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Abstract

The present study experimentally investigated variations in the mechanical behaviours of natural rough rock joints during
shearing under cyclic loading and constant normal stiffness conditions, using a servo-controlled shear testing apparatus. The
influences of initial normal stress (o,), normal stiffness (k,) and shear velocity (v) on the shear behaviours are estimated and
analysed. The results show that the shear stress (7), normal stress (o,) and normal displacement (8,) for both unfilled and
infilled rock joints decrease with the increase in the number of cycles (N), especially in the N range of 1-2. This is because
some asperities on the joint surface are sheared during the first shear process, and the subsequent shear tests for N> 2 were
subjected to the frictional process. The o, and &, both contribute significantly to the variations in the shear behaviour of rock
joints. For unfilled rock joints, increasing o, from 2 to 4 MPa increases the shear stress and normal stress by 128.5% and
106.5%, respectively, when shear displacement (6,) =2 mm and N=1. Increasing &, from 3 to 5 GPa/m enhances the shear
stress and normal stress by 19.4% and 10.4%, respectively, when §, =2 mm and N = 1. For infilled rock joints, the shear stress
and normal stress increase with increasing o,, when N <5, and decrease first and then increase with increasing k. The shear
stress, normal stress and normal displacement for infilled rock joints increase with increasing v, especially in the v range of
1-2 mm/min. Finally, six empirical models are proposed to evaluate the shear stress, normal stress and normal displacement
of the unfilled and infilled rock joints under cyclic loading and CNS conditions. These models take into account parameters
such as o, k,, v, 6, and N, and the experimental results agree well with the fitting results with the correlation coefficient
R*>0.78. Using the proposed models, the fillings decrease the 7 and o, by approximately 24.96-65.52% and 9.38-57.95%,
respectively, while increasing the normal displacement (6,) by 0.5 mm on average during the entire shear process.
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1 Introduction passivation on the surface of rock joints, thereby deteriorat-
ing the shear-related mechanical parameters of rock joints

The shear stress and deformation characteristics of rock  such as peak shear stress and residual shear stress. The rock

joints under cyclic loading are the mechanistic underpin-
nings for analysing the stability of geotechnical engineer-
ing under seismic loading (Jafari et al. 2004; Mirzaghor-
banali et al. 2014). Cyclic shear loading causes wear and
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mass dislocates and slips along the joint plane, resulting in
the deformation and failure of geological engineering struc-
tures (Wu et al. 2018a). Therefore, it is of great significance
in the understanding of the variation in the shear behaviour
of natural rock joints under cyclic loading and constant nor-
mal stiffness (CNS) conditions.

The mechanical properties of rock joints can directly
affect the stability of rock masses, which is a consistent
research topic of interest in the field of geotechnical engi-
neering (Bahaaddini 2017). A large number of laboratory
tests have been devoted to the strength characteristics of
rock joints such as uniaxial compressive strength (Liu et al.
2017a, b, 2018), biaxial compressive strength (Han et al.
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2018a, b), triaxial compressive strength (Han et al. 2018a,
b), dynamic strength (Li et al. 2001; Fathi et al. 2016),
fatigue behaviour (Wu et al. 2014; Luo et al. 2016), mono-
tonic shear strength under constant normal load (CNL) (Bar-
ton 1973), monotonic shear strength under CNS (Indraratna
et al. 2015) and tensile strength (Shang et al. 2018). Other
studies have investigated the shear behaviours of rock joints
under cyclic shear loading. Under a CNL boundary con-
dition, Jaeger (1971) and Plesha (1987) conducted cyclic
shear tests on fresh rock joints. Their results showed that the
specimens have a high shear stress in the first cycle of the
shear test, and there are no obvious peak and residual shear
stresses until the number of cycles (X) is larger than 15.
Later, a two-dimensional constitutive model was proposed
by Jing et al. (1993) to estimate the shear behaviour of rock
joints under monotonic and cyclic loadings. Lee et al. (2001)
conducted a large number of experiments on granite and
marble specimens under cyclic loading, and an elastoplastic
constitutive model was proposed based on their experimental
results. Other similar studies have been reported by Hutson
and Dowding (1990), Kana et al. (1996), Fox et al. (1998)
and Homand et al. (2001). However, in the case of deep
underground scenarios, the CNS boundary condition is more
applicable than the CNL condition because the normal stress
that is applied perpendicular to the direction of shear is not
a constant for many field situations (Heuze 1979; Indraratna
et al. 1999; Jiang et al. 2004). A few studies have investi-
gated the effect of the CNS boundary condition on the shear
behaviour of rock joints under cyclic loading. Belem et al.
(2007, 2009) scanned and quantified the surface damage for
different shearing cycles under CNS conditions, and two
generalized joint surface asperity degradation models were
proposed. Mirzaghorbanali et al. (2014) studied the vari-
ations in the shear behaviour of infilled rock joints under
cyclic loading, and a mathematical model considering initial

Fig. 1 Digitally controlled shear

asperity angle, initial normal stress and ratio of infill thick-
ness to asperity height was proposed. Most of the current
studies are devoted to the shear behaviour of rock joints with
regular surfaces, such as a saw-toothed joint (Oh et al. 2017)
and/or under CNL conditions. However, natural rock joints
are mostly rough/irregular, and a naturally rough rock joint
under a CNS condition inhibits the shear-induced dilation
(Li et al. 2018). To the best of our knowledge, the shear
behaviour of natural rough rock joints under cyclic loading
and CNS conditions has not been studied, if any.

The present study investigates the shear behaviour of
natural rock joints under cyclic loading and CNS condi-
tions, using a servo-controlled shear testing apparatus.
Both unfilled and infilled rock joints are tested by taking
into account the influences of initial normal stress (o), nor-
mal stiffness (k,) and shear velocity (v). The predicted shear
stress (7), normal stress (6,) and normal displacement (J,)
using the proposed regression functions are compared with
the experimental results of both unfilled and infilled rock
joints under CNS conditions.

2 Experiments
2.1 Testing System

The shear tests under cyclic loading and CNS conditions
were carried out using the MIS-233-1-55-03 servo-con-
trolled direct shear apparatus, which was designed and
manufactured by Jiang et al. (2004) at Nagasaki University.
Figure 1 shows a schematic view of the shear apparatus in
detail. The apparatus can automatically reproduce various
boundary conditions with a good accuracy, i.e., CNL, CNS
and constant normal displacement boundary conditions,
for shearing rock joints. Five linear variable differential

testing apparatus
o Vertical Jack
(max : 200 kN)
@)
Load Cell
L J LVDT Horizontal Jack
(max : 200 kN)
LVDT N
=

Load Cell 1

Specimen
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transformers (LVDTs) with an accuracy of 0.001 mm are
used. One LVDT is installed on the lower shear box to
measure the shear displacement, and another four LVDTs
are placed on the four corners of the upper shear box to
measure the normal displacement. The data acquisition and
instrumentation systems were designed using the LabVIEW
programming language, which is controlled by a personal
computer. The loading capacity is 200 kN in both the normal
and shear directions, and the maximum shear displacement
is 20 mm.

2.2 Surface Morphology and Specimen Preparation

The joint has a natural surface copied from the field of an
underground power station in Japan, as shown in Fig. 2a.
A 3D laser scanning profilometer system was utilized to
measure the surface morphology, which has an accuracy
of +£20 pm in both the x- and y-directions and + 10 pm in
the height direction (Li et al. 2008). Figure 2b shows the
3D digitized surface of the joint surface. The variation in
frequency versus asperity height is depicted in Fig. 2c, and
the results show that the asperity height follows a Gaussian
distribution (Adler et al. 2013) with a standard deviation of
1.56. The joint roughness coefficient (JRC) of the natural
rough joint was calculated using Egs. (1) and (2) proposed
by Tse and Cruden (1979), which are widely accepted in
rock mechanics and rock engineering (Liu et al. 2017a, b,
¢; Yin et al. 2017):

| 27172
_ |1 Zji—1 T %
%= lM Z <xi—l _xi> ] ' M

JRC =322+ 3247 log Z,, )

where x; and z; represent the coordinates of the joint sur-
face profile and M is the number of sampling points along
the length of a joint surface. The mean JRC value is 5.34
(Fig. 2d), which was evaluated by cutting the surface using
60 equidistant lines along the shear direction.

The specimen has a dimension of length X width Xh
eight=200x 100 x 100 mm, and the rock-like materials
were made of mixtures of plaster, water and retardant with
a weight ratio of 1:0.2:0.005 (Jiang et al. 2006). For the
infilled rock joints, the filling thickness is 6 mm, and the
filling materials were made of mixtures of plaster, sand and
water in a weight ratio of 1:1:0.4. The density and uniax-
ial compressive strength are 1.546 g/cm® and 36 MPa for
the filling materials and 2.066 g/cm® and 50 MPa for the
rock-like materials, respectively. As shown in Fig. 2e, f,
the height of the rock-like materials is 100 mm for unfilled
specimens, and the heights of the rock-like materials and

the filling materials are 94 mm and 6 mm, respectively, for
infilled specimens. A total of 18 specimens were prepared,
which were maintained at a constant temperature of 25 °C
and placed in a humid box with a relative humidity of 95%
for 28 days after the specimens were demoulded.

2.3 Experimental Procedure

The effects of ¢, k, and v on the shear behaviour of natu-
ral rock joints under cyclic loading and CNS conditions are
investigated. First, k, =5 GPa/m and v=1 mm/min, and o,
is set to 2, 4, and 6 MPa for investigating the shear-induced
variations in shear stress, normal stress and normal dis-
placement for both unfilled and infilled specimens. Second,
0,0=4 MPa and v=1 mm/min, and k, is set to 3, 5, 7 GPa/m.
Finally, 6,,=4 MPa and k,=5 GPa/m, and v is set to 1, 2,
3 mm/min (Wang et al. 2016; Wu et al. 2018b). The three
steps guarantee that the influences of o,, k, and v can be
individually estimated by fixing the other two parameters.
Here, k, was calculated based on the following equation
(Johnston et al. 1987; Jiang et al. 2001):

E
W= v or 3

where E and 6 are the modulus and Poisson’s ratio of rock
mass, respectively, and r is the influenced radius.

Figure 3 shows the loading path in the cyclic loading test.
Note that o, increases from 0 to 10 mm and then decreases
from 10 to 0 mm, which is regarded as a shear cycle. The
maximum shear displacement (10 mm) is 5% of the speci-
men length (200 mm), and the maximum cycle number is
6. The direction of shear tests is defined as positive when
0y, increases from O to 10 mm and negative when J,, ranges
from 10 to 0 mm.

3 Results and Analysis

3.1 Effect of g, on the Shear Behaviour of Natural
Rough Rock Joints

For unfilled rock joints, the shear stress increases with the
increase in dy, as shown in Fig. 4a—c, g-i. Taking 6,,=2 MPa
as an example, the average shear stress increases by a rate
of 29.2% when §;, increases at a 2-mm interval at N=3.
This is because the CNS condition increases the normal
stress and inhibits joint dilation. The shear stress decreases
slowly as N increases due to the asperity degradation of the
joint surfaces. The shear stress greatly increases when o,
increases from 2 to 4 MPa; however, it is slightly affected
when ¢, increases from 4 to 6 MPa. This indicates that the
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Fig.2 Joint surfaces and specimens for tests

variation in shear stress is more sensitive to a smaller 6,,.  the filling materials. The effect of o, on the shear stress
For infilled rock joints, the shear stress fluctuates slightly  is obvious when N <4 and is not remarkable when N >4.
with the increase in 6, as shown in Fig. 4d—f, j-1, because The shear stress at the same shear displacement increases
the dilatation of rock joints during shearing is absorbed by ~ with the increase in o,, when the N is less than 4. Taking
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Fig.3 The loading path in the cyclic loading test

0,=2 mm as an example, the shear stress increases from
1.77 to 2.74 MPa by a rate of 54.8% when o, increases
from 2 to 4 MPa for the first shear process. However, the
effect of 6,, on shear stress decreases and the decreasing rate
decreases with increasing N. When N=6 and 6, =2 mm, the
shear stress varies by a magnitude that is less than 0.13 MPa
as o, increases from 2 to 6 MPa.

The evolutions of normal stress of natural rock joints
under different o, are plotted in Fig. 5. The normal stress
for unfilled rock joints increases with increasing d;, and
decreases as N increases, as shown in Fig. Sa—c, g—i. The §,
has a slight effect on normal stress for infilled rock joints,
and the normal stress decreases more significantly with
increasing N from 1 to 6 for 6,,=6 MPa compared with
that for 6,,=2 MPa, as shown in Fig. 5d—f, j—1. In the cyclic
shear test, especially for the second and subsequent shear
tests, the shear stress is mainly controlled by the frictional
stress between the upper and lower surfaces of the joint due
to the sheared-off bulges on the joint surface. It is widely
accepted that there is a proportional relationship between
the frictional stress and the normal stress (Belem et al. 2007,
2009; Mirzaghorbanali et al. 2014). The variations in normal
stress with o, follow similar trends to the shear stress.

The relationship between normal displacement and
normal stress under CNS conditions can be expressed as
follows:

0p — Opo

o=~ “)

n

Equation (4) indicates that the variation in §, is consist-
ent with the variation in o, as long as ¢, and k, are fixed.

Figure 6 shows the changes in the normal displacement of
natural rock joints under different o,,. For unfilled rock
joints, in each shear cycle, the ¢, increases as J,, increases
from O to 10 mm, which shows an obvious dilation, as shown
in Fig. 6a—c, g-i. The §, decreases as 0, decreases from 10 to
0 mm, which shows an obvious contraction. After six cycles
of loading and unloading (N=6), all the specimens show
small amplitudes of contraction that are less than 0.2 mm.
The normal displacement at the same shear displacement
decreases with the increase in N. The &, shows a trend of
rapid decline for N=1-2 and a trend of slow decline for
N=2-6. The increase in o, enlarges the downward trend
of the two stages mentioned above. For infilled rock joints,
the specimen shows a slight dilation in the positive direc-
tion of the first cycle and then exhibits different degrees of
contraction in the subsequent cyclic shear tests, as shown
in Fig. 6d—f, j—1. There is a downward trend for the normal
displacement at the same shear displacement as N increases.
The normal displacement increases more significantly for a
larger o,,, which is consistent with Eq. (4). All the speci-
mens show contractions after six cycles of loading and
unloading, and the amount of contraction increases with the
increase in o,,. For 6, =10 mm, the specimens were con-
tracted by 0.11, 0.61 and 1.13 mm, corresponding to ¢,,=2,
4 and 6 MPa, respectively.

The failure modes of unfilled rock joints under differ-
ent o, values are shown in Fig. 7a—c. The asperities on the
surface of the specimens are sheared off, and scratch marks
obviously exist. By plotting the edges of the scratch marks,
the damaged areas on the joint surface can be calculated
using image processing. The damaged area increases from
85.7 to 130.7 cm? for 0,0 increasing from 2 to 4 MPa, by a
rate of 52.5%. With continuously increasing o, from 4 to
6 MPa, the damaged area increases from 130.7 to 139.8 cm?
by a rate of 7% (Fig. 7d). This explains that the asperity
damage, as well as the shear behaviour, is greatly influenced
by 0,0=2-4 MPa, but is slightly affected by o,,=4-6 MPa.
However, for infilled rock joints, we found that even when
the number of cycles is six, the shear-induced damage is
concentrated on the filling materials and the surfaces/asperi-
ties of the joints are not scratched/crushed, which may be
because of the large thickness (6.0 mm) of the fillings. The
failure modes for the infilled joints after tests under differ-
ent conditions such as different normal stiffness, different
initial normal stresses and different shear velocities seem
to be the same. Therefore, the area of the scratch marks
of infilled rock joints is not presented and analyzed in the
present study. In the future works, we will carry out cyclic
shear tests under CNS conditions using rock joints infilled
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Fig.4 a—f The variations in shear stress with varying shear displacements of unfilled and infilled rock joints, respectively, under different o,;
g1 shear stress versus number of cycles of unfilled and infilled rock joints, respectively, under different o,

with materials having different thickness, and systematically
investigate the influence of thickness of filling materials on
the failure mode.

3.2 Effect of k,, on the Shear Behaviour of Natural
Rough Rock Joints

Figure 8 depicts the evolution of the shear stress of natural
rock joints under different k,. For unfilled rock joints, as
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shown in Fig. 8a—c, g—i, the relationship between shear stress
and N under different &, is divided into a rapidly declin-
ing stage (N=1-2) and a slowly declining stage (N=2-6).
The shear stress of the specimen increases with the increase
in k, because the larger k, more significantly increases o,
and requires a larger shear stress to shear the model. Tak-
ing N=1 as an example, the average shear stress, which
is the average value of the shear stresses corresponding
to 6,=2, 4, 6, 8, 10 mm, for the first shear in the positive
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Fig.5 a—f The variations in normal stress with varying shear displacements of unfilled and infilled rock joints, respectively, under different o,;
g-1 normal stress versus number of cycles of unfilled and infilled rock joints, respectively, under different o,

direction is 3.17, 4.09, and 4.12 MPa for k,=3, 5, and 7
GPa/m, respectively, which increases by 29.1% for k, from
3 to 5 GPa/m and 0.8% for k, from 5 to 7 GPa/m. For infilled
rock joints, as shown in Fig. 8d—f, j—1, the average shear
stress for the first shear in the positive direction is 2.57, 2.61,
and 3.20 MPa for k,=3, 5, and 7 GPa/m, which shows an
increase of 1.7% for k,=3-5 GPa/m, and 22.4% for k,=5-7
GPa/m. The results show that the shear stress of unfilled rock

joints is more greatly influenced by k, increasing from 3 to
5 GPa/m than that with k, = 5-7 GPa/m. However, the shear
stress of infilled rock joints is more greatly influenced by
k,=5-7 GPa/m compared with that with k, =3-5 GPa/m.
The variations in the normal stress of natural rock joints
under different k,, are presented in Fig. 9. For unfilled rock
joints, the normal stress is very sensitive to k,,, as shown in
Fig. 9a—c, g—i. For the first shear in the positive direction,
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Fig. 6 a—f The variations in normal displacement with varying shear displacements of unfilled and infilled rock joints, respectively, under differ-
ent ¢,; g-1 normal displacement versus number of cycles of unfilled and infilled rock joints, respectively, under different o,

the maximum value of the normal stress is 7.31, 8.46 and
10.01 MPa for k,=3, 5 and 7 GPa/m, which increases

by 82.8, 111.5 and 150.3% with respect to a constant o,

that is 4 MPa, as illustrated in Sect. 2.3. The normal stress 1
increases with increasing d, and increasing k, increases the

K =
v g

i=2

rate of the normal stress increment. To quantitatively analyse
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On(i+2) ~ On(i)

On(i)

the effect of &, on the increasing rate of the normal stress, K|,
is defined as follows:

% 100%, 5)
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where o,; is the normal stress corresponding to 6, =1, and
On(it2) 18 the normal stress corresponding to 6, =i+2, in
which i=2, 4, 6, 8 mm. Taking N=3 as an example, K is
9.5, 13.2 and 15% when k, =3, 5 and 7 GPa/m, respectively,
showing a significant increase with the increase in k. In

addition, the effect of &, on the normal stress decreases with
increasing N. When N=1 and §, =6 mm, the normal stress
varies in magnitudes of 6.50, 7.65, and 8.73 MPa, which are
much larger than the magnitudes of 4.90, 4.61, and 4.74 MPa
for N=6. However, the effect of k, on the normal stress
increases with the increase in N for the infilled rock joints
(see Fig. 9j-1).

Figure 10 shows the relationships between normal dis-
placement and shear displacement (or number of cycles)
under different &, for both unfilled and filled rock joints.
When the rock joints are unfilled, the increase in k, restrains
the dilatation of joints. As a result, the 6, decreases with
increasing k, when 6, and N are fixed, and the o, is greatly
affected as k, increases from 3 to 5 GPa/m; however, it is
slightly affected for k, =5-7 GPa/m, as shown in Fig. 10a—c,
g—i. In the first shear process of the positive direction, the
maximum &, is 1.100, 0.893 and 0.868 mm for k, =3, 5 and
7 GPa/m, which decreases by 18.8% when k, increases from
3 to 5 GPa/m and decreases by 2.8% as k, increases from
5 to 7 GPa/m, respectively. For infilled rock joints, a slight
dilation occurs only for the first shear in the positive direc-
tion, and the specimens show obvious contractions after the
first cyclic loading, as shown in Fig. 10d—f, j-1. The final
6, 1s — 0.451, — 0.554, and — 0.209 mm as k, is 3, 5 and 7
GPa/m when N=6, which indicates that the shear contrac-
tion of infilled rock joints under cyclic loading is slightly
influenced by increasing &, from 3 to 5 GPa/m but robustly
affected when k, increases from 5 to 7 GPa/m.

The failure modes of unfilled rock joints under different
k, are shown in Fig. 11. The damaged areas are 133.7, 130.7
and 131.6 cm? for k,=3, 5 and 7 GPa/m, respectively, which
are very close to the increment of k. This is because o, is a
constant that equals 4 MPa, and the normal stress increases
with increasing k. All the specimens are subjected to a normal
stress that is larger than 7 MPa, and the joint surface is dramati-
cally damaged under such a high normal stress (see Fig. 9a—).

3.3 Effect of v on the Shear Behaviour of Natural
Rough Rock Joints

For unfilled rock joints, the variations in shear stress, nor-
mal stress and normal displacement with varying shear
displacements are shown in Figs. 12a—c, 13a—c, and 14a—c,
respectively, while those for infilled rock joints are shown
in Figs. 12d-f, 13d-f, and 14d-f, respectively. The shear
stress, normal stress and normal displacement for unfilled
rock joints versus the number of cycles corresponding to
shear displacements of 2, 4, 6, 8, 10 mm under different v
are exhibited in Figs. 12g—i, 13g—i, and 14g—i, respectively,
while those for infilled rock joints are shown in Figs. 12j-1,
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Fig.8 a—f The variations in shear stress with varying shear displacements of unfilled and infilled rock joints, respectively, under different k,; g—i
and j-1 shear stress versus number of cycles of unfilled and infilled rock joints, respectively, under different &,

13j-1, and 14j-1, respectively. For unfilled rock joints, the
shear stress decreases for v increasing from 1 to 2 mm/min
and increases for v increasing from 2 to 3 mm/min. However,
the normal stress and normal displacement increase for v
increasing from 1 to 2 mm/min and decrease for v increasing
from 2 to 3 mm/min. Figure 15 shows the failure modes of
unfilled rock joints under different v, and the damaged area
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increases slightly with the increase in v. For infilled rock
joints, the shear stress increases rapidly as v increases from
1 to 2 mm/min and increases slowly as v increases from 2
to 3 mm/min. Taking N=3 as an example, the shear stress
in the positive direction at 6, =2 mm increases from 1.09
to 1.36 MPa when v increases from 1 to 2 mm/min, which
increases by 24.8%. When v increases from 2 to 3 mm/min,
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Fig. 9 a—f The variations in normal stress with varying shear displacements of unfilled and infilled rock joints, respectively, under different k,;
g-1 normal stress versus number of cycles of unfilled and infilled rock joints, respectively, under different k,

the shear stress increases from 1.36 to 1.37 MPa, at a rate
of 0.7%. The variations in normal stress and the normal dis-
placement of infilled rock joints versus N are consistent with
the variation in the shear stress during shearing, as shown
in Figs. 13j—1 and 14j-1. The average normal stress, which
is the average value of the normal stresses corresponding
to 6,=2, 4, 6, 8, 10 mm for the sixth shear cycle (N=6) in

the positive direction is 1.07, 2.05 and 2.36 MPa forv=1, 2
and 3 mm/min, respectively. Obviously, the average normal
stress gradually increases by 91.1% for v from 1 to 2 mm/
min and by 14.8% for v from 2 to 3 mm/min. The average
normal displacement increases by 34.1% for v from 1 to
2 mm/min and by 15.5% for v from 2 to 3 mm/min.
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Fig. 10 a—f The variations in normal displacement with varying shear displacements of unfilled and infilled rock joints, respectively, under dif-
ferent k,; g-1 normal displacement versus number of cycles of unfilled and infilled rock joints, respectively, under different k,

4 Empirical Models

Although a number of empirical models have been proposed
to predict the mechanical behaviours of rock fractures during
shearing by considering the CNL conditions (Oh et al. 2015;
Li et al. 2016), the regular saw-toothed rock joints (Mirzag-
horbanali et al. 2014), the monotonic loading under CNS
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conditions (Indraratna et al. 2005; Indraratna et al. 2015),
and so on (Seidel and Haberfield 2002; Li et al. 2018),
there is still no predictive model to simultaneously take into
account the effects of o, k,,, v, 8, and N for both infilled and
unfilled naturally rough rock joints. In this section, based on
the above experimental results, we adopted a multi-variable
regression algorithm to establish empirical relationships.
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Fig. 11 Failure modes of unfilled rock joints under different k,, a
k,=3 GPa/m, b k,=5 GPa/m, ¢ k,=7 GPa/m, d damaged surface
area vs. k,

The shear stress, normal stress and normal displacement
for both infilled and unfilled rock joints are independent
variables, and o, k,, v, 6, and N are dependent variables.

The cases and corresponding parameters used for fitting the
regression functions are listed in “Appendix” (Table 1). The
best-fitted expressions are as follows:

Tunfiled = 0-4970,,9 + 0.0964k,, + 0.1176v

+0.12518, — 0.1525N + 0.023, ©
Gnuntitiety = 1.11670, + 0.1543k, + 0.3336v
+0.31075, — 0.4780N — 0.3611, 7
S vquntitiedy = 0-02296,0 — 0.0473k, + 0.0568v
8
+0.06356,, — 0.0962N + 0.3437, ®
T oed = €xp(0.13116, + 0.0066k,, + 0.0412y
+0.0036, — 0.2558N + 0.5611), ©
Ountited) = €XP(0.13840, — 0.0103k, + 0.0485v
10
+0.00785, — 0.233N + 1.1847), (10)
8 yiintitiedy = —0-12716,9 + 0.015k, + 0.0403v
(11)

+ 0.00546;, — 0.1267N + 0.5758,

where 7,611eds Cnqunfitted) 30 Syunfiniea) are the shear stress,
normal stress and normal displacement of unfilled rock
joints, and 7;,g11eds Cn(infitted) N Oy (infiniea) are the shear stress,
normal stress and normal displacement of infilled rock
joints.

For unfilled rock joints, 7,,4jeq a0d 6, ngieq) are positively
correlated with o,, k,, v and 6, (see Fig. 16a, b), and the
coefficient of ¢, is significantly larger than those of other
variables, as shown in Egs. (6) and (7). This indicates that
0,0 plays the most significant role in 7,,4),cq a0d 6, nfitteq)-
However, the 6,(ypfieq) 1 negatively correlated with k,, as
shown in Fig. 16¢ and Eq. (8). All of the 7,,g11c4s Cnunfilled)
and 8, fipeq) are negatively correlated with N because the
larger N results in a more significant degradation on the
rough joint surfaces. For infilled rock joints, 7;,4.q and
OnGinfilled) ar€ €xpressed by exponential functions, which
are positively correlated with o,, v and 6, and negatively
correlated with N (see Fig. 16d, e and Egs. (9) and (10)).
The 6, nfineq) 18 negatively correlated with o,, and N and
positively correlated with k,, v and &, (see Fig. 16f) and
Eq. (11)). Equations (6—11) can accurately predict the vari-
ations in the shear stress, normal stress and normal displace-
ment of both unfilled and infilled rock joints under cyclic
loading and CNS conditions, in which the correlation coef-
ficients R? are 0.781, 0.892, 0.827, 0.803, 0.824 and 0.782.
Note that this is a primary work that aims to propose empiri-
cal models for calculating the mechanical behaviors of both
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Fig. 12 a—f The variations in shear stress with varying shear displacements of unfilled and infilled rock joints, respectively, under different v; g—1
shear stress versus number of cycles of unfilled and infilled rock joints, respectively, under different v
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Fig. 14 a—f The variations in normal displacement with varying shear displacements of unfilled and infilled rock joints, respectively, under dif-
ferent v; g-1 normal displacement versus number of cycles of unfilled and infilled rock joints, respectively, under different v
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Fig. 15 Failure modes of unfilled rock joints under different v, a
v=1 mm/min, b v=2 mm/min, ¢ v=3 mm/min, d damaged surface
area vs. v

infilled and unfilled rock joints under cyclic loading and
CNS conditions. In the future works, we will facilitate these
models by considering the influences of filling thickness,
joint surface roughness, model size, and so on.

To quantitatively analyze the effect of fillings on the
mechanical behaviours of rock joints, r, and r, are defined
as follows:

Tunfilled ~ Tinfill
_ ‘unfilled in edxloo%,

12)

T
Tunfilled

On(unfilled) ~ On(infilled
r, = n(unfilled) n(infilled) x 100%, (13)

Op(unfilled)

Where z,,fiied> Tinfilled> On(unilied) and On(inilied) 1€ the predicted
results using Egs. (6), (7), (9) and (10), and the variations
in r, and r under different cases are displayed in Fig. 17a.
The minimum, maximum and average values of r_ are 24.96,
65.52 and 50.30%, respectively. The minimum, maximum
and average values of r_ are 9.38, 57.95 and 48.26%, respec-
tively. The existence of fillings decreases the shear stress
and normal stress by approximately 24.96-65.52% and
9.38-57.95%, respectively. Figure 17b shows the change in
Oy(unfilled) — Sv(infilleay fOr different cases, which depicts that the
Oy(unfilledy INCTeases by 0.535 mm on average than 6, ;,jjeq)-
This is reasonable because the fillings have smaller strength
values than the rocks, resulting in the damage in the fillings
during shearing when the joints are filled. However, when
the joints are unfilled, asperity degradation occurs during
the shear-related dilation process and gives rise to a larger
normal displacement than the infilled joints.

5 Conclusions

In this study, shear tests of unfilled and infilled rough rock
joints under cyclic loading and CNS conditions were con-
ducted. The influences of initial normal stress (o,), normal
stiffness (k,) and shear velocity (v) on the shear behaviours,
such as shear stress (7), normal stress (o,) and normal dis-
placement (8,), were estimated and analysed. Finally, empir-
ical models were proposed to evaluate the variations in 7, o,
and ¢, for the unfilled and infilled rock joints.

The results show that the 7, ¢, and 6, for both unfilled and
infilled rock joints decrease with the increase in the number
of cycles (N), which show a rapid decline for N=1-2 and a

@ Springer



ormal dis
S
~
1

R’ =0.827

48 G.Hanetal.
6
(@ ¢ . (d) :
= Experimental results = Experimental results
= Predicted results = Predicted results
53 o Tnea = €XP (0.1311 ¢ +0.0066 & +0.0412 v
S 4 E 4- +0.003 6, - 0.2558 N+ 0.5611)
- ~
wn 2]
e ]
i{z j::
— 2]
S 2 ] g
% .." T g = 0497 0 +0.0964 k& +0.1176 v ,_(%
;i +0.1251 6, - 0.1525 N +0.023
’ R*=0.781
0 T T T T 0 T T T T
0 50 100 150 200 250 0 50 100 150 200 250
cases Cases
(b) 12 (e) " .
= Experimental results = Experimental results
104 ——Predicted results " 104 — Predicted results
53 53 =exp (0.1384 0 -0.0103 k +0.0485 v
S g S g4 +0.0078 6, - 0.233 N+ 1.1847 )
> - R*=0.824
2 2
) " 0, e —1-1167 0, +0.1543 k +0.3336 v )
Z 21 +0.3107 6, - 0.4780 N - 0.3611 Z
R’ =0.892
O T T T T T 0 T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Cases Cases
(©) 16 ) 16
. = Experimental results
= Experimental results .
g 1.2 —— Predicted results g 1.2 = Predicted results
g . = J, sty — - 0-1271 0, +0.015 k +0.0403 v
~ ~
5 0.8+ = 0.84 +0.0054 5, - 0.1267 N+ 0.5758
15} Q 2 _
50.4_ QE) 0.4 R*=0.782
2 2
£40.0 4 2 0.0
S}
=
g
-
o
Z

0.8 O, wniieqy = 0:0229 0, - 0.0473 k_+0.0568 v
L +0.0635 6, - 0.0962 N + 0.3437
1. T T T T
0 50 100 150 200
Cases

250

T
200

T
150

T
100 250

Cases

Fig. 16 Experimental results and predicted results for shear stress, normal stress and normal displacement of unfilled (a—c the left column) and

infilled (d—f the right column) rock joints, respectively
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Fig. 17 Comparisons of mechanical behaviors during shearing for unfilled and infilled rock joints: a the shear stress and normal stress, and b the

normal displacement

slow decline for N=2-6. Taking the unfilled rock joints as
an example, the shear stress decreases by 51.4% for N from
1 to 2 and by 36.0% for N from 2 to 6, respectively, when
6,0=2 MPa, k,=5 GP/m, v=1 mm/min and &, =2 mm.
Since the density and uniaxial compressive strength of the
filling materials are smaller than those of rock-like materi-
als, the filling materials play a priority role during shearing.
The 7 and o, of unfilled rock joints are larger than those
of infilled rock joints by approximately 24.96-65.52%
and 9.38-57.95%, respectively, and the &, ,,g1eq) inCrEases
by 0.535 mm on average than Jygyeq)- For unfilled rock
joints, the damaged area increases by a rate of 52.5% for o,
increasing from 2 to 4 MPa and increases by a rate of 7% for
0,0 increasing from 4 to 6 MPa. However, the damaged area
increases slightly with increases in v and k. The variations
in the damaged area indicate that o, plays a more signifi-
cant role in the shear tests of rock joints than k, and v. Six
empirical models for predicting z, ¢, and J,, of unfilled and
infilled rock joints under cyclic loading and CNS conditions
are proposed, and the experimental results agree well with
the predicted results, in which the correlation coefficients for
all cases are larger than 0.78.

In the present study, the effects of cyclic loading and fill-
ings on the shear behaviours of rough rock joints under CNS
conditions have been deeply analysed, and six empirical

functions have been proposed to predict the shear behav-
iours of both unfilled and infilled joints. However, the speci-
mens have only one surface morphology with a unique JRC
value, and the influence of height of the filling height has not
been estimated. In future works, we will facilitate predictive
models of the mechanical behaviours of rough joints during
cyclic shearing under CNS conditions using rock joints that
have different surface roughness, heights and mechanical
properties of infilling materials.
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