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Abstract
The quantification of fluid flow in rough fractures is of high interest for reservoir engineering, especially for deep geother-
mal applications. Herein, rough self-affine fractures are stochastically generated with incremental shear displacement and 
geometrically described by two aperture definitions, the vertical aperture a

vert
 and the effective aperture a

eff
 . In order to 

compare their effect on fracture flow, such as anisotropy and channelling, Local Cubic Law (LCL) model-based 2D fluid flow 
is simulated. The particularity of this approach is the combination of a stochastic generation of self-affine fractures with a 
statistical analysis (560 individual realizations) of the impact of the LCL’s aperture constraint on fracture flow. The results 
show that aperture definition affects the quantitative interpretation of flow anisotropy and channeling as well as the aperture 
distribution of the fractures with shearing. Higher values of mean aperture for a given fracture are found using a

vert
 , whereas 

the aperture standard deviation is larger with a
eff

 . In addition, flow anisotropy is significantly sensitive to aperture definition 
for small shear displacements and shows a relative higher dispersion with a

eff
 . Thus, LCL prediction models based on a

vert
 

are expected to lead to higher dispersion of anisotropy results with a higher uncertainty (factor ~ 2). Realizations based on 
a
vert

 lead to an enhanced clustering of high flow rates for higher shearing displacements. This channeling development results 
in higher total flow rates for these simulations. These findings support the direct calibration of pre-existing LCL anisotropy 
simulations based on a

vert
 towards more representative results using a

eff
.
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1 Introduction

Permeability prediction in natural media like fractured rocks 
is a stepping stone for the development of projects such as 
disposal sites (Bear et al. 1993) and underground tunnel-
ling (Evans et al. 2013) where low permeability is aimed. 
However, for reservoir exploitation (Schmittbuhl et al. 2008; 
Zimmerman and Bodvarsson 1996) such as geothermal sites, 
high permeability is pursued using hydraulic stimulation to 
shear the fractured rocks. Through the Darcy’s law for lami-
nar flow, permeability is defined from the proportionality 
factor linking the flow rate and the fluid viscosity to the 
pressure gradient. In fractured rocks, fluid flow is affected 
by the local aperture which is typically linked to the local 
roughness distribution. Moreover, flow rate depends on 
mechanical deformations, i.e. shearing or normal opening. 
It is well known that this can lead to a dependency of flow 
on orientation, yielding effects of anisotropy and channel-
ling which have been intensively studied by multiple authors 
(Berkowitz 2002). Auradou et al. (2001) illustrated flow ani-
sotropy with laboratory studies using dyed fluid in a self-
affine rough fracture. They observed a dependency of ani-
sotropy on the lateral displacement of the fracture surfaces. 
Based on natural fracture replica, Gentier et al. (1997) also 
verified this phenomenon on the permeability field through 
laboratory experiments. They concluded that hydraulic per-
meability of a fracture depends clearly on the shear direction 
at displacements below 0.5 mm with significant changes in 
flow direction. Méheust and Schmittbuhl (2001) quantified 
anisotropy by taking into account the direction of the pres-
sure gradient and the geometrical heterogeneities. Auradou 
et al. (2006) performed an experimental and numerical study 
demonstrating that shear displacement induces anisotropy 
with enhanced permeability perpendicular to the shear direc-
tion. They extended their model to include flow channels 
developing perpendicularly to the shear displacement. Chan-
nelling is referring to the phenomenon of flow concentration 
along preferential pathways. Silliman (1989) demonstrated 
the development of channelling structures by laboratory 
experiments and underlined the associated presence of flow 
anisotropy. Channelling was experimentally established 
when small parts of a fracture plane can concentrate 90% of 
the fluid flow in single fractures (Rasmuson and Neretnieks 
1986). By numerical studies, the importance of channel-
ling for transport phenomena in a strongly heterogeneous 
medium, such as a fracture, was investigated (Tsang and 
Tsang 1989) and identified (Moreno and Tsang 1994).

These studies have an important impact on fractured geo-
thermal reservoir systems which tend to be situated in tec-
tonically active areas with an individual history of shearing 
events. Shearing is noticed through seismic events with a 
relative movement of fracture surfaces. This can take place 

under natural or under man-made conditions (“natural vs. 
induced earthquake”). In a larger context of a fracture net-
work, these studies highlight that anisotropy and channel-
ling are crucial to understand the permeability patterns in 
reservoirs. Clearly, its quantification depends on the flow 
law applied and on the geometrical characterization of aper-
ture. Considering a laminar flow and an individual fracture, 
the widely used equation to evaluate the influence of aper-
ture variability on fluid flow computation is the cubic law 
(Brown et al. 1995, 1998; Witherspoon et al. 1980). With 
this approach, the fracture surface is simplified to parallel 
plates and inertial as well as nonlinear effects are neglected. 
Under purely tensile conditions when the fracture surfaces 
are displaced normally to the fracture plane even very rough 
surfaces could imply a constant aperture (Méheust and 
Schmittbuhl 2003). However, under normal or strike-slip 
faulting conditions fracture surfaces will be displaced, and 
aperture distribution will change locally. Given the crucial 
importance of mechanical interaction in a fractured geother-
mal system, its hydraulic impact needs to be investigated as 
function of the changing local aperture with displacement. In 
the following, we account for the aperture by defining a local 
transmissivity derived from the Local Cubic Law (LCL) that 
is a function of a stochastically generated roughness on the 
fracture surface. Utilization of the LCL is attractive for a 
broad range of engineering applications, at least as a first 
approach, due to its simplicity and computational efficiency. 
However, one of the critical issues related to LCL is the 
definition of its geometrical constraint which is the local 
aperture used in this equation (Konzuk and Kueper 2004; 
Oron and Berkowitz 1998; Wang Lichun et al. 2015; Zim-
merman and Bodvarsson 1996).

The goal of the present work is to establish a recalibration 
between the LCL simulation results based on the commonly 
used vertical aperture and the more realistic effective aper-
ture which considers the flow directionality. The limitation 
of the LCL are not put into question as our aim is to present 
the first results documenting an alternative to balance com-
putational time and accuracy based on this law. To do so, 
we need to quantify the accuracy of the generally applied 
LCL models by accounting on stochastically generated frac-
ture surface geometry. By its small-scale stochastic nature, 
it concludes on the bandwidth of uncertainty at large-scale 
numerical model approaches. To provide this quantification, 
a stochastic approach is presented to generate the rough-
ness distribution of fracture surfaces. This process results in 
many realizations using the same fractal parameter extracted 
from a field observation. On these non-identical fractures, 
different shearing displacements are applied to simulate the 
individual hydraulic impact assuming viscous Poiseuille 
flow. The statistical dispersion of the generated datasets is 
analysed to highlight the uncertainty related to the defini-
tion of a LCL aperture. The stochastic investigations are 
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concentrating on anisotropy and channelling, representing 
two principal hydraulic phenomena in fractured media. In 
the context of complex fractured systems, this study aims 
therewith also at improving the reliability of the hydrauli-
cally coupled processes, i.e. in geothermal models.

First, we describe the numerical framework and the 
procedure to generate the stochastic database in Sect. 2. In 
Sect. 3, the aperture distributions and the statistical disper-
sion of the hydraulic results are presented to analyse the 
associated anisotropy variations. Then, in Sect. 4, indicators 
are defined to quantify channelling and its dependence on 
shearing under the chosen stochastic approach.

2  Methods

2.1  Generation of Rough Self‑Affine Surfaces

The procedure to generate the stochastic database of a 
sheared single fracture is conducted by constructing 3D 
surfaces with a software developed by Schmittbuhl and 
described in (Méheust and Schmittbuhl 2001). Herein, it is 
assumed that fractal geometries represent a good approxi-
mation of the roughness distribution of real fracture sur-
faces (Bouchaud 1997; Schmittbuhl et al. 1993, 1995). This 
roughness distribution is defined from self-affine surfaces 
with isotropic correlation functions. Its associated probabil-
ity density function p

d
 can be stated as follows:

assuming an arbitrary scaling factor � and the Hurst rough-
ness exponent H . It indicates that p

d
 is invariant regarding 

the transformations on the height difference Δh and the dis-
tance Δr defined in Eq. (1) (Méheust and Schmittbuhl 2001; 
Talon et al. 2010).

(1)p
d(Δh,Δr) = �Hp

d

(
�HΔh, �Δr

)
,

A roughness exponent of H = 0.8 is chosen in this study 
being widely observed for granite (Amitrano and Schmitt-
buhl 2002; Schmittbuhl et al. 1993, 1995). Moreover, every 
surface generated (Fig. 1) is distinct as it is, respectively, 
based on a distribution extracted from a white noise genera-
tor (Press et al. 1992). The generated surfaces have a reso-
lution of 2048 by 2048 discretization elements. In addition, 
we measure that the topothesy of the generated surfaces is 
4 × 10

−6
mm . This value is relatively higher but comparable 

with the experimental measurements in Schmittbuhl et al. 
(2008) where the value of 2 × 10

−7
mm is found. Moreover, 

we verify that the Power Spectral Density ( PSD ) of the sur-
faces has a slope of −2.6 which is coherent with H = 0.8 as 
this slope for self-affine surfaces is of −1 − 2H (Méheust and 
Schmittbuhl 2001). To implement the stochastic approach a 
total of 560 fractures were generated. This number of frac-
tures has been chosen to be able to quantify the accuracy of 
anisotropy and channelling phenomena.

2.2  Sheared Fracture Generation

In a geoscientific context, fractured systems represent dis-
continuities in the solid rock. Under increasing stress load-
ing, their surfaces are likely to be displaced which is a typi-
cal behaviour in deep geothermal reservoirs or in active 
tectonic systems. To obtain numerically a sheared synthetic 
fracture from a generated surface, we adopt the methodology 
of the study realized by Auradou et al. (2006) using sheared 
fractures made initially of complementary walls. After hav-
ing duplicated the initial surface, its duplicate is translated 
horizontally by N

offset
 with a periodic boundary due to the 

small displacements ( < 1% of the fracture length). Then, a 
vertical translation results automatically when both surfaces 
have at least one contact point (Fig. 2). With this last step, 
we place the study in the limit of a rigid approximation, and 

Fig. 1  Example of surface 
generated with a roughness 
exponent of H = 0.8 after 
scaling. Note that x, y-axis are 
in m and z-axis is in mm. The 
colours refer to the height in the 
direction of the z-axis
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thus no plastic deformation and no rigid rotation are consid-
ered. The constructed fractures are scaled on the measure-
ments from Schmittbuhl et al. (1993). Also, the scaling of 
the surfaces considers a total length L of 0.64 m and a maxi-
mum surface amplitude of l = 30 mm . Based on a self-affine 
geometry, the fracture-scale studied can be included in larger 
reservoir models through upscaling procedures. Indeed, this 
approximation is enabled by the self-affine geometry which 
is based on the self-similarity property which is featured by 
scale invariance.

In total, we consider 8 shear displacements along the x
-axis, noted N

offset
 , and for each of them 70 fractures are, 

respectively, sheared, resulting in a total number of frac-
tures to be generated of 560 . The value of N

offset
 controls the 

shearing displacement and is given in number of elements 
(i.e. each length has 2048 elements). The equivalent physical 
lengths of the different shear displacements are presented in 
Table 1. The shear displacement is linearly increasing from 
1 to 8 elements of a surface with the aim to study the early 
development of anisotropy and channelling processes. Due 
to the relatively small shearing displacement compared to 
the overall fracture size, the rigid approximation is applied 
as stated before. Indeed, a shearing displacement in the mil-
limetre range [0.31;2.50] is resulting for a fracture of 0.64 m . 

In a mechanically brittle medium, this could be associated 
with micro-earthquakes of magnitude M < 1 (Wells and 
Coppersmith 1994) typically observed during enhanced 
geothermal exploitations.

2.3  Local Aperture Distributions

The common practice to compute LCL is to measure the 
aperture normal to the fracture plane, meaning that a con-
stant direction is considered (Brown 1989). Since this prac-
tice leads to an overestimation of transmissivity (Berkowitz 
2002), a variety of aperture definitions have been proposed 
for fluid flow simulations. For the definition of an effective 
aperture herein, we follow the approach from Ge (1997) sug-
gesting to use a “true aperture” calculated from the normal 
to the local orientation of the centerline between both frac-
ture surfaces. Other authors proposed to define the aperture 
as the largest sphere fitting into the fracture at a given node 
(Mourzenko et al. 1995) or defined flow-oriented apertures 
(Lichun et al. 2015).

For each of the 560 generated fractures, two definitions of 
aperture distributions were used: (1) a

vert
 the vertical aper-

ture and (2) a
eff

 the effective (“true”) aperture (Fig. 3). This 
extraction is performed through the framework integrated in 

Fig. 2  Illustration of the fracture construction from a generated surface. For clarity, the construction steps are shown projected in 2D. Note that 
the top surface refers to the duplicate of the bottom surface

Table 1  Shear displacement 
expressed in number of 
elements and physical length 
(mm)

Noffset (number of elements) 1 2 3 4 5 6 7 8

Shear replacement 0.31 0.63 0.94 1.25 1.56 1.88 2.19 2.50
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Pace3D (Hötzer et al. 2018). First, to obtain a
vert

 , we con-
sider a constant vertical direction with respect to the hori-
zontal mean plane at each element of a generated fracture. 
Also, taking the vertical distance between the lower and 
upper surfaces of the fracture at a fixed position, we obtain 
the local vertical aperture distribution. Then, a local a

vert
 can 

be formulated as follows:

with hNoffset

top
 and h

bot
 , respectively, the height of a fracture ele-

ment on its top and bottom surfaces as labelled on Fig. 3. 
Note that the shearing is applied on the top surface of the 
fracture along the x-axis. Thus, the superscript N

offset
 of hNoffset

top
 

indicates the displacement of the top surface relatively to the 
bottom one. Moreover, the vertical displacement of the top 
surface is indirectly defined through the common contact 
point of the sheared surfaces. In addition, h0

top
 refers to the 

initial top surface that has not been sheared.
Second, the effective aperture is defined through the gra-

dient of the median m , noted ����(m) , between the top and 
bottom surfaces (Selzer 2014). Considering the shear dis-
placement N

offset
 , we establish for a given fracture the local 

height of the median curve at the point (x, y) as follows:

Then, a
eff

 is determined as the distance between the 
intersection points of hNoffset

top
 and h

bot
 surfaces with the line 

of slope ����(m) passing by the point (x, y,m) . Depending 
on ����(m) , aeff is perpendicular with the flow direction 
making it more realistic than the a

vert
 in the context of LCL 

(2)
a
ver

(
x, y,N

offset

)
= h

N
offset

top
(x, y) − h

bot(x, y)

= h0
top

(
x − N

offset
, y
)
− h

bot(x, y),

(3)m
(
x, y,N

offset

)
=

hbot(x, y) + h
N
offset

top
(x, y)

2
,

application. Using finite differences, we calculate the gradi-
ent as follows:

Then, we apply a rotation of �
2
 on it and we obtain n(m) , 

the normal vector to the middle plane:

Thus, a
eff

 is defined as follows:

where B is the intersection point between the line of slope 
defined at Eq. (5) and passing by the point (x, y,m) with the 
bottom surface of the fracture. Similarly, T  . is the intersec-
tion between this line and the top surface.

To document the difference between the aperture defini-
tions, we compute the aperture ratios a

eff
∕a

vert
 in each frac-

ture and present the distribution associated with one fracture 
where N

offset
= 5 (Fig. 4). Aperture ratios superior to one 

confirm that a
eff

 is not only a projection of a
vert

 onto the 
direction aligned with BT . We observed for each fracture 
of every shear displacement similar histograms. Also, the 
previous conclusions can be extended to all study.

Furthermore, we compute the PSD for each of the simu-
lated fractures and we present the results for a given fracture 
with N

offset
= 6 in Fig. 5. Similar shapes of the PSD for a

vert
 

and a
eff

 are observed regardless of the shear displacement 

(4)����(m) =

⎡⎢⎢⎢⎣

m(x+1,y,Noffset)−m(x−1,y,Noffset)
2Δx

m(x,y+1,Noffset)−m(x,y−1,Noffset)
2Δy

0

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

ṁx

ṁy

0

⎤
⎥⎥⎦
,

(5)n(m) =

⎡⎢⎢⎣

1 0 0

0 0 −1

0 1 0

⎤⎥⎥⎦

⎡⎢⎢⎣

ṁx

ṁy

0

⎤⎥⎥⎦
=

⎡⎢⎢⎣

ṁx

0

ṁy

⎤⎥⎥⎦
,

(6)a
eff

(
x, y,N

offset

)
= BT,

Fig. 3  Schematization of vertical a
vert

 and effective aperture a
eff

 defi-
nitions projected onto the plane (x, z) in a portion of an open fracture 
sheared by N

offset
 . The grey lines represent the fracture surfaces and 

the red line is the centerline between the fracture surfaces

Fig. 4  Histogram of the probability density in terms of aperture ratio 
a
eff
∕a

vert
 for a given fracture at N

offset
= 5 . Values superior to one 

indicate that a
eff

 is not only a projection of a
vert

 onto the perpendicu-
lar direction given by BT shown in Fig. 3
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and the fracture considered. For spatial frequencies lower 
than 10 m

−1 (i.e. high spatial variations), both aperture def-
initions lead to the same weighting of these frequencies. 
From 10 m

−1 to 100 m
−1 , the PSD of a

eff
 presents the same 

trend than the one based on a
vert

 but with higher values 
showing that a

eff
 weights more this spatial range. Finally, 

from 100 m
−1 to the largest spatial frequencies, we notice 

that a
eff

 has globally a decreasing weighting of this range 
compared to a

vert
 whose variations are heterogeneous with 

smaller values than a
eff

 of at least one order of magnitude. 
Thus, we have shown that a

eff
 differs from a

vert
 notably in 

the weighting of low spatial variations approximately below 
10 mm which include the aperture values. Also, a

vert
 distri-

butions present higher averaged apertures as the weight on 
higher spatial variations is decreasing more rapidly in the 
range starting from 100 m

−1 compared to a
eff

 weighting over 
this range. Note that to investigate the resolution impact on 
the PSD curves, we computed it for a resolution smaller by 
factor 2 and we obtain similar shapes and relative variation 
according to the aperture definition (Fig. 6). Thus, the rela-
tionship between both aperture definitions is transposable 
to other resolutions.

To conclude, both extractions of local aperture distribu-
tions are projections where we obtain 2D local aperture dis-
tributions from the 3D fractures. Note that the horizontal 
mean plane resolution is identical to the resolution of the 
fracture ( 2048 × 2048 ). This numerical resolution is cho-
sen for this study as the finest resolution reachable with an 
acceptable computational time (less than 10 h of simulation 
by fracture). Moreover, to analyse the variability of the local 
aperture distribution for each of the generated fractures, we 
define ā representing the mean aperture defined as follows:

(7)ā =
1

N

N∑
i=1

ai,

where ai is the aperture value of the ith element taken among 
the N elements that constitute the fracture. Note that this 
definition is identically used for each aperture definition 
giving ā

vert
 and ā

eff
 . Similarly, the distribution of the local 

aperture is also characterized by its dispersion through �a 
which is the standard deviation of the aperture computed for 
both apertures as follows:

2.4  Fluid Flow Governing Equations

Fluid flow through a single fracture is governed by the 
Navier–Stokes ( NS ) equations. In the case of incompress-
ible and steady Newtonian flow, the NS equations can be 
expressed in vector form as follows (Foias et al. 2001):

with u the flow velocity vector, � the fluid density, p the 
hydrodynamic pressure, � the kinematic viscosity of the 
fluid and � the body force acting on the fluid, typically � = � 
where � is the acceleration of gravity. Solving the NS equa-
tions requires to solve nonlinear partial differential equa-
tions. The source of nonlinearity is in the advective term 
(u ⋅ ∇)u which shows the inertial forces acting on the fluid. 
The Stokes equation can be obtained by neglecting the iner-
tial term in the NS equation if the Reynolds number Re ≪ 1 , 
where Re is defined as �Qa∕� with � = 10

3
kg m

−3 the den-
sity of water, Q the volumetric flow rate, a the arithmetic 
mean aperture and � = 1.306 × 10

−3
Pa s the viscosity of 

water. The simulations in this work show a maximum local 
flow rate of approximately 10−8 m3

s
−1 . Given a maximum 

local aperture of a
max

= 5 mm and a maximum velocity of 
Q = U × S ∼ 10

−8 × a
max

× L∕2048 , we obtain a maximum 

(8)𝜎a =

�∑N

i=1

�
ai − ā

�2
N − 1

,

(9)(u ⋅ ∇)u = −
1

�
∇p + �∇2

⋅ � + � ,

Fig. 5  Power spectral density of a
vert

 and a
eff

 for a fixed fracture 
whom N

offset
= 6 with a resolution of 2048 × 2048

Fig. 6  Power spectral density of a
vert

 and a
eff

 for a fixed fracture 
whom N

offset
= 6 with a resolution of 1024 × 1024 which is twice 

smaller compared to the Fig. 5
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local Reynolds number Relocal
max

∼ 10
−11 . This allows for 

reducing the NS equations to the linear Stokes equation:

The validity of the Stokes equation in rough fracture pro-
files has been studied in Brown et al. (1995); Brush and 
Thomson (2003); Mourzenko et al. (1995). Nevertheless, 
the complexity of the Stokes equation to solve fluid flow 
in rock fracture requires another level of simplification 
through geometric and kinematic assumptions allowed in 
the lubrication approximation context. Then, neglecting the 
kinematic forces, the following standard simplification is to 
use the Reynolds equation (Eq. (11)) to compute the pressure 
distribution with a “cubic law” for the flux (Brown 1987; 
Mourzenko et al. 1995; Tsang and Tsang 1989; Zimmerman 
et al. 1991):

where ae is the equivalent fracture aperture in the parallel-
plate model, � the dynamic viscosity of the fluid, QX is the 
projected volumetric flow rate on the x-axis and LY is the 
fracture width. Due to their roughness, rock fractures present 
aperture variations. Thus, to simply consider this roughness, 
an approximation is to consider the “Local Cubic Law” with 
the hypothesis of an isotropic media:

with Qx,y

j
 the total volumetric flow rate for each element of 

the fracture identified by the coordinates (x, y) in the direc-
tion j where j = {X, Y} and ax,y the local aperture at (x, y) . 
Then, Eq. (13) is identically used to determined Qx,y

X
 and Qx,y

Y
 . 

Widely applied for fluid flow and solute transport (Zimmer-
man and Bodvarsson 1996; Zimmerman et al. 1991), this 
simplified model has been investigated theoretically and 
numerically (Brown 1987; Brown et al. 1995; Brush and 
Thomson 2003; Mourzenko et al. 1995; Zimmerman and 
Bodvarsson 1996; Zimmerman et al. 1991). Finally, the flow 
rate is computed with the software Abaqus using 4-node 
linear quadrilateral elements to solve the Eq. (13) where the 
characteristic length is set to LY = LX = L = 0.64 m (see 

(10)0 = −
1

�
∇p + �∇2

⋅ � + � ,

(11)∇ ⋅

(
a3
e
(x, y)

12�
∇p

)
= 0,

(12)QX = −LY
a3
e

12�

�p

�x
,

(13)Q
x,y

j
= −Lj

a3
x,y

12�

�px,y

�j
,

Sect. 2.1) and the viscosity of water at 10 °C is taken as 
� = 1.306 × 10

−3
Pa s . Note that the temperature is consid-

ered constant at 10 °C during the simulation. Note that 
herein Qx,y

j
 is based on the global length scale L . A discrete 

volumetric definition of it can be directly obtained by divid-
ing Qx,y

j
 by the fracture dimensional resolution 2048.

Using Eq. (13), we want to quantify the evolution of flow 
anisotropy with shearing by considering the velocity in the 
outlet layer according to the pressure gradient direction as 
illustrated in Fig. 7. With the outlet plane as reference, the 
perpendicular projection of the outgoing flow ( OF ) is a 
measure for the total outgoing flow obtained and the poten-
tial fluid recovery associated. For reservoir exploitation, 
this flow rate is a crucial parameter; mimicking it by OF 
enables us to analyse the anisotropy with a field application 
perspective. Also, we define the OF for both pressure cases 
as follows:

Based on the quantitative characterization of anisot-
ropy established by Auradou et al. (2005), we quantify the 
dependence of the OF with the orientation of the hydraulic 
pressure gradient through the anisotropy factor ( AF ) defined 
as follows:

2.5  Boundary Conditions

A fixed hydraulic pressure is imposed at the inlet and out-
let of the fracture as shown in Fig. 7. According to the 
pressure gradient direction considered, the inlet is set to 
1 bar and the outlet pressure is equal to 0 bar . Then, the 
two other walls form a closed loop by being virtually con-
nected to obtain an artificial infinite domain. Finally, the 
rough fracture surfaces are impermeable to flow. Thus, the 
flow is 2D in the (x, y)-plane.

(14)
OF∥ =

x=N;y=N∑

x = N;y = 1

����⃗QX .x⃗ > 0

Q
x,y

X
,

(15)
OF⊥ =

x=N;y=N∑

x = 1;y = N

����⃗QY .y⃗ > 0

Q
x,y

Y
,

(16)AF =
OF⊥

OF∥

,
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3  Results

3.1  Local Aperture Distribution with Shear 
Displacement

Both aperture definitions {a
vert

, a
eff
} are successively applied 

to determine the local aperture distribution as illustrated in 

Fig. 8. As expected, the local a
eff

 distribution reveals lower 
values compared to the distribution of a

vert
 . This observa-

tion is confirmed by the mean aperture ā distribution over 
the fracture replications. In order to evaluate the variations 
of ā , we display the boxplots of its distribution at each 
shearing offset in Fig. 9. Note, that for all boxplots shown 
here, the box extends from the lower ( Q1 ) to the upper 
( Q3 ) quartile value with a line at the median. The whiskers 

Fig. 7  a, b Illustration of the outgoing flow (OF) definitions and 
boundary conditions for both pressure gradient directions {∥,⊥} . The 
colored lines represent the outlet layer considered for each case of 
pressure gradient direction. Note that the shear displacement is made 

along the x-axis and the pressure gradient is parallel or perpendicular 
to this shearing direction. c, d Schematization of the boundary con-
ditions applied in each cases of pressure gradient directions {∥,⊥} 
(color figure online)

Fig. 8  Example of local 
aperture distribution obtained 
for a generated fracture whom 
N
offset

= 5 according to the aper-
ture definition 

{
a
vert

, a
eff

}
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show the range of data defined as the following interval: 
[ Q1 − 1.5 × (Q3 − Q1);Q3 + 1.5 × (Q3 − Q1)] . Finally, the 
circles at the extremes represent the outliers whom values 
are outside of the previous range. Using this visualiza-
tion, we can extend the previous remark by observing that 
ā
vert

 presents globally higher values than ā
eff

 at each offset. 
Moreover, the spreading of the distribution is larger for ā

vert
 

compared to ā
eff

 and this spreading increases for both cases 
with higher shear displacements.

Thus, the two definitions of aperture lead to a signifi-
cant difference of the fracture characterization by ā , but also 
by the standard deviation �a (Fig. 10). In the case of ā , we 
observe that �a distributions show higher values for higher 
shear displacement, regardless of the aperture definition. It 
is shown that �a

eff
 distribution presents higher spreading with 

more extreme values than �a
vert

 . Furthermore, the spreading 
of �a

vert
 increases with shearing values, whereas �a

eff
 varies 

heterogeneously. Finally, the distribution of local vertical 
apertures reveals higher dispersion of ā with shearing than 

ā
eff

 but concerning their standard deviation, �a
vert

 is less dis-
persed than �a

eff
.

3.2  Fluid Flow and Total Outgoing Flow

Using a
vert

 and a
eff

 to spatially characterize the fractures, we 
study their impact on the fluid flow computed with Eq. (13). 
For one generated fracture, we analyse four different fluid 
flow models as presented in Fig. 11 which correspond to 
the combination of possible simulation configurations para-
metrized by {a

vert
, a

eff
} and {∥,⊥} . As expected, this visu-

alization qualitatively depicts an alignment of the high flow 
values with the pressure gradient direction. Moreover, the 
flow rate values calculated with a

vert
 are higher than those 

calculated with a
eff

 . This observation is consistent with the 
previous finding showing that ā

eff
 values are lower than ā

vert
 

values (Fig. 9).
In order to quantify the evolution of fluid flow anisot-

ropy, the variations of OF∥ and OF⊥ (Eqs. 14, 15) are plotted 

Fig. 9  Boxplots of the mean aperture ā in terms of shear displace-
ment for each simulation configurations based on 

{
a
vert

, a
eff

}
 . Note 

that the box extends from the lower ( Q1 ) to the upper ( Q3 ) quartile 

values with a line at the median. The whiskers show the range of data 
defined at Sect. 3.1. The circles at the extremes represent the outliers

Fig. 10  Boxplots of the aperture standard deviation �a in terms of 
shear displacement for each simulation configurations based on {
a
vert

, a
eff

}
 . Note that the box extends from the lower ( Q1 ) to the 

upper ( Q3 ) quartile values with a line at the median. The whisk-
ers show the range of data defined at Sect.  3.1. The circles at the 
extremes represent the outliers
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against the shear displacement (Fig. 12). The spreading of 
the distributions increases with larger whiskers of the box-
plots and further outlier values while shearing increases. 
OF∥ and OF⊥ distributions trends are relatively similar for a 
given aperture definition, whereas differences are significant 
of OF∥ and OF⊥ values for a

vert
 compared to a

eff
 (factor 2 

larger).

3.3  Flow Anisotropy Results

To highlight and compare the variations of OF⊥ and OF∥ for 
both aperture definitions, we use their ratio AF (Eq. (16)) 
which facilitates the quantification of flow anisotropy. Fig-
ure 13 shows the evolution of AF over shearing for both 
aperture definitions. AF is computed for each fracture. It 
is shown that AF globally increases with increasing shear 
displacement. Compared to cases based on a

vert
 , the dis-

tributions associated with a
eff

 present a larger dispersion 

independent of the shearing offset. This can be observed 
through the length of the whiskers as well as the number 
of outliers. Moreover, AF

vert
 distributions reach higher 

values than AF
eff

 . For small shearing displacements (up to 
0.94 mm ) a relative fast increase of anisotropic behaviour 
with shearing can be observed. Towards higher values of 
displacement, this increase is saturating. The dispersion 
of AF values for both cases differ significantly. The spread 
(interquartile range) for a

eff
 is by factor two larger than for 

a
vert

.

4  Discussions

The previous simulations demonstrate that anisotropy 
increases relatively fast with increasing shearing for small 
displacements. For larger displacements, this growth 
decreases. However, AF variations depend on the aperture 

Fig. 11  Example of local flow rate distributions in a given fracture for 
each simulation configurations based on 

{
a
vert

, a
eff

}
 and {∥,⊥} . The 

flow rate values are given for each simulation element in m3
s
−1 which 

is equivalent to 109mm
3
s
−1 . Note that the white arrows indicate the 

direction of the pressure gradient
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definition with higher values observed for a
vert

 and more 
dispersion ( �a

eff
 ) related to a

eff
 . We also note that the range 

of values obtained for �a
eff

 is of the same order of magnitude 
than the experimental values obtained by Auradou et al. 
(2005) on a granite replicated fracture sheared until 1 mm . 
However, replication of such experiment would be needed 

to confirm that the fractures simulated are geometrically 
coherent with rock samples.

Concerning the potential fracture scale effects on the 
previous results, we can consider the experimental study of 
Kumar Singh et al. (2016). One main result of this previous 
article is that on real samples increasing the fracture scale 

Fig. 12  Boxplots of the outgoing flow OF in terms of shear displace-
ment for each simulation configurations based on 

{
a
vert

, a
eff

}
 and 

{∥,⊥} . Note that the box extends from the lower ( Q1 ) to the upper 

( Q3 ) quartile values with a line at the median. The whiskers show the 
range of data defined at Sect. 3.1. The circles at the extremes repre-
sent the outliers

Fig. 13  Boxplots of AF in terms of shear displacement for each simu-
lation configurations based on 

{
a
vert

, a
eff

}
 . Note that the box extends 

from the lower ( Q1 ) to the upper ( Q3 ) quartile values with a line at 

the median. The whiskers show the range of data defined at Sect. 3.1. 
The circles at the extremes represent the outliers



245A Stochastic Study of Flow Anisotropy and Channelling in Open Rough Fractures  

1 3

leads to a decrease of the flow rate. Also, in the present 
work, the measured flow rates might decrease if we con-
sider a larger fracture scale. However, the impact on the 
anisotropy factor is not direct and will be investigated in an 
additional study. Finally, channelling appears to be fracture 
scale independent as described in Watanabe et al. 2015.

In order to deepen the investigation of the shearing 
effects on the hydraulic properties of a fracture, the study 
is expanded on flow channelling, a phenomenon that can be 
directly linked to anisotropy (Auradou et al. 2005, 2006).

Channelling is described as a spatial concentration of 
flow along preferential pathways. Indeed, flow tends to focus 
on high permeable zones and this creates preferred paths 
with higher velocity (Knudby and Ramírez 2005; Kolter-
mann and Gorelick 1996). Also, for each simulation, chan-
nels are identified as largest connected area of high flow rate 
values (Fig. 14). In this work, we defined the identification 
threshold to be the third quartile ( Q3 ) of flow rate values. 
The channel identification method consists in applying this 
threshold on the fluid flow and detecting the connected 
zones. Herein, connected areas are defined as areas show-
ing flow rates above the threshold ( Q3 ) and being connected, 
respectively. The maximum number of individual parallel 
channels developing in a fracture of a side length of n ele-
ments, with n being an even number, is n∕2 + 1.

For this channel identification, two indicators are applied 
to follow channelling evolution inspired from Le Goc et al. 
(2010). The first one ( I

1
 ) quantifies the relative proportion of 

channel area in a fracture and the second one ( I
2
 ) quantifies 

the continuity of the flow path by measuring the maximum 
channel length in a given fracture. I

1
 is defined as:

where Qi is the flow rate vector at the ith element of the 
fracture, C is the set of elements belonging to one of the 

(17)I
1
=

1

N

N∑
i=1

�{Qi>Q75,i∈C},

n∕2 + 1 channels and N the total number of elements such 
that N = n × n . If the flow rate is homogeneous over the 
fracture area, I

1
 is equal to zero as no element verifies 

Qi > Q75 . In the case of a flow rate superior to Q3 distrib-
uted among n∕2 + 1 wide and n long channel(s), we obtain 
I
1
∼ (1∕N) ×

(
n2∕2

)
= 1∕2 . More generally, for channel(s) 

of width lw and length n , we have I
1
= (1∕N) × n × lw = lw∕n 

for lw < n . Thus, I
1
 tends toward 1 for increasing channelling 

which is defined as a combined increase of the channel(s) 
size as well as their number.

I
2
 is defined as the major axis of an ellipse that encap-

sulates the largest channel normalized by n . I
1
 and I

2
 are 

expressed in percentage where I
2
 can exceed 100% as the 

orientation of the largest channel is not necessarily paral-
lel to x⃗ or y⃗ direction. Figure 15 displays the values I

2
 over 

I
1
 for each simulation and for each initial configuration of 

{a
vert

, a
eff
} and {∥,⊥} . Moreover, realizations of the same 

shearing displacement are shown with identical colour. 
Thus, the effect of shearing on channelling behaviour, rep-
resented by I

1
 and I

2
 , can be studied for all cases.

By plotting the centroid for every shearing set of realiza-
tions, the general variation of I

1
 and I

2
 with shearing can 

be observed and quantified through the slope � and the 
intercept � of the linear trend lines (Table 2). Larger val-
ues of � indicate a faster increase of I

2
 compared to I

1
 . It 

is shown that I
2
 increases faster than I

1
 for all simulation 

configurations. Thus, the increasing connectivity of chan-
nelling represented by I

2
 is more fostered by shearing than 

the proportion of channelled high flow rates indicated by 
I
1
 . It can also be observed that increasing shearing leads 

to significantly higher values of I
1
 and higher or equivalent 

values of I
2
 with higher associated uncertainty, defined as 

the area of the data distribution for a given shearing dis-
placement. Additionally, we notice as well that the data sets 
are significantly spread along the I

2
 axis reflecting a higher 

uncertainty for I
2
 compared to I

1
 . Higher dispersion is also 

observed for small shear displacements and in particular for 
N
offset

= {0.31, 0.62}.

Fig. 14  Identification of chan-
nels (b) and its associated flow 
rate distribution (a), example 
based on a

eff
 and in the ⊥ case. 

The flow rate values are in 
m

3
s
−1 which is equivalent to 

10
9
mm

3
s
−1 . Note that each 

colour on b labels a different 
channel and the background col-
our is set to black corresponding 
to the flow rates blow the Q75 
quartile
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The analysis of the channelling dependence on the aper-
ture definition exhibits that the evolution of � for the config-
urations {∥,⊥} is inverse compared to {a

vert
, a

eff
} With a

vert
 , 

we observe that � is smaller by a factor of 2 comparing ∥ to 
⊥ simulation cases. For a

eff
 , however, � more than doubles 

from ∥ to ⊥ . Ultimately, we analysed here an extreme case 
in terms of the directions of pressure gradient and shear-
ing. Herein, the relative evolution of I

1
 and I

2
 defined by � 

are inverse according to the aperture considered (Table 2). 
This reinforces the major impact of aperture definition in 
channelling process analysis with shearing on dispersion and 
relative evolution of channelling indicators.

To quantify the dispersion of the channelling indicators, 
we define the relative standard deviation for both values at 
a given N

offset
 as follows:

where �I
N
offset

 is the standard deviation of the indicator I asso-
ciated with the shearing N

offset
 . CI

N
offset

 is the centroid value 
for all indicators I of one offset. We observe that �̃�I

1

N
offset

 and 
�̃�
I
2

Noffset
 differ by more than one order of magnitude (Fig. 16). 

This quantifies the previous observation that the dispersion 
of I

2
 is globally larger than the one of I

1
 (Fig. 15). Neverthe-

less, no homogenous tendency of the dispersion with 
increasing shearing can be observed regardless of the aper-
ture definition for I

1
 . Considering the aperture definitions, 

only I
1
 shows variations related to it, whereas I

2
 varies more 

significantly with the pressure gradient direction.
After considering the variations of I

1
 and I

2
 with shear 

displacement, we study these variations with the outgo-
ing flow OF values (Fig. 17). Maximum values of OF are 
obtained for high I

1
 values corresponding mainly to the larg-

est three shearing displacements spreading widely along 
the I

2
 axis. If we analyse these graphs regarding aperture 

definition, it is shown that two clusters of high OF fractures 
can be identified (encircled grey in Fig. 17) for a

vert
 . This 

clustering may indicate that for a
vert

 two types of high OF 

(18)�̃�I
N
offset

=
𝜎I
N
offset

CI
N
offset

,

Fig. 15  Scatter plot of I
2
 in terms of I

1
 for each simulation configu-

rations based on 
{
a
vert

, a
eff

}
 and {∥,⊥} . The colors refer to the off-

set displacement and points of same color therefore represent the 70 

simulation replications of each offset. The black crosses represent the 
centroid of each offset cloud and the red line is the linear trend line 
fitted on them (color figure online)

Table 2  Coefficients of the linear trend lines for the distribution of 
centroids (Fig. 15)

y = � × x + � a
vert

 and || a
vert

 and ⊥ a
eff

 and || a
eff

 and ⊥

α 7.22 4.39 3.52 9.16
β − 78.70 − 4.97 − 11.59 − 115.32
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Fig. 16  Plots of the relative standard deviations in percentage of I
1
 and I

2
 in terms of shear displacement for each simulation configurations 

based on 
{
a
vert

, a
eff

}
 and {∥,⊥} . See Eq. (18) for the literal expression of the relative standard deviation

Fig. 17  Scatter plot of I
2
 in terms of I

1
 for each simulation configu-

rations based on 
{
a
vert

, a
eff

}
 and {∥,⊥} . Note that the colors refer to 

the outgoing flow value OF as defined by the Eq. (14) and (15). Grey 

circles indicate possible clustering of the fractures according to their 
channelling behaviour (color figure online)
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fractures can be differentiated, showing similar values of I
1
 

and significant differences of I
2
 . However, this typology is 

not shown in case of a
eff

 . Also, further experimental inves-
tigations should be carried out to determine if channelling 
clustering is observed. These results then can substantially 
contribute to identify which aperture definition represents 
the reality best.

5  Conclusions

Although fluid flow in fractured rock is investigated since 
many years, the impact of the complex interplay between 
fracture geometry and hydraulic flow under field scale 
scenarios remains an important research subject. At larger 
scales and in the geothermal context, this impact of the 
geometrical characterization of the fracture may lead to a 
re-examination of the principles used to predict the fluid 
circulation in the reservoir and its dynamic with the stress 
field. The present paper presents an important step towards 
bridging small-scale to large-scale applications. The cur-
rent investigation becomes, therefore, most important when 
the uncertainty range of large reservoir models needs to be 
quantified. By specifying a stochastic approach, both LCL 
models, based on a

eff
 and on a

vert
 , yield a large dispersion 

range of anisotropy (AF) with a doubled dispersion of AF 
for a

eff
 compared to a

vert
 models. Moreover, for both aperture 

definitions, we observe that higher permeability is obtained 
perpendicular to the shearing direction of the fracture. Being 
coherent with literature, this statement underlines that both 
LCL models based on a

eff
 and a

vert
 capture the anisotropy 

phenomenon. In addition, a
eff

 is considered to be more rep-
resentative to describe hydraulic phenomena than a

vert
 as 

this first is locally perpendicular to the flow directionality. 
Also, former prediction LCL models with a

vert
 must take into 

account that results for anisotropy may be overestimated and 
present higher dispersion range in the case where they will 
be based on the more representative a

eff
 aperture. Finally, 

regarding the evolution trend of AF, we evaluated that small 
shear displacements up to 0.94 mm are more reliable to 
assure an increase of AF regardless of the aperture defini-
tion. These observations aim to support the direct calibration 
of pre-existing LCL anisotropy simulations based on a

vert
 

toward more representative results using a
eff

.
For the channelling indicators ( I

1
 , I

2
 ), we observe a higher 

dispersion of I
1
 in the case of a

eff
 and no specific trend for 

I
2
 between the two aperture definitions. The channelling 

common trends to both apertures are a growing proportion 
of channels ( I

1
 ) with increasing shearing and a significant 

enhancement of I
1
 with early shearing compared to later 

ones. Furthermore, the channel continuity ( I
2
 ) is largely 

dispersed and do not present a trend with shearing. Never-
theless, the variations of I

2
 with outgoing flow (OF) values 

indicate a potential typology of the fracture channelling 
behaviour. Indeed, for a same range of I

1
 , two clusters are 

observed in the case of a
vert

 along I
2
 . Similarly, to the obser-

vations made on anisotropy phenomena, the ones related to 
channelling can adjust existing LCL simulations using a

vert
 . 

In addition, the specific clustering of high OF observed with 
a
vert

 is another line of research to deepen the understand-
ing the deviations obtained from LCL models for a crucial 
parameter for reservoir exploitation.

In future studies, we will weigh our observations with 
experimental results based on similar synthetic fracture rep-
lications using the 3D-printing technology. Moreover, this 
experimental set up associated with additional numerical 
simulation will help us to increase the complexity of our 
model by considering the mechanical effects of shearing on 
the walls of the fracture and by considering the possible 
scale effects. This present work can also be a starting point 
to establish a more accurate prediction of the processes par-
ticipating into the extension of the flow circulation in res-
ervoir through shearing. In the geothermal context, it could 
enable us to forecast the dynamic of the heat exchange area 
with the stress field. Indeed, the shearing displacements 
studied can be associated with earthquakes of magnitude 
1 − 2 which are representative of a geothermal seismic activ-
ity. This paper may also be concluded by remaking that aper-
ture is a determinant factor for fluid flow equations and thus, 
we estimate that the sensibility of fluid flow interpretation 
with aperture definition presented here can be found in more 
refined flow simulations. Finally, the goal to raise attention 
on the spatial fracture descriptions impacts on averaged and 
dispersion values of fluid flow phenomena is embodied by 
this study.
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