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Abstract
The experimental data shows that most rocks behave nonlinearly in nature. The modified nonlinear Hoek–Brown failure 
criterion was considered to investigate the bearing capacity problem of shallow rigid foundations on rock masses subjected 
to horizontal seepage forces. Two multi-wedge translational failure mechanisms, including symmetrical and non-symmetrical 
mechanisms were used in the closed-form of the upper bound method of the limit analysis theory. The symmetrical failure 
mechanism was used in the case of no seepage, while the seepage effect was considered in the non-symmetrical mechanism. 
The variation of seepage forces was obtained as a function of gradient ratio i(γw/γsub) in the developed formulation. The 
bearing capacity coefficients Nγ, Nq and Nσ are introduced for the case of seepage flow condition. The results show that the 
magnitude of the bearing capacity coefficients reduces continuously with an increase in the value of gradient ratio i(γw/γsub). 
The obtained results were compared and offered for functional use in foundation engineering.
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c  Cohesion
σci  Uniaxial compressive strength of the 
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σn  Normal stress
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mi  Value of m for the intact rock
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of water seepage
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rock
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quD  Ultimate bearing capacity of the dry rock 

mass
quS  Ultimate bearing capacity of the rock 
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Si  Area of block i
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Vi  Velocities of the blocks i = 1,…, k
γ  Unit weight of rock
ΔV  Velocity along each velocity 

discontinuity
θ, αi and βi  Angular parameters of failure 
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ϕt  Tangential friction angle
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of the rock mass
ϕ′  The equivalent Mohr–Coulomb friction 
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1 Introduction

Most conventional bearing capacity calculations for soil 
beddings are based on the assumption that soil strength is 
governed by the linear Mohr–Coulomb failure criterion. In 
this context, a limit equilibrium expression for the ultimate 
bearing capacity of a strip footing is classically introduced 
by Terzaghi (1943) which can be written as:

Later, Michalowski (1997) and Soubra (1999) presented 
limit analysis upper bound solutions for the bearing capacity 
of soils based on the multi-wedge translation failure mecha-
nism considering the linear Mohr–Coulomb failure criterion. 
The experiments have shown that the strength envelopes of 
most geomaterials, especially rocks, have the nature of non-
linearity, Hoek and Brown (1980), among others. Based on 
this fact, the ultimate bearing capacity of rock foundations 
has been studied by several investigators (Yang and Yin 
2005; Merifield et al. 2006; Saada et al. 2008; Mao et al. 
2012; Mansouri et al. 2019) among others, and the ultimate 
bearing capacity of rock mass foundations has also been 
introduced in the form:

Despite the fact that few special cases like the seismic 
bearing capacity of rock masses by Saada et al. (2011) and 
Yang (2009) and the bearing capacity of nearby footings 
resting on rock mass by Javid et al. (2015) have been inves-
tigated in the available literature, the authors were not aware 
of any qualitative study to determine the ultimate bearing 
capacity of rock mass foundations considering the presence 
of seepage forces. However, few studies like Imani et al. 
(2012) obtained the impact of stable groundwater on the ulti-
mate bearing capacity of jointed rock foundations, consider-
ing two joint sets. In a recent paper, the effect of seepage on 
the bearing capacity of soil was investigated by Veiskarami 
and Kumar (2012) and Veiskarami and Habibagahi (2013). 
They used the kinematic approach of limit analysis using the 
Mohr–Coulomb failure criterion for soil mass. The effect of 
seepage was considered by non-dimensional ratio, i(γw/γsub), 
where, i is the hydraulic gradient, and γw and γsub refer to the 
unit weights of water and submerged soil mass, respectively.

In a recent work, Mao et al. (2012) obtained the ultimate 
bearing capacity of rock mass foundations based on upper 
bound solution using a multi-tangential technique for con-
sidering the nonlinear Hoek–Brown criterion. They consid-
ered that the angle between each velocity vector and the 
corresponding line is different in the entire failure mecha-
nism. Using this approach, a higher number of degrees of 
freedom was added to the failure mechanism. This assump-
tion was used in the present paper with the generalized 

(1)qu = cNc + q0Nq + 0.5�B0N� .

(2)qu = s0.5�ciN� + q0Nq + 0.5�B0N� .

multi-tangential lines technique to consider the nonlinearity 
of rock mass behavior. The motivation behind this paper is to 
investigate the effect of seepage on the bearing capacity of 
Hoek–Brown rock masses under the load of a strip footing, 
using the upper bound method. To the best of the authors’ 
knowledge, there is a dearth of analytical research carried 
out on this realm.

Two different failure mechanisms were considered includ-
ing a symmetrical mechanism (named M1) for the case of 
a dry rock mass and a non-symmetrical failure mechanism 
(named M2) for the case of a rock mass subjected to hori-
zontal seepage flow. The aim of this work is to incorporate 
the seepage force in the rock mass bearing capacity equation 
considering different failure mechanisms. The optimization 
of the obtained upper bound solution was performed using 
the genetic algorithm.

2  Modified Hoek–Brown Failure Criterion

A reliable estimate of strength and deformation character-
istics of rock masses is needed for any rock engineering 
design. As an empirical criterion, the Hoek–Brown (HB) 
criterion has been updated several times in response to expe-
riences gained with its use in practice and to handle sure 
sensible limitations (Hoek et al. 2002). The last updated ver-
sion, that is used here, can be written as:

where σ′1 and σ′3 are the major and minor effective principal 
stresses at failure, σci is the uniaxial compressive strength of 
the intact rock material and mb is given by

In which, mi is the value of m for intact rock and can 
be obtained from the experiments, GSI is the geological 
strength index of the rock mass and D is a factor which 
depends upon the degree of disturbance. It varies from 0 for 
undisturbed in situ rock masses to 1 for very disturbed rock 
masses. s and a are constants for the rock mass given by the 
following relationships:

The HB failure criterion, which assumes a homogenous 
and isotropic rock mass, should only be applied to those 
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rock masses in which there are sufficient numbers of closely 
spaced discontinuities, with similar surface characteristics, 
and that isotropic behavior involving failure on multiple 
discontinuities can be assumed. In these cases, the water 
or ‘pore’ pressures governing the effective stresses will be 
those generated in the interconnected discontinuities defin-
ing the particles in an equivalent isotropic medium.

3  Upper Bound of Limit Analysis Method 
for Shallow Foundations on Rock Masses

The upper bound technique of limit analysis was used to 
develop approximate solutions for the ultimate bearing 
capacity of rock masses obeying the Hoek–Brown failure 
criterion. In the upper bound formulation, the loads, deter-
mined by equating the external rate of work to the internal 
rate of energy dissipation in an assumed velocity field are 
not less than the true failure load. The dissipation of energy 
in plastic flow associated with such a field can be computed 
from the idealized stress/strain rate relation (or the so-called 
flow rule). Using this flow rule considerably simplifies the 
application of the limit analysis. In this paper, the rock mass 
was considered to be homogeneous and isotropic material 
obeying the associated flow rule, i.e., the dilatancy angle was 
considered to be equal to the friction angle.

For each discontinuity line of the failure mechanisms, the 
equivalent Mohr–Coulomb parameters were obtained using 
the generalized multi-tangential technique.

3.1  Generalized Multi‑tangential Technique

For a rock mass obeying the modified Hoek–Brown fail-
ure criterion, the failure envelope is nonlinear. In the σn–τ 
stress plane, where σn and τ are the normal and shear 

stresses, Yang and Yin (2005) replaced the nonlinear mod-
ified Hoek–Brown failure criterion by a linear Mohr–Cou-
lomb failure criterion represented by a tangential line. This 
tangential line is given by

where ϕt and ct are the tangential friction angle and the 
intercept of the straight line to τ-axes, respectively. They 
introduced ct in the following form:

In which, σci is the uniaxial compressive strength of the 
intact rock. Considering a single ϕt and the corresponding 
ct in the whole failure mechanism would not have enough 
accuracy since the stress level in different discontinu-
ity lines of the failure mechanism are not equal to each 
other. Hence, in the present paper, the nonlinear modified 
Hoek–Brown failure criterion [i.e., Eq. (3)]; was replaced 
by a series of linear Mohr–Coulomb failure criteria in 
Eq. (7), as shown in Fig. 1 to achieve different values of ϕt 
and the corresponding ct. For this purpose, the tangential 
angles ϕt along all the discontinuity surfaces of the failure 
mechanisms were considered to be changeable. The opti-
mum value of ϕt in each discontinuity line was obtained 
using an optimization procedure which is an important 
step in an upper bound analysis. Hence, in each disconti-
nuity line, the nonlinear Hoek–Brown was replaced by an 
optimum approximate line. In this regard, the magnitude 
of ct was also determined along each velocity discontinuity 
based on Eq. (8).

(7)� = ct + �n tan�t,

(8)
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Fig. 1  Multi-tangential lines to 
modified HB failure criterion
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3.2  Bearing Capacity of Foundations on Dry Rock 
Mass

Different solutions are available for calculating the bear-
ing capacity of dry rock masses. Among them, the method 
presented by Mao et al. (2012) is more elaborated, since 
the multi-tangential technique with different values of ϕ 
was considered for each velocity discontinuity line. This 
method was applied in the present paper for developing the 
rock mass bearing capacity formulation in dry case and then 
adding the seepage effect in the formulation. To calculate 
the bearing capacity in the case of dry rock mass (without 
seepage effect), a symmetrical mechanism, named M1, was 

considered as shown in Fig. 2. The footing was considered 
to be rigid and its pressure (quD) and also the surcharge pres-
sure (q0) are shown in Fig. 2a. The internal energy dissipates 
along the interfaces of the two adjoining wedges (lines li) 
and at the base of the wedges (lines di). Since the mechanism 
is symmetric, only the velocity field and the hodograph for 
half of the problem domain is observed in Fig. 2b, c, respec-
tively. Figure 2b is composed of k triangular wedges, the 
wedge i, moves with velocity Vi, which inclines at ϕi with 
respect to the base. Also the relative velocity Vi,i+1 inclines 
at ϕi,i+1 with respect to the interface of the two adjacent 
wedges. The incremental external work for different exter-
nal forces can easily be obtained and the calculations are 

Fig. 2  a A symmetrical failure mechanism M1 for determining the bearing capacity of dry rock masses. b Velocity field for half of the mecha-
nism and c velocity hodograph for the first and ith triangular wedges
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presented in Appendix 1. Energy is dissipated at the discon-
tinuity surfaces di (i = 1, …, k) between the material at rest 
and the material in motion and at the discontinuity surfaces 
li (i = 1, …, k) within the radial shear zone.

By equating the total energy dissipation with the total 
external work in the mechanism and after rearrangements, 
the upper bound of the ultimate bearing capacity of the rock 
foundation in the case of dry rock mass (without seepage 
effect) was obtained as follows:

where γ is the unit weight of the rock mass and Nσ, Nq and 
Nγ are the bearing capacity coefficients that are as follows:

where the non-dimensional functions f1 to f6 are reported 
in Appendix 1 of this paper. The best (lowest) upper bound 
solution of quD was obtained here by minimization of Eq. (9) 
with respect to the unknown parameters ϕi, ϕi,i+1, βi, αi and 
θ. The genetic algorithm of MATLAB program was used for 
minimization under the following constraints:

3.3  Bearing Capacity of Foundations on Rock Mass 
Subjected to Seepage Forces

The forces exerted by the seepage flow play an impor-
tant role in the bearing capacity of soil and rock masses. 
Considering the horizontal seepage force, it will result in 
transforming the shape of the failure mechanism from sym-
metrical to non-symmetrical. A recent study by Veiskarami 
and Kumar (2012), shows that the failure mechanism in 
the event of horizontal groundwater flow will become non-
symmetrical with respect to the center line of the footing. 
In the present study, to calculate the bearing capacity of the 
rock mass subjected to horizontal seepage forces, a non-
symmetrical mechanism, named M2, was considered as 
shown in Fig. 3.

According to Fig. 3a, the distribution of seepage force 
is described by the gradient ratio i(γw/γsub), where, i is the 

(9)quD = s0.5�ciN� + q0Nq +
�B0

2
N� ,
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hydraulic gradient, γw and γsub refer to the unit weights of 
water and the submerged rock mass, respectively. The term, 
i(γw/γsub) = 0, implies no seepage flow. Hansen and Roshan-
fekr (2012) studied the different values of gradient ratio verse 
factor of safety, and introduced the worst case for factors of 
safety against collapse failure, as a function of four different 
values of gradient ratio namely, 0, 0.1, 0.2, and 0.3 for dams 
in a parametric study. The results showed that the factor of 
safety of collapse failure decreased when the gradient ratio 
increased. These four different values of the gradient ratio were 
considered in the present study.

The horizontal seepage force was regarded as an external 
force contributing to the incremental external work Wi. Hence 
the total external force consists of the force acting on the foun-
dation by the load of the superstructure, the weight of the rock 
mass in motion, the surcharge loading and the seepage forces. 
The seepage forces comprise the base shear load and the seep-
age forces of the rock mass in motion and the horizontal com-
ponent of the surcharge load. The internal energy dissipation 
was calculated in a similar manner as described previously for 
dry rock masses. Calculations of the incremental external work 
and the internal energy dissipation in the whole mechanism are 
given in Appendix 2.

Equating the total external work to the total energy dissipa-
tion, and after rearrangements, the upper bound of the ultimate 
bearing capacity of a rock foundation subjected to seepage 
force (quS) is:

where NS
�
, NS

q
 and NS

�
 are the bearing capacity factors in the 

presence of water seepage which are given as follows:

where the non-dimensional functions g1 to g6 were reported 
in Appendix 2. The best (lowest) upper bound solution of quS 
was obtained by minimization of Eq. (14) with respect to the 
unknown parameters ϕi, ϕi,i+1, βi, αi. The genetic algorithm 

(14)quS = s0.5�ciN
S
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+ q0N

S
q
+

�B0

2
NS
�
,

(15)NS
�
=

[g1 + g2]

sin(�1 − �1) + i
(

�w

�sub

)

cos(�1 − �1)
,

(16)NS
q
= −

[

g3 + i
(

�w

�sub

)

g4

]

sin(�1 − �1) + i
(

�w

�sub

)

cos(�1 − �1)
,

(17)NS
�
= −

[

g5 + i
(

�w

�sub

)

g6

]

sin(�1 − �1) + i
(

�w

�sub

)

cos(�1 − �1)
,



256 H. AlKhafaji et al.

1 3

of the MATLAB program was used for minimization under 
the following constraints:

(18)
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4  Results and Discussion

The upper bound of ultimate bearing capacity of a strip 
footing resting on homogenous rock masses was obtained 
by minimizing Eqs. (9) and (14), for two cases of without 
seepage (dry rock mass) and seepage forces (submerged 
rock mass), respectively. The number of triangular wedges 
in the mechanisms M1 was increased to 9 for half of the 

Fig. 3  a A non-symmetrical failure mechanism M2 for determining bearing capacity of a rock mass subjected to seepage forces, b velocity field, 
c velocity hodograph
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mechanism since according to Table 1, it was observed that 
the upper bound solution is improved by increasing the num-
ber of rigid blocks. However, the reduction in the values 
of the bearing capacity factor decreases with increasing 
the number of rigid blocks (k) and attains less than 0.1% 
for k = 9. In the case of the rock mass subjected to seepage 
forces, the number of triangular wedges in the mechanisms 
M2 was considered to be equal to 7 for the whole mecha-
nism. It should be noted that for the M1 and M2 mechanisms, 
Soubra (1999) obtained the number of the wedges equal to 
14 (for half of the M1 mechanism) and 12, respectively.

It should be mentioned here that the values of the bearing 
capacity factors Nγ and Nq for the dry case and NS

�
 and NS

q
 

for the submerged case are not affected by the Hoek–Brown 
coefficients and are constant (see Appendices). Figure 4 
shows the effect of bearing capacity factors versus gradient 
ratio i(γw/γsub).

4.1  Dry Rock Masses

The results obtained by the M1 symmetrical mechanism 
were compared to those obtained by other existing solutions. 
For a foundation resting on the surface of a weightless rock 
mass, Eq. (9) changes to the following form:

The factor Nσ0 is a function of D, GSI and mi defining 
the strength parameters of the rock mass in the case of γ = 0 
and q0 = 0. Table 2 presents a comparison among the Nσ0 
obtained from the present study (Eq. 19) after being divided 
by (s0.5) with those obtained from Merifield et al. (2006) 
and Serrano et al. (2000) for the case of D = 0 and mi= 30. 
The percentages of the difference between the results of 
the considered methods were also presented in this table. 
The results emphasize the efficiency of the method applied 
in the present work. The only exception to these observa-
tions occur for a small class of very poor quality rocks with 
GSI ≤ 10, where the method of Serrano et al. (2000) is more 
conservative and underestimates the bearing capacity factor 
up to − 15%, while the results from Merifield et al. (2006) 
represented the average finite element upper and lower 
bounds of the bearing capacity factor up to − 25%. Table 3 
summarizes the computed bearing capacity coefficient Nσ 
for the ponderable rock mass, and a comparison was made 
to the methods of Yang and Yin (2005) and Saada et al. 

(19)quD = s0.5�ciN�0.

Table 1  Nσ value versus number 
of rigid blocks k, D = 0, γ = 0, 
q0= 0, GSI = 30, σci= 10 MPa 
and mi= 10 for M1 symmetrical 
mechanism

k Nσ Reduction (%)

2 18.212 –
3 17.715 2.728
4 15.219 14.089
5 14.397 5.401
6 14.213 1.278
7 14.164 0.344
8 14.144 0.141
9 14.131 0.091

Fig. 4  Effect of bearing capac-
ity factor versus i(γw/γsub)

Table 2  Bearing capacity factor Nσ0 for weightless rock: D = 0 and mi= 30

GSI Present 
study

Merifield et al. (2006) Serrano et al. (2000)

10 0.298 0.238 (− 25%) 0.259 (− 15%)
20 0.563 0.575 (2.17%) 0.6 (6.25%)
30 0.956 1.022 (6.41%) 1.038 (7.85%)
40 1.592 1.63 (2.32%) 1.626 (2.08%)
50 2.183 2.467 (11.52%) 2.458 (11.20%)
60 3.286 3.644 (9.83%) 3.673 (10.54%)
70 4.544 5.491 (17.24%) 5.47 (16.92%)
80 7.302 8.195 (10.90%) 8.171 (10.64%)
90 9.826 12.27 (19.92%) 12.237 (19.70%)
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(2008) for the case of D = 0, mi= 10 along with the rela-
tive difference among the results of the considered methods. 
The current method showed lower values for Nσ than other 
methods, which means that there is an improvement in Nσ 
values. The improvement occurred because of the general-
ized multi-tangential technique and the corresponding dif-
ferent friction angles in each discontinuity line assumed in 
the current study. Using this approach, a higher degree of 
freedom was added to the failure mechanism resulting in 
optimum bearing capacity.

Figure 5 shows the critical slip surface obtained through 
optimization by considering k = 9, D = 0, γ = 0, q0= 0, 
GSI = 60, σci= 10 MPa and mi= 17.

Serrano et  al. (2000) showed that the undisturbed 
parameter (D = 0) can be used for foundation analysis. 
Yang and Yin (2005) found that D has a small influence 

on the bearing capacity factors for D ≥ 0.3. In the present 
work, for investigating the effect of the disturbance fac-
tor, D, on the bearing capacity coefficient, Nσ, D = 0 and 
0.1 were considered and the corresponding Nσ coefficients 
are presented in Table 4 for the ponderable rock masses. 
According to the results obtained, the bearing capacity 
factor decreased when D increased. The same result was 
also obtained by Yang and Yin (2005) for 0 ≤ D ≤ 0.3.

As other results of the current study, the effects of the sur-
charge load, q0, and the self-weight of the rock mass, γ, were 
also investigated and the results are presented in Figs. 6 and 
7, respectively. For the case of mi= 10, D = 0, σci= 10 MPa, 
GSI = 30 and γ = 0, Fig. 6 represents the effects of q0 on the 
ultimate bearing capacity. It is clear that by increasing the 
q0, the ultimate bearing capacity will increase. The quD val-
ues obtained from the present study are better (lower) than 
those obtained by Saada et al. (2008) for all magnitudes of 
q0, indicating the advantage of the present upper bound for-
mulation with respect to Saada et al. (2008). Figure 7 shows 
the effects of γ on the ultimate bearing capacity for the case 
of mi= 17, D = 0, σci= 10 MPa and GSI = 30. It is observed 
from the figure that the weight of the rock mass has a very 
small effect on the bearing capacity.

4.2  Rock Masses Subjected to Seepage Forces

4.2.1  Verification

It seems that there is not a quantitative study in the available 
literature considering the effect of seepage forces on the ultimate 
bearing capacity of rock mass foundations. Hence, a comparison 

Table 3  Dry bearing capacity factor Nσ for ponderable rock: D = 0 
and mi= 10

GSI Present study Saada et al. (2008) Yang and Yin (2005)

5 4.943 7.054 (43%) 13.678 (177%)
10 9.465 11.561 (22%) 23.870 (152%)
20 13.821 17.848 (29%) 36.460 (164%)
30 14.131 19.513 (38%) 37.928 (168%)
40 13.333 18.582 (14%) 34.306 (110%)
50 11.817 16.746 (42%) 29.393 (149%)
60 9.961 14.784 (48%) 24.677 (148%)
70 8.608 12.977 (51%) 20.602 (139%)
80 7.648 11.402 (49%) 17.218 (125%)
90 6.633 – –

Fig. 5  Geometry of the critical 
failure surface (M1) for k = 9, 
D = 0, GSI = 60, σci= 10 MPa, 
mi= 17, γ = 0 and q0= 0

Table 4  Dry bearing capacity 
factor Nσ for five types of 
ponderable rocks: D = 0 and 0.1

D mi GSI

5 10 20 30 40 50 60 70 80 90

0.0 7 3.426 5.707 9.121 10.633 9.889 8.546 7.718 6.895 6.264 5.847
10 4.943 9.465 13.821 14.131 13.333 11.817 9.961 8.608 7.648 6.633
15 9.515 15.553 21.962 23.302 19.629 16.453 14.949 12.532 9.782 8.944
17 11.706 18.518 24.334 26.191 22.786 19.472 16.295 13.878 11.444 9.95
25 21.168 28.517 38.737 39.413 33.939 28.855 23.951 19.259 15.869 13.852

0.1 7 3.119 5.694 9.105 10.504 9.824 8.516 7.619 6.866 6.225 5.705
10 4.176 9.167 13.605 14.45 13.797 11.756 9.946 8.598 7.639 6.611
15 8.63 15.055 21.385 22.08 19.743 16.623 14.841 12.086 9.798 8.678
17 10.714 17.931 24.258 26.124 22.687 19.027 15.666 13.553 11.922 9.91
25 18.123 28.441 38.621 39.368 32.23 28.368 23.261 19.419 15.099 13.003
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was made with the available solutions for soil foundations sub-
jected to seepage forces. The upper bound method applied 
by Veiskarami and Habibagahi (2013) and the lower bound 
method applied by Kumar and Chakraborty (2014) were used 
for comparison. To compare a Hoek–Brown rock mass with a 
Mohr–Coulomb soil, Hoek–Brown parameters of the rock mass 
were converted to the equivalent Mohr–Coulomb soil param-
eters (c and ϕ) using the following equations Hoek et al. (2002):

where σ′3n= σ′3max/σci.
Note that the value of σ′3max the upper limit of confining 

stress over which the relationship between the Hoek–Brown 
and the Mohr–Coulomb criteria is considered has to be 
determined for each individual case. These equations are 
provided in Roclab program that can be used easily in 

(20)
c� =

�ci
[

(1 + 2a)s + (1 + a)mb�
�
3n

]

(s + mb�
�
3n
)a−1

(1 + a)(2 + a)

√

1 +
(

6amb(s+mb�
�
3n
)a−1

(1+a)(2+a)

)

,

(21)�� = sin−1

[

6amb(s + mb�
�
3n
)a−1

2(1 + a)(2 + a) + 6amb(s + mb�
�
3n
)a−1

]

,

practical purposes. It should be noted that for the best con-
formity of the results, a constant value of the equivalent 
Mohr–Coulomb parameters was obtained in all discontinu-
ity lines of the rock mass failure mechanism since in the 
above-mentioned methods for the soil beddings, constant 
values of Mohr–Coulomb parameters were used in the whole 
mechanism.

Using this technique, the rock mass was converted to 
an equivalent soil medium and the seepage bearing capac-
ity formulation proposed in this paper for rock masses can 
be compared with the above-mentioned methods for soil 
medium. For a rock mass with GSI = 24, σci= 30 MPa, mi= 7, 
γ = 20 kN/m3 and ignoring the surcharge load (q0), the equiv-
alent Mohr–Coulomb parameters are obtained c = 0.8 MPa 
and ϕ = 20°. These values were used in the formulations 
developed in the present study to obtain quD and quS from M1 
symmetrical and M2 non-symmetrical mechanisms, respec-
tively. At the same time, the aforementioned equivalent c and 
ϕ were applied in the Veiskarami and Habibagahi (2013) 
and Kumar and Chakraborty (2014) methods. The results 
observed in Fig. 8, show the applicability of the proposed 
solution.

Fig. 6  Effect of surcharge load 
q0 on the ultimate bearing 
capacity

Fig. 7  Effect of rock mass unit 
weight γ on the ultimate bearing 
capacity
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4.2.2  The Bearing Capacity Factor NS

�

For the foundation resting on the surface of weightless rock 
mass, Eq. (14) changes to the following form:

(22)quS = s0.5�ciN
S
�
.

Figures 9, 10, 11, 12, 13 show the NS
�
 for weightless rock 

masses with different values of GSI and mi, subjected to 
various seepage forces. The surcharge (q0) was considered 
equal to zero. The effect of seepage was considered using 
non-dimensional factor i(γw/γsub) which varies from 0 to 
0.3. This range covers most problems in practical interest 
(Hansen and Roshanfekr 2012). According to the figures, for 

Fig. 8  Comparison of quS/quD 
versus i(γw/γsub) using the 
upper bound and lower bound 
solutions of Veiskarami and 
Habibagahi (2013) and Kumar 
and Chakraborty (2014), respec-
tively, with present work

Fig. 9  Upper bound values of 
seepage bearing capacity factor 
N

S

�
 for a GSI = 10, b GSI = 20
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a given GSI, increasing mi leads to an almost linear increase 
in the bearing capacity factor, NS

�
 . In all cases, increasing the 

seepage forces (i.e., increasing the i(γw/γsub) factor) leads to 
a decrease in the bearing capacity factor NS

�
 and thus reduc-

tion of ultimate bearing capacity. Figure 14 shows the effect 
of GSI on the NS

�
 coefficient for mi = 17 considering various 

i(γw/γsub) ratios. According to the figure, by increasing GSI 
values from 5 to 30 the NS

�
 increased, while by increasing 

GSI values from 40 to 90, the NS
�
 decreased. The same trend 

was also observed for other mi values. Figure 15 shows the 
critical slip surface obtained by optimization of the M2 non-
symmetrical mechanism in case of i(γw/γsub) = 0.3, corre-
sponding to k = 7, D = 0, γ = 0, q0= 0, GSI = 60, σci= 10 MPa 
and mi = 17.

4.2.3  Effect of Footing Width

Figure 16 shows the effect of the footing width, B0, on the 
ultimate bearing capacity subjected to the seepage force 
in the case of σci= 10 MPa, GSI = 60, mi = 17, D = 0 and 
γ = 25 kN/m3, considering different values of gradient ratio, 
i.e., i = 0, 0.1, 0.2 and 0.3. It is observed from the figure 
that the footing width has very small effect on the bearing 
capacity.

4.3  Design Table for Practical Use

Table 5 provides the NS
�
 factor considering mi equal to 7, 

10, 15, 17, and 25, GSI varying from 5 to 90 and D = 0. 
The effect of seepage forces was considered using the 
non-dimensional factor i(γw/γsub) which varies from 0 to 

Fig. 10  Upper bound values of 
seepage bearing capacity factor 
N

S

�
 for a GSI = 30, b GSI = 40
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0.3. This table can easily be used by engineers in practical 
applications.

5  Summary and Conclusions

The bearing capacity of rock mass foundations subjected 
to seepage forces was investigated using the upper bound 
method of limit analysis. The generalized multi-tangential 
technique was used and two multi-wedge translational failure 
mechanisms, including symmetrical and non-symmetrical 
mechanisms were considered. The bearing capacity factor 
for the dry rock mass, Nσ, and the bearing capacity factor 
for the rock mass subjected to seepage forces, NS

�
 , were 

obtained that could easily be used in practical applications. 

The results obtained in this paper provide useful guidelines 
for designing foundations when seepage forces are present. 
The main conclusions of this paper are as follows:

• By increasing the disturbance factor, D, the bearing 
capacity factors Nσ and NS

�
 decrease which results in a 

reduction in the bearing capacity.
• The weight of the rock mass has a small effect on the 

bearing capacity factors, Nσ and NS
�
 , since the main 

portion of the bearing capacity is due to the uniaxial 
compressive strength of the rock. So, in most previous 
researches, the weight effect was ignored. As a result, the 
width of the footing has an ignorable effect on the bear-
ing capacity in both dry rock foundation and in the case 
of the existence of seepage.

Fig. 11  Upper bound values of 
seepage bearing capacity factor 
N

S

�
 for a GSI = 50, b GSI = 60
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Fig. 12  Upper bound values of 
seepage bearing capacity factor 
N

S

�
 for a GSI = 70, b GSI = 80

Fig. 13  Upper bound values of 
seepage bearing capacity factor 
N

S

�
 for GSI = 90
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• In all cases, increasing the seepage forces (i.e., increas-
ing the i(γw/γsub) ratio) leads to a decrease in the bear-
ing capacity factor NS

�
 and thus reduces the ultimate 

bearing capacity.

• In all considered gradient ratios, for GSI < 30, the mag-
nitude of NS

�
 increases continuously with increasing the 

geological strength index, GSI. For GSI > 30, increas-
ing the GSI results in decreasing the NS

�
.

• The failure envelop of rock masses is not linear but 
slightly curved. Therefore, a linear approximation 
results in unacceptable bearing capacity magnitudes. 
For increasing the correctness of the results, one should 
replace the nonlinear failure envelop by several linear 
approximations. This method which was used in the 
present paper resulted in a considerable improvement 
in the bearing capacity of the rock masses for both the 
dry and seepage cases.

Fig. 14  Upper bound values of 
seepage bearing capacity factor 
N

S

�
 for mi= 17

Fig. 15  Geometry of the critical failure surface in the case of 
i(γw/γsub) = 0.3 for k   = 7, D   = 0, GSI = 60, σci  = 10  MPa, mi  = 17, 
γ  = 0 and q0 = 0

Fig. 16  Ultimate bearing capac-
ity (quS) subjected to the seep-
age for σci= 10 MPa, GSI = 60, 
mi= 17, D = 0 and γ = 25 kN/m3



265Ultimate Bearing Capacity of Rock Mass Foundations Subjected to Seepage Forces Using Modified…

1 3

Appendix 1: M1 Mechanism (Dry Rock 
Masses)

Geometry

For the triangular block i, the lengths li and di and the area Si 
are given as follows:

(23)li =
B0

2 cos �

i−1
∏

j=1

sin �j

sin(�j + �j)

(24)di =
B0

2 cos �

sin �i

sin(�i + �i)

i−1
∏

j=1

sin �j

sin(�j + �j)

where

2. Along lines di (i = 1, …, k):

where

(26)DBC = c0,1B0f1
(

�i, �i, �i, �i,i+1, �
)

V0,

(27)f1 =
cos�0,1 cos(�1 − � − �1)

2 cos � sin(�1 − �1 − �0,1)
× c0,1

(28)Ddi(i=1,…,k)
= ciB0f2

(

�i, �i, �i, �i,i+1, �
)

V0,

Table 5  Seepage bearing 
capacity factors NS

�
 in term of 

i(γw/γsub), mi and GSI, assuming 
D = 0

i(γw/γsub) mi GSI

5 10 20 30 40 50 60 70 80 90

0.0 
(without 
seepage)

7 5.786 10.010 16.021 17.462 16.285 14.545 12.614 10.979 9.667 8.617
10 9.206 15.628 23.702 24.811 22.671 19.377 16.774 14.317 12.307 10.848
15 16.887 26.892 37.633 38.074 34.142 28.916 24.344 20.333 17.259 14.482
17 20.680 31.957 42.300 43.413 38.447 32.658 27.332 22.722 19.083 16.106
25 37.817 54.718 64.424 65.558 57.199 47.902 39.650 32.835 27.071 22.491

0.1 7 4.778 8.323 13.426 14.621 13.768 12.173 10.619 9.336 8.167 7.132
10 7.74 12.992 19.772 20.872 19.134 16.655 14.18 12.098 10.393 9.111
15 13.891 22.259 31.414 31.805 28.501 24.333 20.484 17.104 14.398 12.196
17 17.13 26.463 36.407 36.412 32.443 27.545 23.026 19.218 16.05 13.56
25 31.086 45.424 54.987 55.289 47.953 40.472 33.438 27.615 22.985 19.032

0.2 7 3.865 6.772 11.054 12.051 11.318 10.062 8.78 7.707 6.784 6.037
10 6.139 10.592 16.23 17.119 16.465 13.726 11.758 10.003 8.97 7.499
15 11.212 18.152 25.722 26.266 23.489 20.073 16.886 14.106 11.917 10.1
17 13.8 21.541 29.862 30.023 26.618 22.733 19.011 15.942 13.258 11.175
25 25.116 36.766 45.147 45.25 39.663 33.274 27.691 22.794 18.952 15.707

0.3 7 3.09 5.452 8.884 9.795 9.195 8.208 7.439 6.421 5.523 4.933
10 4.908 8.441 13.121 13.908 12.782 11.287 9.533 8.156 7.011 6.111
15 8.946 14.751 20.793 21.182 19.209 16.336 13.791 11.556 9.709 8.234
17 10.826 17.262 24.023 24.243 22.026 18.497 15.492 12.91 10.8 9.095
25 19.99 29.333 36.284 36.644 32.214 27.054 24.728 18.53 15.392 12.967

Internal Energy Dissipation

1. Along BC:

(25)Si =
B2
0

2

sin �i sin �i

4 cos2 � sin(�i + �i)

i−1
∏

j=1

sin2 �j

sin2(�j + �j)

3. Along lines li (i = 2, …, k):

where

(29)f2 =
cos(� − �0,1)

2 cos � sin(�1 − �1 − �0,1)

k
∑

i=1

[

ci cos�i

sin �i

sin(�i + �i)

i−1
∏

j=1

sin �j sin(�j + �j − �j − �j,j+1)

sin(�j + �j) sin(�j+1 − �j+1 − �j,j+1)

]

.

(30)Dli(i=1,…,k)
= ci,i+1B0f3

(

�i, �i, �i, �i,i+1, �
)

V0,
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Because of the symmetry of the M1 mechanism, the total 
energy dissipation in the whole mechanism is twice the sum-
mation of these three parts, i.e., Eqs. (24), (28), and (30):

External Work

1. External work due to the surcharge loading:

2. External work due to self-weight of the central triangular 
wedge, ABC:

where

3. External work due to self-weights of the remaining 2k 
triangular wedges:

where

(31)

f
3
=

cos(� − �
0,1
)

2 cos � sin(�
1
− �

1
− �

0,1
)

k
∑

i=2

[

ci,i+1 cos�i,i+1

sin(�i−1 + �i−1 + �i − �i−1 − �i)

sin(�i−1 + �i−1 − �i−1 − �i,i−1)
×

i−1
∏

j=1

sin �j

sin(�j + �j)
×

i−2
∏

j=1

sin(�j + �j − �j − �j,j+1)

sin(�j+1 − �j+1 − �j,j+1)

]

.

(32)
∑

D = 2
(

DBC + Ddi(i=1,…,k)
+ Dli(i=2,…,k)

)

(33)Wq0
= q0B0f4

(

�i, �i, �i, �i,i+1, �
)

V0

(34)

f
4
=

cos
(

� − �
0,1

)

cos � sin
(

�
1
− �

1
− �

0,1

)

sin �k

sin
(

�k + �k
)

sin

(

�k − � −

k−1
∑

j=1

�j − �k

)

×

k−1
∏

j=1

sin �j sin
(

�j + �j − �j − �j,j+1

)

sin
(

�j + �j
)

sin
(

�j+1 − �j+1 − �j,j+1

)

(35)WABC =
�B2

0

2

[

f5
(

�i, �i, �i, �i,i+1, �
)]

V0

(36)f5 =
tan �

2

(37)
2k
∑

i=1

Wi =
�B2

0

2

[

f6
(

�i, �i, �i, �i,i+1, �
)]

V0

(38)

f6 =
cos(� − �0,1)

2 cos2 � sin(�1 − �1 − �0,1)

k
∑

i=1

[

sin �i sin �i

sin(�i + �i)
sin

(

�i − � −

i−1
∑

j=1

�j − �i

)

×

i−1
∏

j=1

sin2 �j sin(�j + �j − �j − �j,j+1)

sin2(�j + �j) sin(�j+1 − �j+1 − �j,j+1)

]

.

4. External work due to the footing load:

The total external work is the summation of the four con-
tributions, i.e., Eqs. (33), (35), (37), and (39):

Appendix 2: M2 Mechanism (Rock Masses 
Subjected to Seepage)

Geometry

For the triangular block i, the lengths li and di, and the area 
Si are given as follows:

Internal Energy Dissipation

1. Along lines di (i = 1, …, k):

where

(39)WquD
= quDV0.

(40)
∑

Wext = Wq0
+WABC +

2k
∑

i=1

Wi +WquD
.

(41)li = B0

sin �1

sin(�1 + �1)

i
∏

j=2

sin �j

sin(�j + �j)

(42)di = B0

sin �1

sin(�1 + �1)

sin �i

sin �i

i
∏

j=2

sin �j

sin(�j + �j)

(43)

Si =
B2
0

2

sin2 �1

sin2(�1 + �1)

sin �i sin(�i + �i)

sin �i

i
∏

j=2

sin2 �j

sin2(�j + �j)

(44)Ddi(i=1,…,k)
= ciB0g1

(

�i, �i, �i, �i,i+1, �
)

V0
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2. Along lines li (i = 1, …, k − 1):

where

(45)g1 =
sin �1

sin
(

�1 + �1
)

k
∑

i=1

[

ci cos�i

sin �i

sin �i
×

i
∏

j=2

sin �j

sin
(

�j + �j
)

i−1
∏

j=1

sin
(

�j + �j − �j − �j,j+1

)

sin
(

�j+1 − �j+1 − �j,j+1

)

]

(46)Dli(i=1,…,k−1)
= ci,i+1B0g2

(

�i, �i, �i, �i,i+1, �
)

V0

(47)g2 =
sin �1

sin(�1 + �1)

k=1
∑

i=1

[

ci,i+1 cos�i,i+1

sin(�i + �i + �i+1 − �i − �i+1)

sin(�i+1 − �i+1 − �i,i+1)

i
∏

j=2

sin �j

sin(�j + �j)

i−1
∏

j=1

sin(�j + �j − �j − �j,j+1)

sin(�j+1 − �j+1 − �j,j+1)

]

.

The total energy dissipation in the whole mechanism is 
equal to the summation of these two parts, i.e., Eqs. (44) and 
(46):

External Work

1. External work due to self-weights and seepage forces of 
the rock mass in motion of the k triangular rigid blocks:

where

(48)
∑

D =
(

Ddi(i=1,…,k)
+ Dli(i=2,…,k)

)

.

(49)Wrockmass =
�B2

0

2

[

g3 + i

(

�w

�sub

)

g4

]

V1,

(50)g3 =
sin �1

sin(�1 + �1)
sin

(

�k −

k−1
∑

j=1

�j − �k

)

×

k
∏

j=2

sin �j

sin(�j + �j)

k−1
∏

j=1

sin(�j + �j − �j − �j,j+1)

sin(�j+1 − �j+1 − �j,j+1)

(51)g4 =
sin �1

sin(�1 + �1)
cos

(

�k −

k−1
∑

j=1

�j − �k

)

×

k
∏

j=2

sin �j

sin(�j + �j)

k−1
∏

j=1

sin(�j + �j − �j − �j,j+1)

sin(�j+1 − �j+1 − �j,j+1)

2. External work due to the surcharge loading and the 
corresponding seepage forces:

(52)Wq0
= qB0

[

g5 + i

(

�w

�sub

)

g6

]

V1,

where

3. External work due to the footing load and the corre-
sponding seepage forces:

The total external work is the summation of the three 
contributions, Eqs. (49), (52), (55):

(53)g5 =
sin2 �1

sin2(�1 + �1)

k
∑

i=1

[

sin �i sin(�i + �i)

sin �i
sin

(

�i −

i−1
∑

j=1

�j − �i

)

×

i
∏

j=2

sin2 �j

sin2(�j + �j)
×

i−1
∏

j=1

sin(�j + �j − �j − �j,j+1)

sin(�j+1 − �j+1 − �j,j+1)

]

(54)g6 =
sin2 �1

sin2(�1 + �1)

k
∑

i=1

[

sin �i sin(�i + �i)

sin �i
cos

(

�i −

i−1
∑

j=1

�j − �i

)

×

i
∏

j=2

sin2 �j

sin2(�j + �j)
×

i−1
∏

j=1

sin(�j + �j − �j − �j,j+1)

sin(�j+1 − �j+1 − �j,j+1)

]

(55)WquS
= quS

[

sin(�1 − �1) + i

(

�w

�sub

)

cos(�1 − �1)

]

V1.

(56)
∑

Wext = Wrockmass +Wq0
+WquS

.
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