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Abstract
Modelling discontinuous systems involving large frictional sliding is one of the key requirements for numerical methods in 
geotechnical engineering. The contact algorithms for most numerical methods in geotechnical engineering is based on the 
judgement of contact types and the satisfaction of contact conditions by the open–close iteration, in which penalty springs 
between contacting bodies are added or removed repeatedly. However, the simulations involving large frictional sliding 
contact are not always convergent, particularly in the cases that contain a large number of contacts. To avoid the judgement 
of contact types and the open–close iteration, a new contact algorithm, in which the contact force is calculated directly based 
on the overlapped area of bodies in contact and the contact states, is proposed and implemented in the explicit numerical 
manifold method (NMM). Stemming from the discretization of Kuhn–Tucker conditions for contact, the equations for cal-
culating contact force are derived and the contributions of contact force to the global iteration equation of explicit NMM are 
obtained. The new contact algorithm can also be implemented in other numerical methods (FEM, DEM, DDA, etc.) as well. 
Finally, five numerical examples are investigated to verify the proposed method and illustrate its capability.

Keywords Numerical manifold method · Large frictional sliding · Contact algorithm · Explicit method

Abbreviations
�, �̂  Cauchy stress and its corotational form
�̇, �̇�  Rate of deformation and its corotational 

form
b  Body force vector
𝐮, �̇�, �̈�  Displacement, velocity and acceleration 

vectors
D  Constitutive equation
R  Rotation matrix
�
(i)
c   Contact traction between two bodies
�
(i)

k
, �

(i)

k,j
  Normal contact force acted on the 

segment c(i)
k

 or sub-segment c(i)
k,j

�
(i)

k
,�

(i)

k,j
, �

(i)

k
, �

(i)

k,j
  Equivalent normal point load of �(i)

k
, �

(i)

k,j
 

and their point of force application
�
(i)

k
, �

(i)

k,j
  Tangential contact force acted on the 

segment c(i)
k

 or sub-segment c(i)
k,j

�c  Equivalent normal direction �c of the 
overlapped contact area

M  Mass matrix
�int, �ext, ��, �c  Internal nodal force, external nodal 

force, boundary constraint nodal force 
and contact nodal forces

�  Density of material
gN  Penetration of two contact bodies
pN , tT  Normal and tangential components of 

�
(i)
c

�N, �T  Normal and tangential penalty 
coefficient

MI  Mathematical cover (MC) patch I
Pi  Physical cover (PC) patch i
wi  Weight function of PC patch  Pi
c
(i)

k
  Contact segment k of body i

c
(i)

k,j
  Sub segment j of c(i)

k

 * Qinghui Jiang 
 jqh1972@whu.edu.cn

1 Hubei Provincial Key Laboratory of Safety 
for Geotechnical and Structural Engineering, School 
of Civil Engineering, Wuhan University, Wuhan 430072, 
People’s Republic of China

2 Rock Mechanics in Hydraulic Structural 
Engineering, Ministry of Education, Wuhan 430072, 
People’s Republic of China

3 Department of Civil Engineering, University of Toronto, 35 
St. George Street, Toronto, ON M5S 1A4, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-019-01914-5&domain=pdf


436 W. Wei et al.

1 3

1 Introduction

Numerical modelling is essential for studying the fun-
damental processes occurring in geological bodies and 
for geotechnical engineering design. Generally, there are 
mainly three categories of numerical modelling methods 
in geomechanics (Jing 2003): (1) continuum-based meth-
ods, including finite element method (FEM) (Zienkiewicz 
and Taylor 2000), finite difference method (FDM) (Per-
rone and Kao 1975), boundary element methods (BEM) 
(Beskos 1987, 1997); (2) discontinuum-based methods, 
including the discrete element method (DEM) (Cundall 
1971), DDA (Shi 1988); and (3) hybrid discontinuum–con-
tinuum methods, including the hybrid finite discrete ele-
ment method (FDEM) (Munjiza 2004) and the numerical 
manifold method (NMM) (Shi 1997). Geomechanics stud-
ies alway involve various discontinuities, such as joints, 
faults, weak intercalated layer, and the sliding along dis-
continuities results in the instability of geological bodies 
(Chen et al. 2017; Jiang and Zhou 2017). Therefore, the 
latter two categories of numerical methods have attracted 
much attention, especially with the increasing computa-
tional power. However, the treatment of contact interac-
tions between bodies is still one of the most important and 
challenging tasks for these numerical methods (Jing 2003).

As the typical discontinuum-based methods, all con-
tacts of UDEC (Itasca Consulting Group Inc. 2013) and 
DDA can be classified into three types (Jing 2003): the 
corner-to-corner contact, the corner-to-edge contact and 
the edge-to-edge contact. Among them, the corner-to-edge 
contact is the fundamental contact, as the other two con-
tact types can be converted to this type. Moreover, the 
penalty method is adopted to calculate contact force, and 
Coulomb’s friction law is used to determine the tangential 
contact states (He and Ma 2010). For UDEC, the contact 
state is determined at the end of each time step. On the 
other hand, the contact state in DDA (the implicit method) 
is determined through open–close iterations, namely, add-
ing or removing contact springs repeatedly in each time 
step, which may not always convergent (Doolin and Sitar 
2004). Furthermore, the simulation results are sensitive to 
the stiffness of contact springs which requires iterative cal-
ibration (Tsesarsky and Hatzor 2006). Despite those dif-
ficulties in solving contact problems when using implicit 
methods, many improvements to the contact algorithm 
have been established (Shi. 2015; Bao and Zhao 2010; 
Cai et al. 2000). To overcome the shortcomings of the pen-
alty method, the augmented Lagrange multiplier method 
(Bao et al. 2014) and the Lagrange multiplier method (Cai 
et al. 2000) were proposed. Nevertheless, the open-close 
iteration is still needed to reach the correct contact state. 
Besides, rank deficiency of the Jaccobian matrix (Jiang 

and Zheng 2011) may lead to a breakdown of numerical 
simulation.

In many cases of geotechnical engineering applications, 
the transition from continua to discontinuum need to be stud-
ied, namely, the process of failure, fracture or fragmenta-
tion of a solid. The FDEM, proposed by Munjiza (2004), is 
one of the more powerful and widely applied tools to model 
this problem, especially for problem related to rock fractur-
ing (Rougier et al. 2014; Grasselli et al. 2015; Lisjak and 
Grasselli 2014; Yan et al. 2016; Yan and Zheng 2016). The 
FDEM is based on the discretization of the modeling domain 
with triangular elements together with four-noded cohesive 
elements embedded between the edges of all adjacent tri-
angle pairs. For the contact algorithm, a potential function 
method is used and allows contacting triangular elements 
to penetrate into each other, generating distributed contact 
forces. However, since the contact algorithm is proposed 
based on the contacting triangular blocks, it is not suitable to 
be extended to other numerical methods (Lisjak et al. 2016).

The numerical manifold method (NMM), which was ini-
tially proposed by Shi (1992a, b), is another continuum–dis-
continuum method for geotechnical engineering. One of the 
main attractive advantages of NMM over other numerical 
methods is its ability to solve continuous and discontinu-
ous problems in a unified approach without inserting virtual 
cracks. Over the past few decades, NMM has been exten-
sively studied and applied to various fields, such as anchored 
rock mass (Wei et al. 2017), progressive failure analyses 
of rock slopes (Ning et al. 2011; An et al. 2014; Wong and 
Wu 2014), seepage analysis (Jiang et al. 2010; Zheng et al. 
2014; Hu et al. 2015), transient heat conduction of rock 
material (He et al. 2017; Zhang et al. 2018), large defor-
mation analysis (Fan et al. 2016; Wei and Jiang 2017) and 
seismic response analysis of geomechanics problems (Wei 
et al. 2018). The contact algorithm of NMM was inherited 
from the DDA method, thus, it confronts the abovemen-
tioned difficulties. In an effort to deal with the contact prob-
lems of NMM, Yang and Zheng (2016) proposed a direct 
approach for contact problem to avoid the introduction of 
penalty parameters. However, this approach inevitably leads 
to solving a nonsymmetric system. Zheng and Jiang (2009) 
and Zheng and Li (2015) removed the penalty parameter 
and the open-close iteration by considering discontinuous 
system as a nonlinear mixed complementarity problem in 
which the contact conditions are expressed by the comple-
mentarity equations. Due to the adoption of contact forces as 
the independent variables and rank deficiency of the Jacobi 
matrix, the solution would become inefficient. By taking 
the contact forces as the basic variables, Zheng et al. (2016) 
proposed a dual form of DDA, called DDA-d, in which the 
displacements can be expressed in terms of contact force. 
This improvement discards the artificial springs and has 
an efficiency comparable with DDA. However, when this 
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improvement is extended to NMM, the solution efficiency 
would be sacrificed considerably because a great deal of 
computation time has to be spent on the inverse of numer-
ous matrices of large dimensions (Yang and Zheng 2016).

In the present study, a new contact formulation for large 
frictional sliding is proposed and implemented in the explicit 
NMM. In the proposed contact algorithm, the contact force 
is calculated based on the overlapped contact area with-
out determination of contact types during the simulation. 
To avoid the difficulties caused by open–close iterations, 
the explicit method is adopted. Although this new contact 
algorithm is implemented in the context of NMM, it could 
undoubtedly be employed by other numerical methods, such 
as FEM, DEM, DDA. The analysis results of some inter-
esting and challenging examples suggest that the proposed 
algorithm to simulate contact problems involving large fric-
tional sliding is promising.

2  Fundamental of Explicit NMM

2.1  Problem Description

Figure 1 shows the deformed configuration of two 2D bodies 
in contact at a given time tn . The two bodies are denoted as 
master �(1),n and slave �(2),n . Note that we use super index n 

for variables defined at time tn . Each body (i) has a boundary 
with prescribed displacements � (i)

u  and tractions � (i)
�  . There is 

also a portion of the boundary � (i)
c  where the body is in con-

tact, and � (1)
c  and � (2)

c  denote the contact portion on the slave 
and master surfaces, respectively.

The governing equations formulated with respect to the 
current configuration in combination with the displacement 
and traction boundary conditions define the boundary value 
problem:

(1)𝛁 ⋅ 𝛔(i) + �(i)𝐛(i) = �(i)�̈�(i) in �(i)

(2)
(
D��

Dt

)(i)

= �(i)∼�̇�
(i)

(3)�̇(i) = sym
(
� ⋅ �̇(i)

)

(4)�(i) = �
(i)
on � (i)

u

(5)�(i) = �
(i)
on �

(i)
t

(6)�(1)
c

= − �(2)
c

on � (i)
c

(2)
u

master

slave

t (2)^

(2)

t (1)^

(1)
u

(1)

c

x(2)

x(1)

n(1)

s(1)

g N

(2)
c

(1)
c

Fig. 1  Deformed configuration of two contacting bodies and the definition of penetration g
N



438 W. Wei et al.

1 3

where, � is the gradient operator, � is the Cauchy stress, � 
is the density of material, � is the body force vector, � , �̇ , �̈� 
are the displacement, velocity and acceleration vectors. � 
is the constitutive equation and the linear elastic material is 
assumed in this study. �̇ is the rate of deformation.�(i) and �

(i)
 

are the given displacement and traction vectors, respectively. 
�
(i)
c  is the contact traction Prescribed values marked with a 

hat ( ̂⋅  ) in Eq. (2) are corotational values in a coordinate 
system that rotates with the material. In fact, the NMM was 
mainly applied to solve problems in rock mechanics and rock 
engineering field, which are often known as small-strain, 
large-rotation problem. Therefore, the corotational approach 
is suitable.

In the corotational approach, the corotational Cauchy 
stress �̂ and the corotational rate-of-deformation �̇�  are 
obtained by

where R is the rotation matrix. Note that the corotational 
Cauchy stress tensor is the same tensor as the Cauchy stress, 
it is just expressed in terms of components in a coordinate 
system that rotates with the material.

2.2  Approximation of NMM

In the NMM, the approximation to the problem domain is 
constructed using a dual cover system, i.e. the mathematical 
cover (MC) and physical cover (PC), which makes the NMM 
capable of solving continuous and discontinuous problems in 
a unified framework. A distinct feature of the NMM, which 
differentiate it from other numerical methods, is that the MC 
is not required to be compatible with the external bounda-
ries and the possible internal discontinuities of the problem 
domain. As illustrated in Fig. 2, the MC is composed of a 
set of overlapped small patches. Each small patch, denoted 
by MI (I = 1, 2, 3), can span discontinues and the boundary 
of problem domain. The union of these small patches com-
pletely covers the problem domain. In addition, the shape of 
the MC patch can be arbitrary, though the regular polygonal 

(7)�� = �T
⋅ � ⋅ �, �̇� = �T

⋅ �̇ ⋅ �

cover is commonly adopted. The intersection of MC patches 
and problem domain generates the PC patches. Similarly, the 
PC is the union of PC patches.

Figure 3 presents the process of generating manifold ele-
ment using the dual cover system in the NMM. The prob-
lem domain, denoted as Ω, is covered by three MC patches, 
i.e. the yellow trapezoid MC patch  M1, the red circle MC 
patch  M2 and the blue square MC patch  M3. It can be seen 
from Fig. 1 that the shapes are totally different from each 
other. The PC patches are generated from the intersection 
of the problem domain and the MC patches. For example, 
the intersecting  M1 with the problem domain generates P1

1
 . 

Similarly, the  M2 generates P1
2
 and P2

2
.and  M3 generates P1

3
 

and P2
3
 . Then, those PC patches overlap each other to form 

the manifold elements. For convenience, a single index i is 
adopted to denote two indices of the physical patch, namely

where, ml is the number of the physical patches formed in 
mathematical patch l.

After the generation of the cover system, a local dis-
placement approximation reflecting the local characteristic 
of the field is defined on each PC patch. Usually, the poly-
nomial functions of PC patch Pi are adopted as the local 
approximation

where, �i is the vector of unknowns to be calculated of Pi, 
and �T is the matrix of polynomial base which may be con-
stant, linear- or higher-order terms. The general form of �T 
is expressed as

However, high-order terms adopted in NMM may result 
in linear dependence problem, which have been discussed 

(8)i(I, j) =

I−1∑
l=1

ml + j

(9)�i(�, t) = �T(�) ⋅ �i(t)

(10)�T(�) =

[
1 0 x 0 y 0 ⋯ yp 0

0 1 0 x 0 y ⋯ 0 yp

]

Ω

M1

M2 M3

Problem domain MC patches
Intersection of 

MC patches and 
problem domain

Final dicretization

Fig. 2  Cover system generation procedures
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by An et al.(2011), Ghasemzadeh et al. (2015), and Tian and 
Wen (2015). Therefore, the 0th order polynomial is selected 
as the local approximation for the PC patches in this study.

Then, the local approximation for the PC patches is pasted 
together through the weight functions wi(�) to obtain the 
global approximation for one manifold element E as follow:

with

(11)�h(�, t) =

n∑
i=1

wi(�) ⋅ �i(�, t) = ��

where n is the number of physical covers sharing manifold 
element E.

The weight function wi(�) of physical patch Pi is inherited 
from that of the corresponding MC patches MI on which the 
weight function wI(�) satisfy that

(12)� =

[
w1 0 w2 0 ⋯ wn 0

0 w1 0 w2 ⋯ 0 wn

]

(13)� =
[
�1 �2 ⋯ �n

]T
, �i =

[
di1 di2

]

Fig. 3  The generation of mani-
fold elements

M2

M1

M3

P2
1

P2
2

P1
1

P3
1

P3
2

E1(P1)
1

E2(P1,P2)
1 1

E4(P1,P3)
1 1E3(P1,P2,P3)

1 1 1

E5(P2)
1

E8(P2)
2

E7(P2)
1

E10(P2)
2

E6(P2,P3)
1 1

E9(P2,P3)
2 2

Intersection of 
MC patches and 
problem domain

PC patches 

Manifold 
Elements



440 W. Wei et al.

1 3

where Eqs. (14a) and (14b) indicate that the weight function 
has non-zero values only on its corresponding mathematical 
patches, and zero elsewhere; while Eq. (14c) is the partition 
of unity property to assure a conforming approximation. 
Obviously, The PU function depends on the shape of the 
MC patches.

In this study, the regular hexagonal MC is adopted to con-
struct the PU function and each manifold element is shared 
by three hexagonal MC patches. Moreover, the regular hex-
agon is made of six regular triangles in which the wI(�) in 
Eqs. (14a–14c) is identical to the shape function of three-node 
triangular finite element.

2.3  Iteration Equations of Explicit NMM

In this section, the iteration equations of explicit NMM is 
derived. In the NMM, finite-dimensional subspaces, Vh ⊂ V  
and Vh

0
⊂ V0 , are used as the approximating trial and test space. 

Using the Galerkin method, the weak form for momentum 
Eq. (1) can be stated as:

Find �h ∈ Vh ⊂ V such that

Considering the arbitrariness of test function ��h , the dis-
crete approximation to the weak form (15), the semidiscrete 
momentum equations are obtained:

where

(14a)wI(�) > 0 for � ∈ MI

(14b)wI(�) = 0 for � ∉ MI

(14c)
NM∑
I=1

wI(�) = 1 for � ∈ MI

(15)

∫
�e

�𝛆T
(
𝐮h
)
�
(
𝐮h
)
d� + ∫

�e

(
�𝐮h

)T
��̈�hd� + 𝛌∫

� e
u

(
�𝐮h

)T(
𝐮h − 𝐮

)
d�

= ∫
� e
t

(
�𝐮h

)T
𝐭d� + ∫

�e

(
�𝐮h

)T
𝐛d� + ∫

� e
c

(
�𝐮h

)T
𝐭cd�

(16a)𝐌𝐝 = 𝐟

(16b)� = �ext + �� + �c − �int

(17)� =

Nel∑
e=1

�∫
�e

�T
e
�ed�

(18)�int =

Nel�
e=1

⎛⎜⎜⎜⎝
∫
�e

�T
e
��ed� + �∫

� e
u

�T
e
�ed�

⎞⎟⎟⎟⎠

where Nel denote the total number of elements. Nu and Nc 
denote the number of elements on the boundary and ele-
ments in contact, respectively. �int , �ext , �� , �c are internal 
nodal force, external nodal force, boundary constraint 
nodal force and contact nodal forces, respectively. �

e
 is the 

strain–displacement matrix.
To solve Eqs.  (16a, 16b), the explicit time integration 

scheme is adopted. The major advantage of explicit algorithm 
for solving contact problems is that in each time step, the bod-
ies are first integrated completely independently as if they 
were not in contact. This uncoupled update correctly indicates 
which parts of the body will be in contact at the end of the time 
step and then the contact conditions are imposed. Therefore, 
neither linearization nor a Newton solver is needed, so the 
deleterious effects of discontinuities on Newton solvers are 
avoided. In other words, there are no iterations when establish-
ing the contact interface. Moreover, the time steps are small 
because of stability requirements, so the discontinuities due to 
contact wreak less havoc.

In this study, the central difference formula is adopted and 
the velocity, acceleration are denoted as

We now consider the semidiscrete momentum Eqs. (16a, 
16b) at time step n. The equations for updating the nodal 
velocities and displacements are obtained by substituting 
Eq. (23) into Eqs. (16a, 16b), namely,

At any time step n, the displacements �n are known. The 
nodal forces �n can be determined by sequentially evaluating 

(19)�ext =

Nel�
e=1

⎛
⎜⎜⎝∫�e

�T
e
�d� + ∫

� e
t

�T
e
�d�

⎞
⎟⎟⎠

(20)�� =

Nu�
e=1

⎛
⎜⎜⎜⎝
�∫
� e
u

�T
e
�d�

⎞
⎟⎟⎟⎠

(21)�c =

Nc�
e=1

⎛
⎜⎜⎜⎝
∫
� e
c

�T
e
�cd�

⎞
⎟⎟⎟⎠

(22)�̇n+
1

2 =

(
�n+1 − �n

)

Δt
n+

1

2

(23)𝐝n =

(
�̇�n+

1

2 − �̇�n−
1

2

)

Δtn
.

(24)�̇
n+

1

2 = �̇
n−

1

2 + Δtn�−1�n
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equations from (16b). Then, the displacements �n+1 at time 
step n + 1 can be determined by Eq. (22).

3  A New Contact Formulation

There are two aspects to contact in the numerical methods, 
namely, the contact detection and contact interaction. Contact 
detection is aimed at detecting couples of blocks or bodies close 
to each other, i.e. eliminating couples of blocks that far from 
each other and cannot possibly be in contact. In other words, 
the role of contact detection is to avoid processing contact inter-
action when there is no contact. In this study, the algorithm 
of contact detection is similar to the other numerical (Beskos 
1997; Cai et al. 2000; Chen et al. 2017; Cundall 1971) methods 
and will not be discussed. Therefore, the following sections will 
focus on the new algorithm of contact interaction. Different 
from most of numerical method that adopt the concentrated 
contact force approach, the distributed contact force approach 
is adopted, and the contact force is calculated directly based on 
the overlapped area of bodies in contact and the contact states.

3.1  General Description of Contact Interaction

As shown in Fig. 1, The master and the slave bodies overlap 
each other over area S, boundary by boundary. In order to solve 
contact interactions, a correspondence between points in the 
slave and master surfaces must be defined. For every point in 
slave surface �(2) , a corresponding contact point on the master 
surface �(1) can be obtained as the intersection of the surface 
�

(1)
c  with the line in the direction of the normal vector �(1) , as 

depicted in Fig. 1. Vector �(1) is the unit normal to the master 
surface. Therefore, penetration at a given point �(2) on the slave 
surface into master body can be defined as

Note that within this definition, the penetration gN
(
�(2)

)
 

is negative if the contact is open and positive when there is 
penetration of the bodies.

When the bodies penetrate each other, there is contact trac-
tion �(i)c  occurs on the contact surfaces � (i)

c  , which can be sepa-
rated into normal and tangential components:

where, p(i)
N

 and t(i)
T

 are the normal contact force and tangential 
contact force acted on � (i)

c  , respectively.
The contact interface must verify the classical Kuhn–Tucker 

conditions

The first term is the impenetrability condition, the second 
on implies that only compressive interaction is allowed and 

(25)gN
(
�(2)

)
=

(
�
(1)

− �(2)
)
⋅ �(1)

(26)�(i)
c

= �(i) + �(i) = p
(i)

N
� + t

(i)

T
�

(27)gN ≤ 0, pN ≥ 0, pNgN = 0

the third term ensures that if there is contact ( pN > 0 , the gap 
is zero.

In this study, the penalty method is adopted to solve the 
contact interaction. Therefore, the excessive interpenetration 
between the two bodies are permitted. Generally, the normal 
traction of contact force can be defined as a function of the 
interpenetration. For simplicity, a linear function is adopted to 
evaluate the normal contact force. For the slave surface � (21)

c  , 
the normal contact force can be expressed as

where, �N is the normal penalty coefficient.

3.2  Discretization of the Contact Problem

3.2.1  Normal Contact Force

Figure 4 shows the bodies in contact which are discretized 
using two-dimensional mathematical cover. In the discre-
tized bodies, the slave and master contact surfaces are 
divided into a number of connected segments. The position 
of a given point �(2)g  in a slave segment c(2)

k
 is interpolated 

from the slave vertex k − 1 and k. The corresponding contact 
point in the master surface c(1)

k
 is defined by the current posi-

tion �(1)
g

 . This point is obtained as the intersection of the 
master segment and the line emanating from the slave point 
in direction �(1)

g
 . Note that the direction �(1)

g
 is equal to the 

unit normal vector �(1)
k

 of the master segment c(1)
k

.
According to Eq. (25), the penetration of given point �(2)

g
 into 

the master body can be given as

As illustrated in Fig. 4, the overlapped area is divided into 
several domains according to the number of master segments 
in contact. The division lines are inner angular bisector at 
the vertex of master body. As can be seen from Fig. 4 that 
one slave segment may be divided into several sub segments 
by the division lines. Using this approach, the penetration gN 
of any point on the slave segment to the master surface can 
be calculated in the corresponding domain.

One arbitrary domain, as shown in Fig. 5, is selected to dem-
onstrate the procedure to calculate normal contact force. The 
normal contact force acted on the slave segment c(2)

k
 is denoted 

by �(2)
k

 which is in blue in Fig. 5. Accordingly, the distributed 
normal contact force acted on sub-segment c(2)

k,j
 is denoted by 

�
(2)

k,j
 . The equivalent point load �(2)

k,j
 of �(2)

k,j
 and its point of force 

application �(2)
k,j

 are calculated by

(28)pN
(
�(2)

)
= �NgN

(
�(2)

)

(29)gN

(
�(2)
g

)
=

(
�
(1)

g
− �(2)

g

)
⋅ �

(1)

g

(30)�
(2)

k,j
=

(
1�

(2)

k,j
+ 2�

(2)

k,j

)

2
l
(2)

k,j
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where l(2)
k,j

 is the length of sub segment c(2)
k,j

 . 1�
(2)

k,j
 and 2�

(2)

k,j
 are 

two ends of sub segment c(2)
k,j

.1�
(2)

k,j
 and 2�

(2)

k,j
 the normal con-

tact force at 1�
(2)

k,j
 and 2�

(2)

k,j
 , respectively.

(31)�
(2)

k,j
=

1�
(2)

k,j

(
21�

(2)

k,j
+ 2�

(2)

k,j

)
+ 2�

(2)

k,j

(
1�

(2)

k,j
+ 22�

(2)

k,j

)
(
1�

(2)

k,j
+ 2�

(2)

k,j

)

(32)1�
(2)

k,j
= �

(2)

k,j

(
1x

(2)

k,j

)
, 2�

(2)

k,j
= �

(2)

k,j

(
2�

(2)

k,j

)

To calculate the normal contact force of master segment 
c
(1)

k
 , the ‘virtual’ distributed force �div acted on the division 

lines, which is in red in Fig. 5a, also need to be calculated by 
the same approach as the slave segments. So is the equivalent 
point load �div and its point of the force application �div.

Based on the equilibrium of force and moment of the 
domain, the equivalent point load �(1)

k
 of normal contact force 

acted on the master segment and its point of force application 
�
(1)

k
 are obtained (as depicted in Fig. 5b),

(33)�
(1)

k
=

n∑
j=1

�
(2)

k,j
+

2∑
j=1

�div,j

Fig. 4  The discretization of 
overlapped area for two bodies 
in contact
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where ‘×’ represents the cross product of vectors. n is the 
number of slave segments or sub-segments of the domain.

It should be noted that �(1)

k
 is obviously not equal to the 

sum of �(2)

k,j
 in the domain. However, the sum of contact 

forces �(i) acted on the bodies in contact are equal (as shown 
in Fig. 6), namely

where, N(i) is the number of contact segments of body i.

3.2.2  Tangential Contact Force

Based on the above derivation, the normal direction �c of the 
overlapped contact area can be defined as the unit vector of �(1) , 
as shown in Fig. 6. Correspondingly, the tangential direction �c 
of the whole contact area is perpendicular to �c . It should be 
noted that if any of the two contact surfaces is a straight line, �c 
is equal to the normal vector of that contact surface.

In this study, the cumulative tangential displacement Vn 
of the contact overlapped area at time step n is defined and 
calculated by

(34)�
(1)

k
× �

(1)

k
=

n∑
j=1

�
(2)

k,j
× �

(2)

k,j
+

2∑
j=1

�div,j × �div,j

(35)�(1) = −�(2)

(36)�(1) =

N(1)∑
k=1

�
(1)

k
, �(2) =

N(2)∑
k=1

n∑
j=1

�
(2)

k,j

(37)Vn = Vn−1 + ΔV

(38)

ΔV = ∫
�

(1)
c

Δv(1)dl − ∫
�

(2)
c

Δv(2)dl

=

N(1)∑
i=1

(
Δv

(1)

i
+ Δv

(1)

i+1

)
Δl

(1)

j

2
−

N(2)∑
j=1

(
Δv

(2)

j
+ Δv

(2)

j+1

)
Δl

(2)

j

2

where,Δ�(i) denotes the displacement increment of contact 
surface � (i)

c  at time step n. Δv(i)
j

 is the tangential displacement 
at vertexes or intersections j of contact surface � (i)

c  . N(j) is 
the number of the vertexes and intersections of contact sur-
face � (i)

c  . Δl(i)
j

 is the length of segment or sub segment j.
Based on the definition, the total tangential contact forces 

�(i) of the contact area is calculated as

where �T is the tangential penalty parameter.
Then, the Mohr–Coulomb criterion is adopted to determine 

the contact state. For the contact in stick, if |T| < ||𝜇fP
|| (P is 

the normal of �(i) ), the contact is in stick. Otherwise, the con-
tact state changes to be in slip. When the contact is to be in 
slip or open, the cumulative tangential displacement Vn is set 
to be zero. For the contact in slip if the ΔV changes the sign, 
the contact state changes to be in stick.

To calculate the tangential contact force in a unified frame-
work for contact in stick and contact in slip, an equivalent 
frictional coefficient �eq is introduced and defined as,

Then, the tangential frictional force �(i)
k

 on the contact seg-
ment c(i)

k
 can be obtained by

(39)Δv(i) = Δ�(i) ⋅ �c

(40)Δ�(i) = �(i)
(
tn
)
− �(i)

(
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(41)�(1) = −�(2), �(1) = T�c, T = �TV
n
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tion of total equivalent normal 
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where �(i)
k

 is the coordinate of the vertex k of the contact 
surface � (i)

c  . �(i)
k

 is the tangential unit vector along the seg-
ment c(i)

k
.

3.3  Contribution to the Global Equations

According to Eq. (15), the virtual energy contributed by the 
contact force acted on the contact boundaries is expressed as

where, n denotes the number of contact segment or sub seg-
ment of body �(i) , � (i)

c,k
 is the nodal force of contact force 

acted on the segment or sub segment c(i)
k

.
In the proposed contact interaction algorithm, the dis-

tributed contact forces �(i)
c,k

= �
(i)

k
+ �

(i)

k
 are converted to 

equivalent point load �(i)

c,k
= �

(i)

k
+ �

(i)

k
 and its point of force 

application �(i)
k

.
Therefore, Eq. (46) can be written as

Substituting Eqs. (45), (46) and (47) into (16b), the con-
tribution of the contact force acted on the contact segment 
c
(i)

k
 to the global equation is obtained,

3.4  Implementation of Contact Algorithm

The contact algorithm for calculating the contact nodal 
forces is presented in Table 1. The first step is contact 

(45)� (i)
c

= ∫
�

(i)
c

(
��h

)T
�(i)
c
d� = (��)T� (i)

c
= (��)T

n∑
k=1

�
(i)

c,k

(46)
�
(i)

c,k
= ∫

c
(i)

k

�T
e
�
(i)

c,k
d�

(47)�
(i)

c,k
= �T

e

(
d�

(i)

k

)(
�
(i)

k
+ �

(i)

k

)

(48)
n∑

k=1

�
(i)

c,k
→ �c

detection, which is aimed at detecting couples of blocks or 
bodies close to each other and eliminating couples of blocks 
that far from each other and cannot possible be in contact. 
In this step, overlapped contact areas (diagrammatic figures 
shown in Fig. 4) are obtained. After the contact detection, 
a loop to calculate contact force and its contributions to the 
global load vectors is presented. In this loop, the normal con-
tact force pN of one overlapped contact area is firstly calcu-
lated. Then, based on the contact state in time step n − 1, the 
trail tangential contact force T is calculated using Eq. (41). It 
is noted that if the overlapped contact area is a new contact, 
a sticking condition is assumed and the corresponding cumu-
lative tangential displacement Vn−1 = 0 . Next, the contact 
states at tn are checked. The sticking contact become slip-
ping if the normal contact force is greater than the limit of 
friction. Similarly, the slipping contact become stick if there 
is a change in the sign of the average slip increment. Based 
on the checked contact state, the tangential contact force t is 
calculated. Finally, the contributions of contact force to the 
global load vector are obtained.

4  Numerical Examples

4.1  Momentum Conservation Test

This example is aimed to validate the correctness of new 
contact formulation involving frictionless contact. As shown 
in Fig. 7, there are two blocks on a rectangular table. The 
left-side block slides with no friction toward the right-side 
stationary block at a constant velocity v0 = 0.5 m/s. The 
material properties of the two blocks are the same: den-
sity ρ = 2800 kg/m3, Young’s modulus E = 2000 MPa, and 
Poisson’s ratio v = 0.25. To reduce the oscillation of result 
after block collision, the normal contact stiffness is taken as 
one tenth of E, namely, kn = 200 MPa/m. The discretization 
of this problem using NMM is shown in Fig. 7. The time 
span of the simulation is 3.0 s with a time step increment 
of  10−4 s.

Table 1  The algorithm for calculating contact nodal force �
c

2 2.5 1

1

1
v0

1 1

Fig. 7  Collison of two blocks and its discretization (unit: m)
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Theoretically, the two blocks system should satisfy the 
momentum conservation, i.e., the total momentum of the 
two blocks system always keep constant during the colli-
sion process. Figure 8 illustrates the velocity histories of 
Block A, Block B only and the sum of both blocks. It can 
be seen that the Block A collides with Block B at t = 1 s and 
completes energy exchange in less than 0.01 s. Then, Block 
B slides toward right at a constant velocity v = 0.5 m/s. The 
values of total horizontal momentum are identical to the 
theoretical values, which confirms that the proposed algo-
rithm for frictionless contact problem is working correctly.

4.2  A Block Slides Along an Inclined Slope

The second example is a benchmark to validate the accuracy 
of new contact formulation in friction case. As shown in 
Fig. 9, a rectangle block is sliding down a ramp with a slope 
at an angle of 30° to the horizontal. The material parameters 

of the block and the ramp are the same: Young’s modulus 
E = 10 GPa, Poisson’s ratio v = 0.25 and the mass density 
ρ = 2300 kg/m3. The normal stiffness of contact kn and ks are 
set to 10 GPa/m and 10 GPa/m, respectively.

To investigate the correctness of contact state transition 
from sticking to slipping, the surface of the ramp is divided 
into two different frictional segments, namely, AB and BC. 
The frictional angle of the two segments are �1 = 20◦ and 
�2 = 38.3◦ , respectively. The ramp is fixed and the block is 
under gravitational acceleration of 10 m/s2. The time span of 
the simulation is 7.0 s with a time step increment of  10−4 s. 
Theoretically, the acceleration of the block sliding along 
the two inclined segments are 1.85 m/s2 and − 1.85 m/s2, 
respectively. However, the acceleration aj at the junction of 
the two inclined segments is non-uniform. For this example, 
considering the normal contact force acted on the bottom of 
the block is triangular distributed and the value at the heel 

Fig. 8  Moment histories of 
Block 1, Block 2 only and the 
sum of both blocks
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of the block is approximately zero, the acceleration aj can 
be expressed as

where, v is the velocity of the block and v0 is the velocity of 
the block when its toe reach point B. L is the length of the 
block, � is the ratio of the block bottom sliding on segment 
AB.

Figure 10 shows the velocity history of the sliding block 
during the whole sliding process obtained by improved 
explicit NMM, original NMM and analytical solution. It is 
observed obviously from Fig. 10 that the block is in uni-
formly acceleration motion along the segment AB. The toe 
of block reach point B at t = 2.8 s. Then, the block sliding 
along both of segments AB and BC. The velocity history at 
this stage is shown in detail in Fig. 10b. As can be seen that 
the block in this stage is in nonuniform acceleration motion 
and the peak velocity is 5.28 m/s2 at t = 2.91 s. At t = 3.85 s, 
the block changes to uniformly deceleration motion along 
segment BC and stops on the slope at 5.9 s. The movement 

(49)
aj(t) = sin � − tan�2 cos � + �2

(
tan�2 − tan�1

)
cos �

(50)�(t) =

⎛
⎜⎜⎝
L −

t

∫
0

v(T)dT

⎞
⎟⎟⎠

�
L, v(t) = v0 +

t

∫
0

aj(T)dT

of the block obtained by improved explicit NMM agrees 
with the analytical solution.

Although the results obtained by original NMM seems 
to agree with the analytical solution (shown in Fig. 10a), 
the velocity history deviates from the analytical solution 
when the toe of block reach point B at t = 2.8 s. Due to the 
vertex-to-edge contact type adopted in the original NMM, 
the contact forces acted on the bottom of block are point 
forces rather than distributed forces. Moreover, the point 
force acted on the toe of block is maximum force and so 
is the corresponding frictional force. Therefore, the veloc-
ity obtained by original NMM decreases faster than that by 
analytical solution or improved explicit NMM.

The results indicate that the proposed new contact formu-
lation work correctly and is capable of simulating the contact 
state transition from slipping to sticking, which confirms 
that the proposed algorithm for frictional contact problem 
is better than original algorithm.

4.3  Two Elastic Beams

The purpose of this example, chosen according to Popp et al. 
(2010), is to demonstrate the performance and robustness 
of the proposed algorithm to simulate large sliding contact. 
Since this example is large rotation and small strain prob-
lem, the constitutive equations described in the corotational 
system is suitable and the hypoelastic material behavior is 
assumed here. As illustrated in Fig. 11, two curved beams 
(E = 10,000 Pa, v = 0.32, ρ = 2.3) come into frictional contact 
due to the upper beam being subjected to a horizontal veloc-
ity (v = 1 m/s) at its two top ends. The normal stiffness of 
contact kn and ks are set to 100,000 Pa/m and 100,000 Pa/m, 
respectively. The discretization of this problem using NMM 
is shown in Fig. 11 and there are 345 mathematical covers 
and 506 manifold elements

Due to the fact that no damping is introduced in this 
study, the deformation of the two beams is reversible and 
a snap through phenomenon occurs when the upper beam 
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process; b the stage of the block sliding through point B

17

1210

v0 v0

10 8

Fig. 11  Large deformation contact of two elastic beams and its NMM 
discretization (unit: m)



447A New Contact Formulation for Large Frictional Sliding and Its Implement in the Explicit Numerical…

1 3

moves around 15 m in the frictionless case. Therefore, the 
frictional contact force should be considered in this simula-
tion. In this case, frictional angle φ = 10° for the contact is 
adopted. The evolution of deformation is illustrated by some 
characteristics stages in Fig. 12. As can be seen, the two 
curve beams undergo large deformation during the simula-
tion. Different from the frictionless case, the snap through 
phenomenon occurs when the upper beam moves to approxi-
mately u = 16 m. Then, the two contacting beams come to 
stability quickly through friction between beams, as shown 
in Fig. 12d. The results agree very well with that in Zheng 
et al. (2016), which confirms that the proposed algorithm for 
large sliding problem involving large deformation is work-
ing correctly.

4.4  Multi‑blocks Contact Interaction

This example (Bao and Zhao 2010) is designed to inves-
tigate the ability of proposed contact formulation to deal 
with vertex-to-vertex contact, which is the most chal-
lenging contact type in conventional NMM. As shown in 
Fig. 13, a four-blocks system on a fixed table is present. 
A point load F (− 4 × 107 kN, − 3 × 107 kN) is applied on 
Block A and the gravity is not taken into consideration. The 

material properties of all blocks are the same: mass den-
sity ρ = 2300 kg/m3; Young’s Modulus E = 10 GPa, Pois-
son’s ratio v = 0.3, friction angle between blocks is 15°, and 

1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5
YDsipl

(a) (b) 

(c) (d) 

Fig. 12  Deformed configurations for large deformation contact problem: a u = 8; b u = 12; c u = 16; and d u = 20. (unit: m)
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the cohesion is 0. The computational control parameters 
are as follow: time step size Δt = 10−5 s and 600,000 time 
steps. The normal and shear contact spring stiffness are 
kn = 10 GPa/m and ks = 10 GPa/m.

Since that the horizontal force |Fx| is greater than the ver-
tical force |Fy|, the displacement along the horizontal direc-
tion should be larger than that along the vertical direction. 
Therefore, block A should move horizontally along the top 
edge of block C, rather than vertically along the side edge. 
Figure 14 presents the final configurations by original NMM 
and explicit NMM, colored with the resultant displacements. 
As can be seen that the solution by explicit NMM is correct. 
It should be noted that due to the adoption of penalty method 
to solve this example, Block A penetrates the other three 
blocks at an initial stage of simulation. Therefore, Block 
B moves towards right in the simulation, but its displace-
ment is far less than the upward displacement of Block D, 
as shown in Fig. 14b.

5  Preliminary Simulation of Vaiont 
Landslide

In this example, the Vaiont landslide (Maclaughlin 1997) 
which occurred in northern Italy on October 1963, is chosen 
to investigate the ability and robustness of proposed contact 
formulation to deal with numerous singular contacts. Fig-
ure 15 shows the profile of the Vaiont landslide before and 

after the occurrence of slide. In this simulation, based on the 
shape of failure surface and the character of slope topogra-
phy, the whole slope is divided into rock base and sliding 
mass. Then the sliding masses are divided into the smaller 
discrete deformable blocks by pre-existing discontinuities, 
as shown in Fig. 16. The NMM model is also depicted in 
Fig. 16. As we can see that since the landslide mass con-
sists of several triangle blocks and quadrangle blocks, it 
is convenient to define the manifold mesh for each block. 
Therefore, the NMM discretization for this example consists 
of two parts, namely, rock base and landslide mass. Each 
block in landslide mass is covered by three regular hexago-
nal physical patches denoted by red point. The overlap of 
these three patches is the equilateral triangle circumscribed 
the characteristic circle of the block. The radius of this circle 
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is defined as the maximum distance from the centroid to the 
vertexes of the block. In this NMM model, there are 504 
blocks in landslide mass and more than 2000 contact-pairs. 
Since most of contacts are vertex–vertex contact, the prob-
lem is extremely singular for the conventional NMM. 

According to Zheng et  al. (2014), the property of 
landslide mass and bed rock are as follow mass density 
ρ = 2300 kg/m3, Young’s modulus E = 10 GPa, Poisson’s 
ratio v = 0.3. The frictional angle of the blocks is 8.5° and 
the cohesion is 0. The computational control parameters 
are as follow: time step size Δt = 10−5 s and the time span 
T = 35 s. The normal and shear contact spring stiffness are 
kn = 10 GPa/m and ks = 10 GPa/m as shown in Fig. 16, three 
blocks located at different parts of the sliding mass are 
selected to investigate the dynamical behavior of the sliding 
mass in the landslide process.

Figure 17 shows the velocity and displacement time his-
tories of monitoring blocks. Figure 18 presents the land-
slide process of Vaiont landslide simulated by the explicit 
NMM, with the configurations at different time. As shown 
in Fig. 16, the landslide mass looks like a “chair” and can 
be divided into two parts. One is the landslide mass stacked 
along the inclined slide surface, called “back of chair”. The 

other is the landslide mass stacked on the horizontal slide 
surface, called “seat of chair”. The resistance force along the 
inclined slide surface is insufficient to keep “back of chair” 
stability. Therefore, “back of chair” slide down gradually, 
and pushes “seat of chair” move forward. It can be seen 
from Fig. 17 that the velocity of three blocks located at dif-
ferent parts of landslide mass is similar, suggesting that the 
landslide mass move forward as a whole. At the initial stage, 
the velocity of three blocks increases gradually. When the 
landslide mass hits the opposite bank at t = 14.2 s, the whole 
landslide decelerate rapidly and accumulated in the valley. 
The duration of landslide process is around 30 s, which agree 
with the description in Zheng et al. (2014). After overlap-
ping the final step of NMM calculation with the topographic 
cross-section at the Vaiont landslide, the deposit pattern of 
the simulated Vaiont landslide coincides well with the local 
topography.

6  Conclusions

In this study, a new contact formulation for large frictional 
sliding, in which the contact force is calculated directly 
based on the overlapped area of bodies in contact and the 
contact states, is proposed and implemented in the explicit 
NMM. Due to the elimination of the contact type judgement 
and open-close iteration, the proposed contact algorithm is 
robust and very easy to be implemented.

Five numerical examples are presented to verify the 
proposed contact algorithm. The first two examples are 
benchmarks used to validate the proposed contact algo-
rithm in the case of frictionless and friction cases, respec-
tively. The third example is used to demonstrate the ability 
of the proposed algorithm to simulate large sliding contact 
involving large deformation. The fourth example is used 
to validate the correctness of solving corner-to-corner 

Fig. 16  The NMM discretization for the landslide mass and rock 
base. Note that the NMM discretization for this example consists of 
two parts, namely, rock base and landslide mass. Each block in land-
slide mass is covered by three regular hexagonal physical patches 

denoted by red point. The overlap of these three patches is the equi-
lateral triangle circumscribed the characteristic circle of the block. 
The radius of this circle is defined as the maximum distance from the 
centroid to the vertexes of the block (color figure online)
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Fig. 17  The resultant velocity histories of three monitoring blocks
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contact problem, which is a difficulty in discontinuum-
based numerical methods. The last example, containing 
a large number of corner-to-corner contacts, is presented 
to test the ability of the new algorithm in solving the 
extremely singular problem. All the simulation results 
obtained in this study agree well with the analytical solu-
tion or reference results, indicating that the proposed con-
tact algorithm has reached a practical level in accuracy, 
robustness and effectiveness.

Note that the contact algorithm proposed in this study 
is derived base on explicit methods. The weaknesses of 
explicit methods are also applicable to this study. There-
fore, the derivation of the proposed contact algorithm 

based on the implicit method is one of our future works. 
In addition, our future work includes.

(1) Investigating the effect of mechanical damping on con-
tact interactions in the explicit NMM.

(2) Implementing the proposed contact algorithm to other 
numerical methods, such as FEM, DEM, DDA.

(3) Developing parallel computing technology. The explicit 
methods are easy to be highly parallelized and the solu-
tion efficiency will be enhanced considerably.
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