪⎩

�
2�s�
sp

−
��s�

sp

�2
��
−𝜎coh tan(𝜙) + f (D)c

�
if 0 ≤ �s� ≤ sp

−𝜎coh tan(𝜙) + f (D)c if sp < �s�
,

where Popen, Ptan, and Poverlap are the artificial penalty terms 
of the CE6 for opening in the normal direction, sliding 
in the tangential direction and overlapping in the normal 
direction, respectively, and h is the element length. In this 
paper, the terminologies “fracture penalties” for Popen, Ptan, 
and Poverlap used in previous publications are intentionally 
avoided because they should not be considered as penalties 
for the fracturing behavior but rather as those for control-
ling the artificial elastic (intact) regime of CE6. The values 
of Popen, Ptan, and Poverlap can be considered as the artifi-
cial stiffnesses of the CE6 for opening, sliding and overlap-
ping, respectively. Ideally, their values should be infinity 
to satisfy the elastic (intact) behavior of rocks according to 
Eqs. (1) or (2), resulting in the requirement of the infinitesi-
mal Δt. Therefore, reasonably large values of the artificial 
penalty terms of CE6s compared to the Young’s modulus 
or Lame constants are required because it is impossible to 
use infinity in actual numerical simulations. Otherwise, the 
intact behavior of the bulk rock shows significantly differ-
ent (i.e., softer) behavior from that specified by Eqs. (1) or 
(2), and the elastic constants used in these elastic constitu-
tive equations completely lose their meanings. In addition, 
during the development of the 3D Y-HFDEM IDE code, 
the authors found that the sufficiently large values for the 
penalty terms (10 times the Young’s modulus of rock, Erock, 
in most cases) recommended in many previous studies that 
applied the FDEM are not sufficient to satisfy the continuum 
elastic behavior of Eqs. (1) or (2); this topic is investigated 
and discussed in Sect. 3 for both quasi-static and dynamic 
loading problems. Some studies argue that the artificial 
penalty terms are mechanical properties. However, in that 
case, the CE6s must be considered as joint elements, and 
the artificial penalty terms of the CE6s should be called 
joint stiffnesses to describe discontinuous media, such as 
preexisting joints. The function, f(D), in Eqs. (4) and (5) is 
the characteristic function for the tensile and shear soften-
ing curves (Fig. 1b) and depends on a damage value D of 
the CE6. When 0 < D < 1 or D = 1 for a CE6, the CE6 can 
be considered to be a microscopic or macroscopic crack, 
respectively. The following definitions of D and f(D) are 
used to consider not only the mode I and II fracturing modes 
but also a mixed-mode I–II fracturing mode (Mahabadi et al. 
2012; Munjiza et al. 1999):

(6)op = 2hTs∕Popen,

(7)sp = 2hc∕Ptan,

(8)ooverlap = 2hTs∕Poverlap,

(9)
D =Minimum

⎛
⎜⎜⎝
1,

��
o − op

ot

�2

+

��s� − sp

st

�2 ⎞⎟⎟⎠
if o ≥ op or �s� > sp , otherwise 0,
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where A, B and C are intrinsic rock properties that determine 
the shapes of the softening curves, and ot and st are the criti-
cal values of o and s, respectively, at which a CE6 breaks and 
becomes a macroscopic fracture. To avoid unrealistic dam-
age recovery (i.e., an increase of f), the following treatment 
has been implemented in the code. If the trial f computed 
from Eq. (10) at the current time step becomes larger than 
that at the previous time step, fpre, a condition of f = fpre is 
assigned to avoid unrealistic damage recovery. The ot and st 
in Eq. (9) satisfy the mode I and II fracture energies GfI and 
GfII (Fig. 1b) specified in Eqs. (11) and (12), respectively:

where Wres is the amount of work per area of a CE6 done by 
the residual stress term in the Mohr–Coulomb shear strength 
model. Note that in the current formulation, mode II and III 
fracturing modes are not distinguished, and it is assumed 
that in-plane (mode II) and out-plane (mode III) responses 
of the micro cracks (i.e., CE6s) are simply described by 
the parameter GfII because the clear definition of crack tips 
and conducting reproducible/reliable mode II and Mode III 
fracture toughness tests are challenging. This paper uses 
the same f(D) with A, B and C equal to 0.63, 1.8, and 6.0, 
respectively (Munjiza et al. 1999), for both mode I and II 
fracture processes because of the lack of experimental data. 
However, it is worth mentioning that the recent studies by 
Osthus et al. (2018) and Godinez et al. (2018) using the 
FDEM code “2D HOSS” showed that the shape of the sof-
tening curve had minor influences on the obtained results 
and that the tensile and shear strengths and fracture energies 
are the main affecting factors. Unloading (i.e., a decrease 
of o or |s|) can also occur during the softening regime (i.e., 
o > op or |s| > sp) (see Fig. 1b), which is modelled based on 
Eqs. (13) and (14) (Camacho and Ortiz 1996):

(10)

f (D) =

[
1 −

A + B − 1

A + B
exp

(
D

A + CB

(A + B)(1 − A − B)

)]

[
A(1 − D) + B(1 − D)C

]
(0 ≤ D ≤ 1),

(11)GfI =

ot

∫
op

�coh(o)do,

(12)GfII +WE =

st

∫
sp

{
�coh(|s|)}d|s|,

(13)𝜎coh = f (Dmax)Ts
o

omax

if 0 < o < omax and omax > op,

(14)

𝜏coh =
{
−𝜎coh tan(𝜙) + f (Dmax)c

} |s|
smax

if |s| < smax and smax > sp.

In each CE6, the computed σcoh and τcoh are converted 
to the equivalent nodal force fcoh using a 3-point or 7-point 
Gaussian integration scheme depending on the required pre-
cision of the simulation. When either ot or st is achieved in a 
CE6, the CE6 is deactivated, and its surfaces are considered 
as new macroscopic fracture surfaces that are subjected to 
contact processes.

The contact processes between the material surfaces, 
including the new macroscopic fractures created by the 
separation of each CE6, are modelled by the penalty method 
(Munjiza 2004); a complete and excellent explanation of 
the method is given in the literature (Munjiza 2004). As a 
brief explanation, when any two TET4s subjected to contact 
detection (see Sect. 2.2 for the implementation of contact 
detection in the framework of GPGPU) are found to overlap 
each other, the contact potential due to the overlapping of 
the two TET4s (i.e., the contacting couple) is exactly com-
puted. The normal contact force, fcon_n, is then computed 
for each contacting couple, which acts normally to the con-
tact surface and is proportional to the contact potential. The 
proportional factor is called the normal “contact penalty”, 
Pn_con. After the normal contact force, fcon_n, and its acting 
point are obtained, the nominal normal overlap, on, and rela-
tive displacement vector, Δuslide, at the acting point of fcon_n 
are readily computed. The contact damping model proposed 
by An and Tannant (2007) (Fig. 2) can also be applied if 
the role of contact damping is very important. When this 
scheme is applied, the normal contact force, fcon_n, described 
above is regarded as a trial contact force, (fcon_n)try, and a 
trial contact stress (σcon_n)try is then computed by dividing 
(fcon_n)try by the contact area, Acon. Equation (15) is then used 
to determine the contact stress σcon_n:

Fig. 2   Elastic–inelastic power function model for contact damping 
[modified after An and Tannant (2007)]
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where T is the transition force, b is the exponent, and on_max 
is the maximum value of on experienced during the load-
ing process at the contact. T limits σcon_n and defines the 
transition between a linearly elastic stress–displacement 
relationship and a ‘recoverable’ displacement at a constant 
contact stress. The values of T may be related to the physi-
cal properties of rocks, such as the uniaxial compressive 
strength. The exponent b adjusts the power of the damping 
function that is applied to the rebound or extension phase 
of the contact. The value of the exponent has an effect on 
the energy loss during an impact event. A similar contact 
damping model is implemented in the 2D Y-Geo code in 
the framework of the FDEM, in which only b is consid-
ered (Mahabadi et al. 2012). After σcon_n is computed using 
Eq. (15), it is converted to fcon_n (= Acon × σcon_n). The veri-
fication of the implemented contact damping is discussed 
in Sect. 3.1. After fcon_n is determined, the magnitude of the 
tangential contact force vector, |fcon_tan|, is computed accord-
ing to the classical Coulomb friction law. The |fcon_tan| is 
computed based on Eq. (16):

where μfric is the friction coefficient between the contact 
surfaces. The tangential contact force, fcon_tan, is applied 
parallel to the contact surface in the opposite direction to 
Δuslide. The verification of the implementation of the contact 
friction, which is important in any simulation of fractur-
ing due to quasi-static loading, is discussed in Sect. 3.1. In 
each contacting couple, the contact force is converted to the 
equivalent nodal force fcon (Munjiza 2004).

(15)

�con_n

=

{
Minimum

((
�con_n

)try
, T

)
during the increase of on(Loading)

T
(
on∕on_max

)b
during the decrease of on(Unloading)

,

(16)‖‖�con_tan‖‖ = �fricfcon_n,

By computing the nodal forces described above, the follow-
ing equation of motion, Eq. (17), is obtained and solved in the 
framework of the explicit FEM (Munjiza 2004):

where M is a lumped nodal mass computed from the initial 
TET4 volume and element mass density ρ, u is the nodal 
displacement, and fext is the nodal force corresponding to 
the external load. The central difference scheme is employed 
for the explicit time integration to solve Eq. (17). A careful 
selection of the time step, Δt, is necessary to avoid numeri-
cal instability and spurious fracture modes. An excellent 
explanation of the reasonable selection of Δt in the ordinary 
FDEM can be found in Guo (2014).

2.2 � GPGPU‑Based Parallelization of 3D Y‑HFDEM 
IDE by CUDA C/C++

To speed up the simulation process of the 3D Y-HFDEM 
IDE code, a parallel computation scheme based on the 
NVIDIA® GPGPU accelerator is incorporated. In our case, 
the computation on the GPGPU device is controlled through 
NVIDIA’s CUDA C/C++ (NVIDIA 2018), which is essen-
tially an ordinary C/C++ programming language with sev-
eral extensions that make it possible to leverage the power of 
the GPGPU in the computations. The CUDA programming 
model uses abstractions of “threads”, “blocks” and “grids” 
(Fig. 3). A greater degree of parallelism occurs within the 
GPGPU device itself. Functions, also known as “kernels”, 
are launched on the GPGPU device and are executed by 
many “threads” in parallel. A “thread” is just an execution 
of a “kernel” with a given “thread index” within a particu-
lar “block”. As shown in Fig. 3, a “block” is a group of 
threads, and a unique “block index” is given to each “block”. 

(17)�
�2�

�t2
= �ext + �int + �coh + �con

Fig. 3   Concept of the CUDA programming model using the abstractions of “threads”, “blocks” and “grid”
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The “block index” and “thread index” enable each thread 
to use its unique “index” to globally access elements in the 
GPGPU data array such that the collection of all threads 
processes the entire data set in massively parallel manner. 
The “grid” is just a group of “blocks”. Only a single “grid” 
system is used in this study. The concept of a GPGPU clus-
ter with a massive number of GPGPU accelerators is also 
possible, although this is beyond the scope of this paper. 
The “blocks” can execute concurrently or serially depend-
ing on the number of streaming processors available in a 
GPGPU accelerator. Synchronization between “threads” 
within the same “block” is possible, but no synchroniza-
tion is possible between the “blocks”. In each “thread” level, 
the corresponding code that the “threads” execute is very 
similar to the CPU-based sequential code (see Fukuda et al. 
2019), which is one of the advantages of the application 
of CUDA C/C++. For example, the Quadro GP100 accel-
erator (in Pascal generation) used in this paper contains 56 
and 3584 streaming processors and CUDA cores (NVIDIA 
2018), respectively. Higher computational performance of 
the GPGPU-parallelized code running on the same GPU 
accelerator can be achieved than that of ordinary CPU-
based sequential codes. The number of “blocks” per “grid” 
(NBpG) and the number of “threads” per “block” (NTpB) can 
be changed to speed up the GPGPU (Fig. 3). The current 
version of 3D Y-HFDEM IDE normally sets NTpB to either 

256 or 512, and NBpG is automatically computed by divid-
ing the total number of threads (Nthread) in each “kernel” by 
NTpB, in which an additional block is needed if Nthread/NTpB 
is not a multiple of NTpB. The value of Nthread is set to be 
equal to the total number of TET4s, CE6s, contact couples 
or nodes depending on the purpose of each “kernel”.

In the GPGPU implementation of 3D Y-HFDEM IDE, 
the computations for each TET4 (fint and M), CE6 (fcoh), 
contact couple (fcon) or nodal equation of motion (Eq. (17)) 
are assigned to each GPGPU “kernel” as shown in Fig. 4 and 
processed in a massively parallel manner. The CUDA code 
used in each “kernel” is similar to the functions/subroutines 
in CPU-based sequential codes, which also holds true for the 
computations shown in Fig. 4. Thus, most parts of the origi-
nal sequential CPU-based code can be used with minimum 
modifications. For the computation of the contact force, 
fcon, “TET4 to TET4 (TtoT)” contact interaction kinematics 
are used in the earliest versions of the Y3D code (Munjiza 
2004). This TtoT approach exactly considers the geometries 
of both the contactor and target TET4s, and the integration 
of the contact force distributed along the surfaces of the 
TET4s is performed analytically. Because this approach inte-
grates the contact forces exactly, it is precise although quite 
time consuming. As pointed out in the literature (Lei et al. 
2014), the contact interaction in 3D can be further simplified 
by “TET4 to point (TtoP)” contact interaction kinematics, 

Fig. 4   Concept of massively parallel computation for each CUDA “kernel” for particular computational purposes
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which make the implementation simpler and more time effi-
cient. However, the precision of the computed contact force 
using the TtoP approach is less accurate unless a sufficient 
number of target points per TET4 are used. Thus, the TtoT 
approach is intentionally applied for all of the numerical 
simulations in this paper instead of the TtoP approach to 
ensure the precision of the computed contact force.

A flowchart of the GPGPU-based 3D Y-HFDEM IDE is 
shown in Fig. 5. One of the challenging tasks in Fig. 5 is the 
implementation of contact detection to identify each contact-
ing couple only through the GPGPU without a sequential 
computational procedure. For sequential CPU implemen-
tation, powerful and efficient contact detection algorithms, 
such as No Binary Search and Munjiza–Rougier contact 
detection algorithms, have been proposed (Munjiza 2004; 
Munjiza et al. 2011), and these can achieve the fastest (i.e., 
linear) neighbor searches with the computational complex-
ity of O(N), in which N is the number of elements and the 
required computation for the contact detection is propor-
tional to the number of TET4 candidates subjected to con-
tact detection. However, these contact detection algorithms 

are not straightforward to be implemented in the GPGPU-
based code. In the GPGPU-based 3D Y-HFDEM IDE code, 
because the FDEM modelling requires a fine mesh that often 
consists of TET4s with similar sizes, the following contact 
detection algorithm is implemented. In this algorithm, the 
analysis domain comprising a massive number of TET4s is 
subdivided into multiple equal-sized (nx, ny, nz) cubic sub-
cells (Fig. 6) along each direction, so the largest TET4 in 
the analysis domain is completely included in a single sub-
cell. In this way, the center point of every TET4 can always 
belong to a unique sub-cell. Using integer coordinates (ix, iy, 
iz) (ix  = 0,…, nx−1, iy  = 0,…, ny−1, iz  = 0,…, nz−1) for the 
location of each sub-cell (Fig. 6), unique hash values, h (= i
z × nx + iyx ny +  iy × nx +  ix), are assigned to each sub-cell. 
The subsequent contact detection procedure is explained 
using a simplified example, as shown in Fig. 7, where ten 
TET4 candidates with similar sizes are subjected to contact 
detection. First, all of the TET4s are mapped into integer 
coordinates (ix  = 0, 1 and 2, iy  = 0, 1 and 2, and iz  = 0, 1 
and 2) with nx =  ny =  nz = 3 along with the computation of 
the hash values in each sub-cell. In this way, the list L-1 is 

Fig. 5   Flowchart of the 
GPGPU-parallelized 3D 
Y-HFDEM IDE code
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Fig. 6   Concept of hash values 
assigned to each cubic sub-cell 
(left) and a TET4 included in a 
particular sub-cell (right)

Fig. 7   GPGPU-based contact detection algorithm implemented in the GPGPU-parallelized 3D Y-HFDEM IDE code



1092	 D. Fukuda et al.

1 3

readily constructed using the massively parallel computation 
based on the similar concept shown in Fig. 4 by assigning 
the computation of each TET4 to each CUDA “thread”. The 
IDs of the TET4s in the list L-1 in Fig. 7 are then sorted 
from the smallest to largest according to the hash values h as 
keys, which generates the list L-2 in Fig. 7. The radix sort-
ing algorithm optimized for CUDA (Satish et al. 2009) and 
implemented in the open-source “thrust” library is used for 
the key-sorting by the hash values; therefore, this procedure 
can also be processed in a massively parallel manner. Uti-
lizing the list L-2 and the GPGPU device’s shared memory 
(NVIDIA 2018), the list L-3 in Fig. 7 is further constructed 
in a GPGPU “kernel”, which makes it possible to identify 
the first and last indices for the particular hash value in the 
list L-2. Therefore, with the lists L-2 and L-3, the IDs of all 
the TET4s included in a particular sub-cell with its unique 
hash value are readily available. Finally, for a particular 
TET4 with its sub-cell position, it is sufficient to only search 
its adjacent 27 sub-cells [or 14 sub-cells using the concept 
of a contact mask (Munjiza 2004)] for contact detection, 
which makes it possible to achieve efficient contact detec-
tion using only the GPGPU device and without a sequential 
CPU procedure. When the sizes of the TET4s are completely 
different, the size of the cubic sub-cell is very large, result-
ing in very inefficient contact detection; thus, other paral-
lel neighbor search schemes, such as the Barnes–Hut tree 
algorithm (Burtscher and Pingali 2011), should be used for 
efficient contact detection. The contact detection algorithm 
used in the GPGPU-based 3D Y-HFDEM IDE is similar to 
that applied by Lisjak et al. (2018) in terms of the applied 
hash-based contact detection algorithm. However, Lisjak 
et al. (2018) further incorporated the hyperplane separation 
theorem as the second step of contact detection. Unfortu-
nately, Lisjak et al. (2018) did not discuss the algorithm 
used to generate the hash-table in the framework of OpenCL, 
which is also one of very important aspects of the perfor-
mance gain, and the effect of introducing the second step. 
Furthermore, no discussion was given for the sped up perfor-
mance of Irazu for the 3D simulation. Instead, the comput-
ing performance of our GPGPU-parallelized 3D Y-HFDEM 
IDE is discussed in Sect. 3.4 of this study proving that the 
GPGPU-parallelized 3D Y-HFDEM IDE is very efficient in 
terms of contact detection and has the computational com-
plexity of O(N).

Therefore, the GPGPU-parallelized 3D Y-HFDEM IDE 
code can run in a completely parallel manner on the GPGPU 
device, and no sequential processing is necessary, except 
for the input and output procedures. The data transfer from 
the GPGPU device to the host computer is always neces-
sary to output the analysis results, the time of which is often 
negligible compared to the entire simulation time for most 
Y-HFDEM IDE simulations. The results can be visualized 
in either OpenGL implemented in the 3D Y-HFDEM IDE 

code (Liu et al. 2015) or in the open-source visualization 
software Paraview (Ayachit 2015).

Finally, it should be noted that an efficient contact calcu-
lation activation approach has been applied in some publi-
cations about the FDEM in the framework of ICZM [e.g., 
Section 2.3.3.2 along with Fig. 2.14 in Guo (2014)]. In this 
approach, only the TET4s in the vicinity of newly broken/
failed CE6s become contact candidates and are added to 
the contact detection list. One advantage of this approach is 
that the contact detection and contact force calculations are 
necessary only for the initial material surfaces by the time 
when the broken/failed CE6s are generated; thus, dramatic 
savings in the computational time for the contact detection 
are possible. This approach is called an efficient contact 
detection activation (ECDA) approach hereafter. However, 
in the ICZM-based FDEM simulation of hard rocks under 
compressive loading conditions, most of the TET4s can 
overlap during the progress of compression even before the 
generation of broken/failed CE6s. In this case, if the amount 
of overlap is not negligible when broken CE6s are generated, 
this ECDA approach generally results in the sudden appli-
cation of the contact force like a step-function, which can 
easily cause numerical instability and result in unrealistic/
spurious fragmentation. To avoid the numerical instability 
and spurious fracturing modes, an infinitesimally small Δt 
must be used, which makes the simulation intractable. One 
way to avoid this instability is to monitor the overlapping of 
the CE6s. If a significant overlap is detected in a CE6, the 
TET4s in the vicinity of the CE6 are immediately consid-
ered as new candidates for the contact detection although the 
threshold of this “significant overlap” is problem-depend-
ent. Another simple remedy is to add all of the TET4s as 
contact candidates. This approach is called the brute-force 
contact detection activation approach. Although it is too 
time consuming, the brute-force contact detection activa-
tion approach can work as a remedy for a wide range of rock 
conditions, including very hard rock, which is used for the 
3D dynamic BTS modelling of marble with the split Hopkin-
son pressure bar (SHPB) testing system. It should be noted 
that all FDEM simulations must deal with this problem care-
fully to avoid inaccurate simulation results, although it has 
not been reported in the literature. Otherwise the obtained 
fracture patterns may be spurious.

3 � Numerical Tests and Code Validation

This section aims to verify and validate the GPGPU-par-
allelized 3D Y-HFDEM IDE code by conducting several 
numerical simulations. All of the numerical simulations in 
this section are conducted using the GPGPU-based code.
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3.1 � Verifications of Contact Damping and Contact 
Friction

To assess the accuracy of the contact damping model 
implemented in Sect. 2.1, a simple impact test is modelled 
(Fig. 8a) using the GPGPU-parallelized 3D Y-HFDEM IDE. 
The model is the extension of the 2D model reported by 
Mahabadi et al. (2012) to 3D, and the obtained results are 
discussed. The model consists of a spherical elastic body 
with a radius of 0.1 m impacting a fixed rigid surface ver-
tically. The elastic body is not allowed to fracture in this 
model. Following the study (Mahabadi et al. 2012), gravi-
tational acceleration is neglected, the density of the elastic 
body is 2700 kg/m3, and the initial total kinetic energy of 
the elastic body, E0

kin
 , before the impact event is 565.5 J. 

Because the Lame constants λ and µ for the elastic body are 
not available in that study (Mahabadi et al. 2012), it is sim-
ply assumed that λ = µ = 5.0 GPa and that the viscous damp-
ing coefficient η = 0 for internal viscous damping. Contact 
friction is also neglected. Thus, energy dissipation is only 
due to the contact damping to make it simple to discuss 
the effect of the contact damping. Parametric analyses are 
conducted by changing the exponent b, the transition force 
T in Eq. (15) and the normal contact penalty Pcon_n between 
the elastic body and the rigid surface. The normalized total 
kinetic energy of the elastic body by E0

kin
 as a function of 

time is monitored during the parametric analyses.
Figure 8b compares five cases with b values equal to 1, 2, 

5, 20, and 30 when T = ∞ (very large value, i.e., 1.0e+30 Pa) 
and Pcon_n = 0.1 GPa. The case with b = 1 corresponds to an 
elastic contact; thus, no energy dissipation occurs due to the 
contact, although a very small decrease in the kinetic energy 
actually occurs after the impact because a small amount 
of the kinetic energy is converted to the strain energy of 
the elastic body. As the value of b increases, the amount 
of kinetic energy dissipates from the system increases. 
This behavior is similar to that reported in the literature 

(Mahabadi et al. 2012) using a sequential 2D FDEM. The 
cases with different values of Pcon_n (= 0.1 GPa and 10 GPa) 
but constant b = 2 and T = ∞ show that the same b does not 
result in the same energy dissipation when Pcon_n is different. 
This is a reasonable outcome because the maximum value 
of the nominal normal overlap on_max in Eq. (15) during the 
impact event changes for different values of Pcon_n (Munjiza 
2004). However, this important fact has not been reported in 
the literature (Mahabadi et al. 2012). Likewise, the two cases 
with different values of T (= ∞ and 1 MPa) but constant 
b = 2 and Pcon_n = 0.1 GPa show different amounts of energy 
dissipation, which can be also explained by the change in 
on_max. These expected results verify that the contact detec-
tion and computation of fcon are properly processed in the 
GPGPU-based code, although this paper does not consider 
contact damping in the following numerical simulations 
because the calibration of these parameters against rock fall 
experiments is beyond the scope of this paper.

To assess the accuracy of the contact friction model 
implemented in Sect. 2.1, a simple sliding test, which was 
originally suggested by Xiang et al. (2009) as a 2D problem, 
is modelled as a 3D problem, and the obtained results are 
compared with those from theoretical analyses. The model 
consists of a simple cube sliding along a fixed plane with 
a friction coefficient of μfric = 0.5. The cube is assigned an 
initial velocity, which varies from 1 m/s to 6 m/s. With each 
initial velocity, the cube slows and stops due to the friction 
between the sliding cube and the rigid base. Theoretically, 
the sliding distance can be defined as a function of the initial 
velocity (vi), gravitational acceleration (g) and the friction 
coefficient (μfric) through Eq. (18).

Figure  9 shows an excellent agreement between the 
numerical simulation and the theoretical solution from 
Eq. (18), which validates the accuracy of the implemented 
contact friction model.

(18)L = v2
i
∕
(
2�fricg

)
.

Fig. 8   Contact damping verification: a 3D model configuration [modified after Mahabadi et al. (2012)], b comparison between numerical and 
theoretical results
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3.2 � 3D FDEM Modelling of the Failure Process 
of Rock Under Quasi‑Static Loading Conditions

In this subsection, two standard rock mechanics laboratory 
tests, the UCS test and BTS test, of a relatively homogene-
ous limestone are modelled to investigate the capabilities of 
the GPGPU-parallelized 3D Y-HFDEM IDE for simulating 
the fracturing process and associated failure mechanism of 
the rock under quasi-static loading conditions.

The numerical models for the 3D FDEM simulations of 
the UCS and BTS tests are shown in Fig. 10, in which the 
diameter of both specimens is 51.7 mm, and the height and 
thickness of the specimens are 129.5 mm and 25.95 mm, 
respectively. The rock specimens are placed between two 
moving rigid loading platens. Flat rigid loading platens are 
used in the UCS model, whereas curved rigid loading platens 
are used in the BTS model, whose curvature is 1.5 times the 
diameter of the BTS disk, as suggested by the International 
Society for Rock Mechanics (ISRM). It is important to note 
that in the FDEM simulation with the CZM, it is essential 
to use an unstructured mesh to obtain reasonable rock frac-
ture patterns because the FDEM only allows the fractures 
to initiate and propagate along the boundaries of the solid 
elements. Moreover, the use of a very fine mesh is the key 
to reducing the mesh dependency of the crack propagation 
paths, which is why most 2D FDEM simulations in previous 
studies used very fine meshes. However, if very fine meshes 
are used in 3D models, the number of TET4s and CE6s can 

(a)

(b)

Fig. 9   Contact friction verification: a 3D model configuration [modi-
fied after Xiang et al. (2009)], b comparison between numerical and 
theoretical results

Fig. 10   3D numerical models 
for analysis of the fracturing 
process of rock under quasi-
static loading. (a) UCS test, (b) 
BTS test
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easily exceed several million, which makes the 3D modelling 
become intractable in terms of memory limitations and the 
simulation time required for the calibration process using 
FDEM codes parallelized by a single GPGPU accelerator. 
Thus, fine meshes comparable to those investigated by Lis-
jak et al. (2018) are used in the 3D FDEM models. Accord-
ingly, the average edge length of the TET4s in both models 
is set to 1.5 mm, and the UCS and BTS models contain 
695,428 TET4s and 1,298,343 CE6s and 187,852 TET4s and 
348,152 CE6s, respectively. According to a recent study on 
2D FDEM modelling conducted by Liu and Deng (2019), 
the effect of the element size can be negligible if there are 
not less than 27–28 meshes in the length corresponding to 
the diameter of the specimen and the maximum element 
size should not be longer than the length of fracture process 
zone of the CZM. The UCS and BTS models used in this 
study satisfy these requirements. Based on the review of 
the effects of the loading rate presented above, a constant 
velocity of 0.01 m/s is applied on the loading platens to 
satisfy the quasi-static loading conditions, as suggested by 
Guo (2014). Moreover, our preliminary sensitivity study of 
3D UCS and BTS modellings under various loading rates 
confirms the quasi-static loading conditions can be achieved 
with the platen velocity of 0.01 m/s, which further shows lit-
tle difference can be noticed from 3D UCS modelling even if 
the platen velocity is increased to 0.05 m/s although slightly 
higher peak loads and spurious fragmentations around the 
loading areas are observed from 3D BTS modelling with the 
platen velocity increasing.

The physical/mechanical properties of the limestone are 
obtained from laboratory measurements, which are used to 
determine the input parameters for the numerical modelling 
(Table 1). As introduced in Sect. 2, the intact behavior of the 
numerical model follows Eq. (1), and the elastic parameters 
are determined in such a way that the elastic region of the 

stress–strain curve from the 3D FDEM simulation of the 
UCS test agrees well with that of the laboratory experiment. 
Our preliminary investigation showed that the experimen-
tally obtained elastic parameters can be directly used as the 
input parameters if sufficiently large artificial penalty terms 
of the CE6s are used. The penalty terms for the contacts and 
CE6s are determined as multiples of the elastic modulus of 
the rock (i.e., Erock). The value of the contact penalty (Pn_con) 
is set as 10 Erock. However, higher values are required for 
the artificial penalty terms of the CE6s (i.e., 100 Erock for 
Popen and Ptan and 1000 Erock for Poverlap) to allow the artifi-
cial increase in the compliance of the bulk rock to become 
negligible. Because the artificial elastic regime of the CE6 
in Eqs. (6)–(8) can also be influenced by the strength param-
eters, an artificial increase in the bulk compliance of the rock 
becomes non-negligible if the artificial penalty terms for 
the CE6s are not set to be sufficiently large. In other words, 
smaller artificial penalty terms for the CE6s can result in 
non-negligible changes in the artificial elastic response 
of the CE6s during the calibration process, in which the 
strength parameters are also varied. This fact has not been 
pointed out by any studies of the development and/or appli-
cation of the FDEM. Then, after setting the penalty terms 
of the CE6s, the strength parameters (i.e., tensile strength 
Ts_rock, cohesion crock and internal friction angle ϕrock) and 
the fracture energies, GfI_rock and GfI_rock, of the numerical 
model are calibrated by trial and error. To do this, a series 
of FDEM simulations was conducted to achieve a reason-
able match between the numerical and experimental results 
so the peak load and fracture patterns from the numerical 
simulations agree well with those from the experiments. The 
same input parameters shown in Table 1 are also used for 
the numerical modelling of the BTS test. The friction coef-
ficients, μfric, of the contact between the platens and the rock, 
and, that between rock surfaces generated by broken CE6s 
are assumed to be 0.1 and 0.5, respectively, as in Mahabadi 
(2012). The ECDA approach introduced in Sect. 2.2 is used 
in these simulations because the rock can be considered to 
be relatively soft, and no spurious modes are observed in 
this case. The concept of mass scaling (Heinze et al. 2016) 
with the mass-scaling factor = 5 is applied to increase Δt 
in such a way that the quasi-static loading condition is still 
satisfied. Thus, Δt = 4.5 and 9 ns are used for the simula-
tions of the BTS and UCS tests, respectively. Further details 
about the mass-scaling concept can be found in the litera-
ture (Heinze et al. 2016). The critical damping scheme 
[η = ηcrit = 2 h√(ρE) in Eq. (1)] is also used in all of the 
FDEM simulations in this section. Hereafter, compressive 
stresses are considered negative (cold colors), whereas ten-
sile stresses are regarded as positive (warm colors).

Figure 11a–c shows the modelled 3D progressive rock 
failure process in terms of the distributions of the minor 
principal (mostly compressive) stress (upper row) and the 

Table 1   Physical–mechanical properties of rock and computational 
parameters used in the FDEM simulations of the UCS and BTS tests 
(Sect. 3.2)

Parameter Unit Value

Density (ρrock) kg/m3 1800
Young’s modulus (Erock) GPa 12.2
Poisson’s ratio (νrock) – 0.25
Tensile strength (Ts_rock) MPa 1.2
Cohesion (crock) MPa 4.2
Internal friction angle (ϕrock) ° 25
Mode I fracture energy (GfI_rock) J/m2 2
Mode II fracture energy (GfII_rock) J/m2 26.5
Normal contact penalty (Pn_con) GPa 122
Artificial stiffness penalty (Popen, Ptan) GPa 1220
Artificial stiffness penalty (Poverlap) GPa 12,200
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damage variable [i.e., D in Eq. (9); lower row] at different 
loading stages (points A, B and C in Fig. 11d) in the FDEM 
simulation of the UCS test. Figure 11d shows the obtained 

axial stress versus axial strain curve. Figure 11a shows the 
stress and damage distribution in the sample at the stage 
before the onset of nonlinearity in the axial stress versus 

Fig. 11   3D modelling of the UCS test under quasi-static loading. a Initiation and propagation of microscopic cracks before the peak stress, b 
unstable crack propagation at the peak stress, c post-failure fracture pattern, and d axial stress versus axial strain curve



1097Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized…

1 3

axial strain curve (point A in Fig. 11d). As the loading dis-
placement continues, the growth of unstable microscopic 
cracks commences and continues until the peak stress of 
the stress–strain curve is reached (point B in Fig. 11d). Sub-
sequently, the microscopic cracks coalesce to form macro-
scopic cracks, which results in the loss of bearing capacity 
of the bulk rock, and the axial stress begins to decrease with 
increasing strain. Finally, the formed macroscopic cracks 
propagate further, resulting in the complete loss of the bear-
ing capacity of the rock (point C in Fig. 11d). Figure 12a 
compares the final fracture patterns obtained from the 
FDEM simulation and the laboratory experiment. The result-
ing fracture patterns (Fig. 12a) and the peak loads (Fig. 11d) 

from the numerical simulation and laboratory experiment 
are in good agreement. Although the formation of the shear-
ing planes is evident in Fig. 12b, it must be noted that mixed-
mode I–II fractures are the dominant mechanism of rock 
fracturing, as shown in Fig. 12c, which will be explained in 
detail later. Therefore, the obtained results demonstrate that 
the developed GPGPU-parallelized 3D Y-HFDEM IDE is 
able to reasonably model the fracturing process of rock in 
UCS tests.

Figure 13a–c illustrates the modelled 3D progressive 
rock failure process in terms of the distributions of the hori-
zontal stress, σxx, (upper row) and the damage variable D 
in Eq. (9) (lower row) at different stages (points A, B, and 

Fig. 12   Comparison of the final 
rock fracture patterns in the 
UCS test from the numerical 
simulation and experiment: a 
comparison of the final fracture 
patterns, b final fracture pattern 
with pure mode II damages 
highlighted, c final fracture 
pattern with mixed-mode I–II 
damages highlighted
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Fig. 13   3D simulation of the fracturing process of rock in the BTS 
test under quasi-static loading: a distributions of the horizontal stress 
and microscopic damage before the peak stress, b distributions of the 
horizontal stress, microscopic damage and macroscopic cracks at the 
peak stress, c distributions of the horizontal stress and macroscopic 

fracture pattern in the post-failure stage, d Brazilian indirect tensile 
stress versus axial strain curve and e comparison between the simu-
lated stress distributions and those from Hondros’ solution along the 
loading diametrical line in the middle plane and on the surface of the 
disk
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C in Fig. 13d) in the FDEM simulation of the BTS test. 
Figure 13d shows the obtained indirect tensile stress versus 
axial strain curve. As the loading displacement gradually 
increases, a uniform horizontal (tensile) stress (σxx) field 
gradually builds up around the central line of the rock disk. 
Figure 13a shows that although some microscopic damage, 
D < <1, appears in the rock disk near the loading platens due 
to stress concentrations, there is no macroscopic crack (i.e., 
CE6s with D = 1). Once the peak indirect tensile strength of 
the rock (point B in Fig. 13d) is reached, macroscopic cracks 
form around the central diametrical line of the rock disk due 
to the coalescence and propagation of microscopic cracks. 
As shown in Fig. 13b, the macroscopic crack that causes the 
splitting failure of the rock disk nucleates slightly away from 
the exact center of the disk. The reason for the nucleation 
of this vertically off-center macroscopic crack is that the 
curved loading platens provide a relatively narrow contact 
strip; accordingly, an off-center horizontal stress concentra-
tion first develops within the rock disk, which is consistent 
with the location of the macroscopic crack nucleation in 
Fig. 13b. This phenomenon was also addressed by Fairhurst 
(1964) and Erarslan et al. (2012), who further pointed out 
that a wider contact strip was required to ensure near-center 

crack initiation in a BTS test with curved loading platens. 
Moreover, Li and Wong (2013) conducted strain–stress 
analyses of a 50-mm-diameter rock disk in BTS tests using 
FLAC3D and pointed out that the maximum indirect tensile 
stress and strain were located approximately 5 mm away 
from the two loading points along the central loading dia-
metrical line of the rock disk. Nearly the same results are 
observed in Fig. 13b; most importantly, the vertically off-
center macroscopic cracks are captured explicitly. Moreo-
ver, following Lisjak et al. (2018), Fig. 13e compares the 
simulated stress distributions along the diameter of the rock 
disk in the middle and on the surface (i.e., lines AB and CD, 
respectively) with the analytical solution of Hondros (1959), 
where y and r represent the vertical distance from the center 
and the radius of the rock disk, respectively. It can be seen 
from Fig. 13e that the stress distribution on the surface of 
the rock disk differs from that in the middle plane, which is 
consistent with Hondros’ solution based on the plane-strain 
assumption. In other words, Hondros’ solution is invalid for 
the stress distributions on the surface of the rock disk, espe-
cially for the tensile stress concentrations in the regions near 
the loading platens, which are clearly depicted in Fig. 13e. 
The local tensile stress concentrations in the regions near the 
loading platens on the surface of the rock disk explain the 
nucleation of the off-center macroscopic cracks modelled 
in Fig. 13b, which will not be possible if 2D plane-strain 
modelling is conducted. As the loading platens continue to 
move toward each other, the resultant macroscopic cracks 
propagate and coalesce to split the rock disk into two halves 
(Fig. 13c), and the stress–strain curve decreases toward zero 
during the post-peak stage (i.e., line BC in Fig. 13d). These 
results show that mixed-mode I–II failure is the dominant 
mechanism during the nucleation, propagation and coales-
cence of the splitting macroscopic cracks (Fig. 14a), which 
is due to the unstructured mesh used in the FDEM mod-
elling. To clarify this point, Fig. 14b shows the modelled 
failure pattern of the rock disk using the FDEM simulation 
with a structured mesh, in which the loading diametrical line 
aligns with the boundaries of the TET4 elemental mesh. The 
splitting fracture forms exactly along the loading diametrical 
line, and the mode I failure is the only failure mechanism. 
Figure 14c and d show the topological relationships between 
the horizontal indirect tensile stress (blue arrows in the x 
direction) and the TET4s in the cases of the unstructured and 
structured meshes used in Fig. 14a and b, respectively. In 
Fig. 14d, the normal directions of the planes A and A′ of the 
CE6 located between the two TET4s exactly aligns with the 
direction of the indirect tensile stress (i.e., the x direction). 
Therefore, pure mode I cracks preferably develop along 
the CE6s on the loading diametrical line in terms of the 
most efficient energy release due to fracturing. On the other 
hand, when the unstructured mesh in Fig. 14a is used, few 
CE6s have planes exactly on the loading diametrical line, 

Fig. 13   (continued)
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as illustrated in Fig. 14c, in which two CE6s (i.e., planes 
A–A′ and B–B′) contributing to the fracturing process are 
depicted, and none of their normal directions are aligned 
with that of the indirect tensile stress (blue arrows in the x 
direction). In this case, it is obvious that a pure mode I crack 
cannot form due to the topological restriction, and a combi-
nation of mode I (opening) and mode II (sliding) cracks can 

always form resulting in a macroscopic fracture. This is why 
mixed-mode I–II fracturing is the main failure mechanism 
in the FDEM simulations of the BTS tests with unstructured 
meshes. Tijssens et al. (2000) conducted a comprehensive 
mesh sensitivity analysis for the CZM and concluded that 
the fractures tended to propagate along dominant directions 
of local mesh alignment. Guo (2014) further commented 

Fig. 14   Modelled fracture patterns of rock in the BTS tests with 
unstructured and structured meshes. a Dominant mixed-mode I–II 
fractures in the BTS test with an unstructured mesh, b dominant pure-
mode I fracture in the BTS test with a structured mesh, c schematic 

sketch of the tensile fracturing mechanism in a structured mesh, d 
schematic sketch of the tensile fracturing mechanism in an unstruc-
tured mesh
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that unstructured meshes should be used in the numerical 
simulation using the CZM to reduce mesh dependency but 
fracture paths were still dependent on local mesh orientation 
in the unstructured meshes. Accordingly, when the CZM is 
applied to model material failure, it is unrealistic to pursue 
a pure mode I splitting fracture in the simulation of the BTS 
test with an unstructured mesh regardless of the numerical 
approach and 2D/3D modelling. In this sense, any inten-
tional reduction of the mode I fracture energy GfI_rock and 
tensile strength Ts_rock to capture the unreasonable pure mode 
I fracture pattern prevalent in studies of the FDEM should 
be considered a manipulation of the input parameters. The 
same explanation is valid for the dominant mixed-mode I–II 
failures along the macroscopic shear fracture plane mod-
elled in the UCS test. The boundaries of the TET4s will 
not exactly align with the macroscopic shear stress direction 
at each location; thus, mixed-mode I–II failure along the 
macroscopic shear fracture plane, rather than pure mode II 
failure, is the natural consequence.

3.3 � Full 3D Modelling of the Fracturing Process 
of Rock Under Dynamic Loads in SHPB Tests

In this subsection, the GPGPU-parallelized Y-HFDEM IDE 
is applied to model the dynamic fracturing of Fangshan mar-
ble, which is much more isotropic and homogeneous than 
granite, in dynamic BTS tests while considering the entire 
SHPB testing system.

The 4th and 5th authors of this paper conducted dynamic 
BTS tests of Fangshan marble with a SHPB apparatus 
(Zhang and Zhao 2013). The marble consists of dolomite 
(98%) and quartz (2%), and the size of the minerals ranges 
from 10 to 200 μm with an average dolomite size of 100 μm 
and an average quartz size of 200 μm (Zhang and Zhao 
2013). The marble can be considered as a homogeneous 
and isotropic rock, which is ideal to avoid the complexity 
intrinsic to highly anisotropic rocks such as granite. The 
detailed procedure of the dynamic BTS test can be found in 
the literature (Zhang and Zhao 2013), and the test is briefly 
summarized here. As illustrated in Fig. 15a, a metal projec-
tile called a striker is first accelerated by a gas gun, and the 
striker impacts one end of a long cylindrical metal bar called 
an incident bar (IB). Upon the impact of the striker on the 
IB, a dynamic compressive strain wave (εinci) is induced in 
the IB. The εinci propagates toward the other end of the IB, 
on which the target marble disk is placed. When the εinci 
arrives at the interface between the IB and the marble disk, 
some portion is reflected as a tensile strain wave (εrefl), and 
remaining portion is transmitted into the marble disk as a 
compressive strain wave (εtans_rock). The εtans_rock then propa-
gates toward the interface between the marble disk and one 
end of another long cylindrical metal bar called a transmis-
sion bar (TB). When the εtans_rock arrives at the interface, 

the marble disk is subjected to dynamic loading (i.e., com-
pressed by the IB and the TB). In addition, a compressive 
strain wave (εtans) generated in the TB propagates toward 
the other end of the TB. The diameter and thickness of the 
marble disk used in the experiment were 50 mm and 20 mm, 
respectively. The lengths of the IB and the TB were 2 m and 
1.5 m, respectively, and the diameter of both the IB and the 
TB was 50 mm. Strain gauges are attached on the surfaces 
of the IB and TB at 1 m from the interfaces between the 
marble disk and each bar to measure the time history of the 
axial strain in the IB (to measure εinci and εrefl) and the TB 
(to measure εtrans). Assuming one-dimensional (1D) stress 
wave propagation in each bar without wave attenuation, the 
axial stresses on the metal bars (i.e., σinci, σrefl and σtans) are 
calculated by multiplication of the measured axial strains 
(εinci, εrefl and εtrans) by the Young’s modulus of each bar. In 
practice, the axial compressive force fIB in the IB is calcu-
lated from the superposition of the wave shapes correspond-
ing to σinci and σrefl, whereas the axial compressive force fTB 
in the TB is directly calculated from σtans (Fig. 15b). Thus, 
the axial compressive forces fIB and fTB can be obtained by 
multiplication of (σinci–σrefl) and σtans by the cross-sectional 
areas of each bar. By ensuring that the time histories of the 
axial compressive forces fIB and fTB are nearly equal up to 
the peak, the dynamic indirect tensile stress can be defined at 
the center of the marble disk using the theory applied to the 
BTS test due to quasi-static loading conditions. Satisfying 
these conditions is equivalent to achieving dynamic stress 
equilibrium in the marble disk. The experimental results in 
Fig. 15b satisfy the dynamic stress equilibrium state, and 
the corresponding loading rate is approximately 830 GPa/s 
(Zhang and Zhao 2013). The peak value of the dynamic 
indirect tensile stress is called the dynamic indirect tensile 
strength. Due to this dynamic indirect tensile stress, the 
marble disk is dynamically split into two halves due to the 
formation of blocky fragments near the diametrical center 
line and numerous shear fractures near the impact region 
by the IB and the TB. The dynamic indirect tensile strength 
calculated under these conditions was 32 MPa, which was 
significantly higher than the quasi-static indirect tensile 
strength of 9.5 MPa (Zhang and Zhao 2013). The fracture 
pattern obtained after the test is shown in Fig. 15c. This 
paper attempts to model the test condition.

Figure 16 shows the 3D FDEM numerical model for the 
dynamic BTS test of the marble with the entire SHPB test-
ing apparatus modelled explicitly, which consists of 647,456 
nodes, 179,022 TET4s and 314,689 CE6s. The average 
edge length of the mesh for the rock disk is 1.3 mm. The 
experimental evaluation by Brooks et al. (2012) indicates 
that the sizes of the FPZs for Carrara marble (typical grain 
size 300 μm) and Danby marble (typical grain size 520 μm) 
are approximately 2–3 mm and 6 mm, respectively, based 
on nanomechanical and environmental scanning electron 
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microscopic observations. In other words, the size of the 
FPZ is correlated well with the typical grain size. Thus, it 
can be estimated that the FPZ size of Fangshan marble is 
on the order of 1 mm because the grain size of the domi-
nant mineral (i.e., dolomite) is approximately 100 μm, as 
described above. Thus, the FDEM mesh with an average 
edge length of 1.3 mm used to simulate the Fangshan marble 
should be fine. Moreover, it should be noted that this mesh 
is finer than the 90,000 TET4s used by Rougier et al. (2014) 
in a 3D numerical simulation of SHPB-based dynamic BTS 
tests, and the size of the rock disk is similar. In the model, 
the striker is not explicitly modelled, and the prescribed 
velocity corresponding to the impact of the striker is instead 
applied to the nodes on the left end of the IB (Fig. 16). Once 
the prescribed velocity reaches zero after the peak, the cor-
responding nodes are considered to be free nodes; otherwise, 
an unrealistic stress wave is generated in the IB. The shape 

of the prescribed velocity profile is determined by the time 
history of the measured axial strain profile, εinci, of the strain 
gauge on the IB. Based on the measured density (7697 kg/
m3) and dilatational wave speed (5600 m/s) of the SHPB 
bars, the dynamic Young’s modulus used for the simula-
tion is determined assuming that 1D stress wave theory (i.e., 
zero Poisson’s ratio) is approximately applicable for stress 
propagation in the IB and the TB. This assumption should 
be acceptable to the first approximation; otherwise, all of 
the previous publications on dynamic rock experiments 
using the SHPB lose their meanings. For the elastic param-
eters of the marble, homogeneous and isotropic elasticity is 
assumed in Eq. (2); therefore, the effective elastic stiffness 
CIJKL in Eq. (2) is merely given by the Lame constants λ 
and μ. The measured wave speeds of the dilatational wave 
(6000 m/s) and shear wave (2800 m/s) of the marble along 
with its measured mass density (2800 kg/m3) are used to 

Fig. 15   Overview of the SHPB-based dynamic BTS test simulated by 
the GPGPU-parallelized 3D Y-HFDEM IDE code. a Configuration of 
the SHPB system [after Fig. 3 in Zhang and Zhao (2013) with minor 
additions], b achievement of dynamic stress equilibrium between the 

axial forces in the IB and the TB [after Fig. 11d in Zhang and Zhao 
(2013) with minor additions] and c failure patterns of the marble 
specimen at a dynamic loading rate of 830 GPa/s [after Fig. 12b in 
Zhang and Zhao (2013)]
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determine λ and μ. Thus, the approach for the determination 
of the elastodynamic parameters is clearly different from that 
used by Mahabadi et al. (2010) and Rougier et al. (2014), 
who used the Young’s modulus and Poisson’s ratio of rock 
obtained from the quasi-static tests reported by Iqbal and 
Mohanty (2006) and Broome et al. (2012), respectively, as 
the input parameters for their FDEM simulations. In the case 
of dynamic simulations, the intact stress wave and its wave 
speed are the most important, and it must be emphasized 
that the dynamic fracturing is just the outcome of the intact 
stress wave propagation. Thus, the most reasonable approach 
to determine the input elastic parameters should be based on 
the measured wave speeds of the target rock instead of quasi-
statically obtained elastic parameters, which often result in 
incorrect wave speeds. In addition, the values of the artificial 
penalty terms used for the CE6s are not explicitly given in 
the publications described above. As mentioned in Sects. 2 
and 3.2, the artificial penalty terms Pf, Ptan, and Poverlap of 
the CE6s must be set reasonably high; otherwise, the input 
elastic properties lose their meaning. Based on a recent study 
conducted by the authors (Fukuda et al. 2019), the condi-
tions of Poverlap = 100 Edyn and Pf = Ptan =50 Edyn (Edyn is the 
dynamic Young’s modulus of the marble calculated from 
the aforementioned measured wave speeds of the marble) 
are used. The reason for using the smaller penalty terms of 
the CE6s than those used for the case of quasi-static loading 

discussed in Sect. 3.2 is that using the high values can cause 
spurious modes in dynamic fracturing simulations, whereas 
the adopted penalty values of the CE6s here ensure that the 
aforementioned measured wave speeds of the marble result 
in a negligible numerical error. Following Mahabadi (2012), 
the contact penalty Pcon_n= 10Edyn is used for the rock sur-
faces generated by broken CE6s and the surfaces between 
rocks and loading platens. The damping factor η in Eq. (3) is 
assumed to be 104 Pa∙s to filter out waves with excessively 
high frequencies that result in spurious modes. It should be 
noted that even η =ηcrit does not result in significant damping 
in the time range of interest in the current dynamic simula-
tion, and the effect of η can be considered as a filtering func-
tion of high-frequency noise that results in spurious modes. 
Similar to Rougier et al. (2014), a dynamic Coulomb type 
friction law is used for the contact friction. The dynamic 
friction coefficients μfric_dyn on the rock surfaces generated 
by broken CE6s and the surfaces between rocks and loading 
platens are assumed to be 0.6 and 0.1, respectively, accord-
ing to Mahabadi et al. (2010) and Rougier et al. (2014).

In the FDEM simulation of dynamic fracturing, the most 
challenging task is to correctly set the parameters govern-
ing the rock fracturing process, and the lack of experimen-
tal evidence is still significant, especially for the Mode II 
parameters. The approach used in some previous studies 
(Mahabadi et al. 2010; Rougier et al. 2014) for modelling 
the dynamic fracturing of rock using the FDEM, in which 
the input parameters such as strengths were obtained from 
quasi-static tests, should be reviewed carefully. In fact, a 
significant amount of experimental evidence (e.g., Zhang 
2016) clearly shows that with increasing loading rate, both 
inter-grain fractures (weaker portions of the rock) and intra-
grain fractures (stronger portions of the rock) occur, which 
indicates that the nominal input strengths for the FDEM 
simulation should be increased. On the other hand, increas-
ing the values of the critical opening and sliding displace-
ments ot and st in Eqs. (11) and (12) too much can result in 
physically unrealistic situations in which cohesive tractions 
still act on the macroscopic (i.e., almost visible) fracture sur-
faces, whereas the CZM is mainly for the modelling of the 
micro-cracking in the FPZ of rocks. In fact, the experimental 
evidence reported by Sato and Hashida (2006) showed that 
ot is roughly 100 μm in the case of Iidate granite. For mar-
ble, the linear elastic fracture mechanics relation GfI =(KIC)2/
Estatic can be used to estimate the value of GfI to be 26.5 J/m2 
considering its quasi-static Young’s modulus (85 MPa) and 
quasi-static mode I fracture toughness KIC (1.5 MPa∙m1/2). 
Hence, with the aforementioned quasi-static tensile strength 
(9.5 MPa), a rough estimate of ot in Eq. (11) is 10 µm in the 
quasi-static loading case. Then, it is simply assumed that the 
range of ot is expected to be on the order of 10–100 µm in 
the calibration. Because no experimental evidence is avail-
able for the value of st in Eq. (12) to the best of the authors’ 

Fig. 16   3D FDEM model for the SHPB-based dynamic BTS test with 
velocity boundary conditions applied on the one end of the IB
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knowledge, the relation ot = st is assumed following Rougier 
et al. (2014). Based on the loading rate independence of 
φ (e.g., Yao et al. (2017)), the internal friction angle φ is 
set to 59° from the quasi-static test. Finally, we varied the 
values of the tensile strength Ts and cohesion c under the 
conditions of various ot (= st = 10–100 µm) so the values 
of εinci, εrefl and εtrans in the SHPB bars obtained from the 
FDEM simulation reasonably match those in the experi-
ment (Zhang and Zhao 2013). For the initial guesses of Ts 
and c, we started from Ts = 32 MPa from the dynamic BTS 
(Zhang and Zhao 2013) and c = 42.5 MPa from the dynamic 
shear strength (Yao et al. 2017), both of which correspond 
to a loading rate of 830 GPa/s. Here, the experimental evi-
dence is used, in which the dynamic shear strength shows a 
similar loading rate dependency to the dynamic BTS (i.e., 
dynamic shear strength ≈ 0.025 × loading rate × static shear 
strength (= 21.7 MPa)). By trial and error, we found that 
the calibrated conditions of Ts = 30 MPa and c  = 65 MPa 
with ot = st = 10 µm results in a good match, including the 
obtained fracture pattern between the FDEM simulation 
and the experiment; therefore, only the simulation results 
for these conditions are presented. The ECDA approach 
described in Sect. 2.2 is not used because it can easily result 
in spurious modes, as shown in the following paragraphs. 
Thus, the brute-force contact detection activation approach 
is used instead; i.e., all of the TET4s corresponding to the 
marble disk are added to the contact list from the begin-
ning of the simulation. In this case, approximately 8,242,000 
contact couples (i.e., a tremendous number of contact force 
calculations) must be processed in each time step due to the 
GPGPU parallelization.

Figure 17 shows the modelled dynamic fracturing process 
of Fangshan marble in the SHPB-based dynamic BTS test 
using the GPGPU-based 3D Y-HFDEM IDE with the cali-
brated input parameters. The stress wave propagation in the 
bars is not shown here to save space. In Fig. 17, the spatial 
distribution of σzz (left column), the macroscopic fracture 
pattern (damage D = 1; middle column) and the spatial dis-
tribution of D (right column) in the rock disk are shown, 
in which t = 0 is set when the non-negligible strain/stress 
waves in the IB arrive at the interface between the IB and 
the rock disk. The warmer and colder colors of σzz corre-
spond to tensile and compressive stresses, respectively. The 
impact between the IB and the rock disk results in stress 
propagation from the IB side of the rock disk toward the TB 
side (t = 35 μs). After the arrival of the stress wave at the 
interface between the rock disk and the TB, the dynamic 
indirect tensile stress field begins to develop due to the 
dynamically increasing loads from both the IB and TB 
sides, and the stress field shows approximate symmetries 
with respect to the y and z directions across the center of 
the disk (t = 70 μs). It is notable that the micro-cracking 
is initiated at this stage in the vicinity of the IB and TB. 

Then, due to the dynamically induced indirect tensile stress 
field, macroscopic fractures (tension-dominant mode I–II 
fractures) begin to nucleate away from the center of the 
disk (i.e., the IB side) and propagate approximately in the 
y-direction (t = 83 μs). In fact, using the digital image cor-
relation technique, Zhang and Zhao (2013) evaluated the 
dynamic strain field that developed on one surface of a mar-
ble disk, which showed that the large strains (i.e., a mac-
roscopic crack) began to develop not from the exact center 
of the disk but rather slightly away from the center toward 
the IB side [see Fig. 11f for the result of the digital image 
correlation data at 48 μs in Zhang and Zhao (2013)]. The 
FDEM modelling shows a similar trend to the experimental 
observations. Local crack branching also occurred during 
microscopic crack propagation from the IB and TB sides 
(t = 83 μs) along with the commencement of macroscopic 
crack propagation from the TB side. It can be seen that the 
front of the propagating cracks from the IB and TB are far 
from flat which shows another importance of the 3D model-
ling. In the 2D dynamic simulation conducted by Mahabadi 
et al. (2010), Osthus et al. (2018) and Godinez et al. (2018), 
all the surface waves on the positive and negative x-planes 
in Fig. 17 cannot be considered, which makes the interpre-
tation of the 2D simulations very difficult. Finally, these 
microscopic and macroscopic cracks coalesced and formed 
the resultant splitting macroscopic fracture plane (t = 98 μs). 
Furthermore, in contrast to the BTS test under quasi-static 
loading, in which stress can be released through the open-
ing of splitting fractures, the induced stress in the dynamic 
BTS test cannot be released completely in such a short time 
due to the high-speed loading by the IB and TB. In addition, 
the shear-dominant mixed-mode I–II fractures result in the 
formation of crushed zones near the IB and TB, which con-
tribute to the stress release process. The reason for the for-
mations of shear-dominant mixed-mode I–II fractures in the 
unstructured mesh was discussed in Sect. 3.2. With the split-
ting fractures interacting with the crushed zones, a blocky 
rock fragment is also generated (t = 98 μs), which was not 
found in the BTS test under quasi-static loading conditions. 
The comparison of the resultant fracture pattern at t = 98 μs 
with the experimental pattern in Fig. 15c indicates that the 
FDEM modelling shows a good correspondence with the 
experiment in terms of the formation of the splitting central 
cracks, the crushed zones near the IB and TB and the blocky 
rock fragments along the centerline.

Figures 18a, b compare the time histories of εinci and εrefl 
in the IB and εtrans in the TB obtained from the experiment 
and the calibrated FDEM simulation. Because the momen-
tum bar is not modelled in the FDEM simulation, the profile 
of εtrans in the TB is only shown at the time when εtrans drops 
to zero after the 1st peak; a comparison between the FDEM 
simulation and the experiment after this time has no mean-
ing. The calibration and comparison are performed using 
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the axial strains instead of the axial stress/force because the 
authors have difficulty in interpreting the Young’s modulus 
used for the conversion from the strain to stress in the IB 
and TB. In the FDEM, the elastodynamic parameters (i.e., 

the Lame constants) that satisfy the wave speed of the SHPB 
bars are used; thus, the stress should be interpreted as the 
dynamic stress. In contrast, the quasi-statically obtained 
Young’s moduli of the IB and the TB have conventionally 

Fig. 17   3D modelling of the dynamic fracturing process of marble in 
the SHPB-based dynamic BTS test: distribution of σzz (left column), 
distribution of macroscopic cracks (damage D = 1) (middle column) 

and distribution of damage D (right column). Note that t = 0 is set 
when the stress wave in the IB arrives at the interface between the IB 
and the rock disk
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been used for the most SHPB experiments to convert the 
measured axial strain to the axial stress. However, if we use 
the quasi-statically obtained Young’s moduli of the IB and 
the TB for the FDEM simulation, the wave speed in the 
FDEM simulation becomes incorrect. Therefore, the axial 
strains in the IB and the TB are used for the calibration. The 
results show that the FDEM simulation is well calibrated 
against the measured strain profile, which demonstrates that 

the modelled results of the SHPB-based dynamic BTS test 
from the GPGPU-parallelized Y-HFDEM agree well with 
those from the experiment.

Finally, Fig. 19 shows the results of applying the ECDA 
approach (Guo 2014) described in Sect. 2.2 to model the 
SHPB-based dynamic BTS test. In this model, only the 
TET4s corresponding to the surfaces of the IB and the TB 
as well as the rock disk surface in the vicinity of the IB and 
TB are registered as contact candidates at the onset of the 
FDEM simulation (red regions in Fig. 19a). Then, with the 
generation of macroscopic cracks, the TET4s in the vicin-
ity of the macroscopic cracks are adaptively registered as 
contact candidates. This approach is much faster in terms 
of the total run time compared with the case using the 
brute-force contact detection activation approach. How-
ever, when the same mesh with the same input parameters 
except for the ECDA approach is applied, the simulation 
can easily result in spurious modes, as shown in Fig. 19b, 
in which too many unrealistic fragmentations are gener-
ated. Using a smaller time step Δt may solve this prob-
lem. However, the authors could not find a time step Δt 
in which the total run time of the ECDA approach is less 
than that for the brute-force contact detection activation 
approach. This spurious mode (i.e., numerical instability) 
could be due to the use of a very high value of the inter-
nal friction angle as well as the target loading rate being 
very high. In fact, our quasi-static simulation presented 
in Sect. 3.2 used the ECDA approach, but no unstable 
results were obtained. Interestingly, this finding has not 
been pointed out in any previous studies that used the 3D 
FDEM and can be regarded as the most valuable informa-
tion. For example, in the case of the FDEM simulation of 
the “penetration problem”, which is important in impact 
engineering to understand the dynamic fracturing of rock, 
the aforementioned spurious mode can easily occur if the 
ECDA approach is used. One of the most serious problems 
is that the fragmentation due to penetration always occurs 
in this kind of simulation; therefore, judicious judgement 
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Fig. 19   Spurious fracture 
caused when the ECDA 
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tion activation approach. a 
Highlighted contact candidates 
from the onset of the simula-
tion for the ECDA, b unrealistic 
fragmentation due to the ECDA 
approach
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must be used in evaluating whether the obtained fragmen-
tation is an artificial fracture due to the spurious mode or 
not. In this sense, the brute-force contact detection activa-
tion approach can solve or alleviate the spurious mode.

3.4 � Computing Performance 
of the GPGPU‑Parallelized 3D FDEM

This section discusses the computing performance of the 
GPGPU-parallelized 3D Y-HFDEM IDE, mainly in terms 
of its improvement compared with the sequential imple-
mentation of the 3D Y-HFDEM IDE and its performance 
on several GPGPU accelerators. To accomplish this goal, 
the modelling of the rock failure process in the 3D UCS 
test, as discussed in Sect. 3.2, is selected as a benchmark 
because it is a computationally demanding simulation. To 
make the computation become further intensive, the brute-
force contact detection activation approach introduced in 
Sect. 2.2 is used in the 3D modelling of the UCS test to 
evaluate the computing performance of the GPGPU-parallel-
ized 3D Y-HFDEM IDE. Moreover, since the performance 
of GPGPU-parallelized code is significantly dependent on 
the applied GPGPU accelerators, the GPGPU-parallelized 
3D Y-HFDEM IDE is run using several NVIDIA® GPGPU 
accelerators, i.e., Quadro GV100, Titan V and Quadro 
GP100 to investigate its performance. The developed 
GPGPU-parallelized 3D Y-HFDEM IDE can be run in all 
these GPGPU accelerators without any modifications. At the 
same time, an Intel® Xeon® Silver 4112 processor (2.60 GHz 
and 32.0 RAM) is used to run our sequential CPU-based 
3D Y-HFDEM IDE. Table 2 shows the number of TET4s, 
CE4s and nodes, and the initial number of contact couples 
in each model. It is evident that the mesh discretization with 
the average element size have = 1.3 mm results in tremen-
dously massive computation. The list of actual runtimes 
required for 500 calculation time steps is shown at the bot-
tom of Table 2 for several values of have, in the cases of the 
GPGPU-based code using the Quadro GV100 accelerator 
and the sequential CPU-based code (i.e. the original Y3D 
code). The results show that 134,943 s (37.5 h) are required 

to solve the 500 time steps in the sequential CPU-based code 
for have = 1.3 mm, which means that solving the problem 
with this level of fine discretization is too computationally 
expensive using the sequential code. Figure 20 shows the 
speed-up times of the GPGPU-parallelized 3D Y-HFDEM 
IDE relative to the CPU sequential code running on a single 
thread for the 3D modelling of the UCS test with 695,428 
TET4s and 187,852 CE6s. In Fig. 20, the vertical axis shows 
the quotients of the total run time using each GPGPU accel-
erator divided by that using the CPU sequential code, which, 
thus, correspond to the speed-up times of the GPGPU-par-
allelized 3D Y-HFDEM IDE relative to the CPU sequential 
code. Clearly, the GPGPU-parallelized 3D Y-HFDEM IDE 
run on all GPU accelerators has achieved significant speed-
up times compared with the CPU sequential code, and the 
Quadro GV100 accelerator shows the maximum speed-up 
times of 284, which is even better than the maximum speed-
up times of 128.6 achieved by the authors’ GPGPU-paral-
lelized 2D Y-HFDEM IDE (Fukuda et al. 2019) and much 
higher than the maximum speed-up times of 100 achieved 
by Irazu’s parallelization using OpenCL (Lisjak et al. 2018). 
Moreover, the relative speed-up times between the GPGPU-
parallelized code and the CPU sequential code depend on 
the number of TET4s used in the numerical model, which 

Table 2   Model details for several have values

have (mm) 1.3 1.5 1.9 2.9 3.9 8

The number of nodes 200,525 129,244 82,382 31,327 19,471 1741
The number of TET4s 1,106,054 695,428 430,290 146,554 81,932 7383
The number of CE6s 2,113,582 1,298,343 773,545 213,792 86,740 12,266
The initial number of contact couples. 65,447,009 40,561,982 24,753,231 7,881,957 4,093,472 384,582
Simulation time (s) for sequential CPU-

based code/500 steps
134,943 82,755 51,598 16,563 8318 8318

Simulation time (s) for GPUGU-based 
code (Quadro GV100)/500 steps

491 291 178 59 34 8
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IDE compared with the sequential CPU-based code
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are illustrated in Fig. 21a. As can be seen from Fig. 21a, 
the relative speed-up times initially increase with the num-
ber of TET4s increasing, which reveals that, in this case, 
keeping all the GPGPU cores busy is the most important 
factor in achieving the best performance of the GPGPU-
parallelized code. However, after the number of TET4s 
increases to a certain value, which is about 430,000 TET4s 
in this study, the relative speed-up times slightly decrease 
with the number of TET4s increasing. In other words, there 
is a model limit of the maximum speed-up times for a sin-
gle GPU accelerator to achieve the best performance and 
multiple GPU accelerators may be needed to lift the limit. 
Compared with the limit of the model size of 294,840 TET4s 
in Irazu’s parallelization using OpenCL (Lisjak et al. 2018), 
the limit of the model size for the maximum speed-up times 
of the GPGPU-parallelized 3D FDEM increases signifi-
cantly. Therefore, as long as currently available publications 
are concerned, our 3D GPGPU-parallelized FDEM using 
CUDA has much better performance than Irazu’s paralleliza-
tion using OpenCL in terms of both the maximum speed-up 
times and the limits of the model sizes. Furthermore, no 
performance report of CUDA version of Irazu-software is 
unavailable in any publications. In addition, as illustrated in 

Fig. 21b, the computation time of the GPGPU-parallelized 
3D Y-HFDEM IDE linearly increases with respect to the 
number of TET4s. Therefore, the computational complexity 
of the GPGPU-parallelized 3D Y-HFDEM IDE is O(N), i.e. 
the amount of computation is proportional to the number of 
elements, which proves the high computational efficiency 
of the GPGPU-parallelized 3D Y-HFDEM IDE. The imple-
mentation of the hyper separating theorem into the contact 
detection algorithm (e.g. Lisjak et al. 2018) may be able 
to further enhance the computational performance of the 
GPGPU-parallelized 3D Y-HFDEM IDE.

4 � Conclusion and Future Work

This paper developed a general-purpose graphics-process-
ing-unit (GPGPU)—parallelized combined finite-discrete 
element method (FDEM) based on the authors’ former 
sequential two-dimensional (2D) and three-dimensional 
(3D) Y-HFDEM IDE codes using compute unified device 
architecture (CUDA) C/C++. The algorithm of the devel-
oped 3D GPGPU-parallelized code was first presented in 
detail, which can provide a basis for further improvement 
and progress of the FDEM codes reviewed in the introduc-
tion section based on GPGPU parallelization. It should 
be noted that a different contact detection algorithm from 
that used in the sequential code was implemented in the 
3D GPGPU-parallelized code because the algorithm in the 
sequential code is not suitable for GPGPU parallelization. 
Contact damping and contact friction were then imple-
mented and verified although further verification may be 
needed. After that, the GPGPU-parallelized 3D Y-HFDEM 
IDE code was applied to 3D modelling of the failure process 
of limestone in a uniaxial compression strength (UCS) test 
and a Brazilian tensile strength (BTS) test to demonstrate 
its capability in modelling rock engineering applications 
under quasi-static loading conditions. The 3D modelling 
results demonstrate that for the FDEM simulations with the 
cohesive zone model (CZM) using unstructured meshes, 
mixed-mode I–II failures are the dominant failure mecha-
nisms along the shear and splitting failure planes in the UCS 
and BTS tests, respectively, whereas pure mode I failure 
along the splitting failure plane in the BTS test and pure 
mode II failure along the shear failure in the UCS test are 
only possible in models with structured meshes. Moreover, 
compared with 2D models of the BTS test, new insights 
about the nucleation locations of macroscopic tensile split-
ting cracks were gained from the 3D model of the BTS 
test. Moreover, the GPGPU-parallelized 3D Y-HFDEM 
IDE code was implemented to model dynamic fracturing 
of a relatively isotropic and homogeneous marble in a split 
Hopkinson pressure bar (SHPB)—based dynamic Brazil-
ian test to investigate its applicability in modelling rock 
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engineering problems under dynamic loading conditions. 
Thanks to the GPGPU parallelization, the entire SHPB sys-
tem was modelled using the 3D Y-HFDEM IDE code. The 
physical–mechanical parameters and computing parameters, 
including the penalty terms and dynamic strengths, were 
carefully selected for the 3D FDEM simulation, and the 
limitations of previous studies in the parameter selection 
were discussed. The modelled failure process, final frac-
ture pattern and time histories of the dynamic compressive 
strain wave, reflective tensile strain wave and transmitted 
compressive strain wave were compared with those from 
experiments, and good agreements were achieved between 
them. In addition, the spurious fracturing mode in the form 
of unrealistic fragmentation, which can occur when the 
efficient contact detection activation approach is used, is 
highlighted because it has not been pointed out in previ-
ous FDEM studies. Finally, the computing performance of 
the GPGPU-parallelized 3D Y-HFDEM IDE run on vari-
ous GPGPU accelerators was discussed against that of the 
sequential CPU-based 3D Y-HFDEM and other GPGPU par-
allelization of 2D FDEM using OpenCL since the computing 
performance of the GPGPU parallelization of 3D FDEM 
using OpenCL is not available in any publications.

The following conclusions can be drawn from this study:

•	 A GPGPU-parallelized 3D Y-HFDEM IDE code was 
developed to model the fracturing process of rock under 
quasi-static and dynamic loading conditions. In addi-
tion to GPGPU parallelization, robust contact detection, 
contact damping and contact friction were implemented 
in the 3D Y-HFDEM IDE code and were verified and 
validated through a series of numerical simulations under 
quasi-static and dynamic loading conditions. The com-
puting performance analysis shows the GPGPU-paral-
lelized 3D HFDEM IDE code is 284 times faster than 
its sequential version and can achieve the computational 
complexity of O(N).

•	 The 3D models of the failure processes of limestone in 
UCS and BTS tests demonstrated the capability of the 
GPGPU-parallelized 3D HFDEM IDE code in simulating 
rock engineering applications under quasi-static loading 
conditions. Moreover, important findings and new insights 
were obtained from the 3D modelling: (1) the selection of 
penalty terms for cohesive elements in any FDEM simula-
tion with the intrinsic cohesive zone model (ICZM) is cru-
cial to reasonably model rock continuous behavior before 
fracturing, which has been overlooked in the literature. (2) 
For all FDEM simulations with the CZM using unstruc-
tured meshes, mixed-mode I–II failures are the dominant 
failure mechanisms along the shear and splitting failure 
planes in the UCS and BTS tests, respectively, whereas 
pure mode I failure along the splitting failure plane in 
the BTS test and pure mode II failure with shear failure 

in the UCS test are only possible with structured meshes. 
Because rock is a collection of mineral grains, whose struc-
ture generally corresponds to that of an unstructured mesh 
in FDEM simulations, the results indicated that the mixed-
mode I–II failures may be the possible failure mechanisms 
in experiments of the UCS and BTS tests. (3) Compared 
with 2D models of the BTS test, the 3D model of the BTS 
test results in different stress distributions along the loading 
diametrical lines in the middle plane and on the surface of 
the Brazilian disk as well as different nucleation locations 
of macroscopic tensile splitting cracks.

•	 The GPGPU-parallelized 3D Y-HFDEM IDE code can 
consider the entire SHPB testing system and successfully 
model the dynamic fracturing of marble in the SHPB-
based dynamic BTS test. The modelled failure process, 
final fracture pattern and time histories of the dynamic 
compressive strain wave, reflective tensile strain wave and 
transmitted compressive strain wave are compared with 
those from experiments, and good agreements are achieved 
between them. Therefore, the 3D modelling of dynamic 
fracturing of marble in the SHPB-based dynamic BTS test 
demonstrates the capability of the GPGPU-parallelized 3D 
Y-HFDEM IDE code in simulating rock engineering appli-
cations under dynamic loading conditions.

Therefore, with careful calibration and insights, the FDEM, 
including the newly developed GPGPU-parallelized 3D 
Y-HFDEM IDE code in this study, is a valuable and power-
ful numerical tool for investigating the failure process of rock 
under quasi-static and dynamic loading conditions in rock 
engineering applications although very fine elements with 
maximum element size no bigger than the length of the frac-
ture process zone must be used in the area where fracturing 
process is modelled.
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