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Abstract
Natural variability of rock properties can significantly affect the strength of rock masses and factor of safety of slopes. The 
results of a comprehensive point load testing program showed that coefficient of variation of intact rock strength can reach 
unity in highly heterogeneous formations. Probabilistic numerical analysis was carried out to explore the effect of strength 
variability on uniaxial compressive strength of large heterogeneous samples. It was shown that mean large-scale strength 
decreases with increasing small-scale variability. The effect of spatial variability of strength properties on slope stability was 
examined using limit equilibrium and shear strength reduction methods. Both approaches gave similar results indicating that 
for stable slopes, increasing strength variability leads to a reduction in mean factor of safety and increase in the probability 
of failure. In addition, ignoring spatial variability in probabilistic slope analysis can lead to erroneous estimates of the prob-
ability of failure. Based on the results of probabilistic analyses on large heterogeneous samples and slopes, an equivalent 
uniaxial compressive strength can be obtained by reducing the mean strength by one-third of its standard deviation. This 
relationship was validated using a dataset of back-analyzed strength values in heterogeneous open pit slopes.

Keywords Probabilistic analysis · Strength variability · Heterogeneous sample · Equivalent strength · Limit equilibrium · 
Strength reduction

1 Introduction

Slope stability analysis has long been a subject of interest in 
geotechnical engineering and numerous methods of analysis 
have been introduced over the years. Yet, design of techni-
cally operational and economically optimal slopes remains 
a challenge in many civil and mining projects. A significant 
contributing factor is the inherent complexity of geological 
materials and structures (e.g., Andriani and Parise 2015). 
Such complexity makes it difficult to develop a representa-
tive model which accurately captures the important details 
such as location and geometry of different geotechnical units 
and behavior of materials under different hydro-mechanical 
conditions. Furthermore, properties of a given geotechnical 
unit are not constant and vary by location. This is evident by 
the fact that results of a series of standard tests on samples 

obtained from different locations inside a given geological 
unit are different indicating spatial variability of properties. 
Extreme variability can be observed in large copper and 
gold-rich porphyry deposits formed through alteration and 
mineralization processes (Sillitoe 1997). This poses a major 
challenge in determining representative properties for open 
pit slope stability analysis in such deposits.

Conventional slope stability analysis is based on the fac-
tor of safety defined as the factor by which the shear strength 
must be divided to bring the slope to the verge of failure. 
To account for strength variability and model uncertainty, a 
conservative deterministic factor of safety is used to provide 
a sufficient margin of safety in case actual slope condition 
(geology, shear strength, ground water, loading, support, 
etc.) is less favorable than that assumed in the design. The 
main problem with this approach is that there is no clear 
scientific basis for choosing acceptable levels of factor of 
safety in different projects. Hence, deterministic approach 
is vulnerable to subjectivity and the design is often too con-
servative and occasionally unsafe.

Probabilistic analysis offers a more effective approach by 
explicitly taking variability into account. In a probabilistic 
analysis, material properties are treated as random variables 

 * Hossein Rafiei Renani 
 rafiaire@ualberta.ca

1 Department of Civil and Environmental Engineering, 
University of Alberta, Edmonton, Canada

2 GeoControl Ltd, Santiago, Chile
3 Itasca Consulting Group Inc, Santiago, Chile

http://orcid.org/0000-0003-0807-2386
http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-019-01828-2&domain=pdf


3792 H. Rafiei Renani et al.

1 3

with statistical distributions estimated from characterization 
and testing programs. By analyzing a sufficient number of 
models with random properties following the established dis-
tributions, it is possible to generate a distribution of factor of 
safety instead of a single deterministic value. This allows the 
designer to explicitly evaluate the chances of factor of safety 
falling below an acceptable level and provides a strong basis 
for design of optimal slopes using risk analysis.

Early attempts in probabilistic slope stability analysis were 
made by Alonso (1976), Tang et al. (1976) and Harr (1977). 
Priest and Brown (1983) presented a practical approach for 
probabilistic stability analysis of rock slopes along with design 
acceptance criteria. The benefits of probabilistic analysis 
were further illustrated by Whitman (1984), Christian et al. 
(1994) and Wolff (1996). El-Ramly et al. (2002) presented an 
improved approach for probabilistic slope stability analysis in 
practice. All probabilistic analyses up to this point were based 
on the Limit Equilibrium (LE) method which requires assump-
tions regarding the geometry of slip surface and interslice 
forces. Dawson et al. (1999) and Griffiths and Lane (1999) 
used the Shear Strength Reduction (SSR) method proposed 
by Zienkiewicz et al. (1975) and applied it to slope stability 
analysis. Unlike LE method, the SSR method is based on a 
full stress–strain analysis which allows the natural formation 
of slip surface. Griffiths and Fenton (2004) carried out proba-
bilistic analysis using the SSR method on an undrained clay 
slope. Hammah et al. (2009) used the SSR method to explore 
the effect of variability in geometry and orientation of joint 
network on stability of rock slopes. Chiwaye and Stacey (2010) 
applied a response surface to the results of the SSR method 
and subsequently used it for risk analysis of an open pit slope. 
The effect of spatial variability on slope stability was investi-
gated by Jefferies et al. (2008), Griffiths et al. (2009), Srivas-
tava (2012), Allahverdizadeh et al. (2015) and Javankhoshdel 
et al. (2017). Rafiei Renani et al. (2018) compared the results 
of probabilistic slope analysis using the LE and SSR methods.

In this study, a probabilistic approach is adopted to 
explore the effect of spatial variability of strength proper-
ties on large-scale strength of heterogeneous rock masses. A 
cohesive framework is presented for incorporating rock mass 
heterogeneity in slope stability analysis using the LE soft-
ware, SLIDE (Rocscience Inc 2018) and the SSR method in 
the finite difference code, FLAC3D (Itasca Inc 2012). Using 
the results of deterministic and probabilistic analyses, a rela-
tionship is developed to estimate the equivalent strength of 
heterogeneous rock masses.

2  Statistical Description of Variability

To explicitly take variability into account in a probabilis-
tic analysis, model parameters are treated as random vari-
ables with specified statistical distributions. For a random 

variable, the mean is the statistically expected value and 
standard deviation shows the extent of variability and dis-
persion around the mean value. Variability can also be 
expressed in terms of the dimensionless coefficient of vari-
ation, COV defined as the ratio of standard deviation to the 
mean.

Probability density function specifies how data are scat-
tered around the mean. Normal distribution is perhaps the 
most commonly used distribution in probability theory. It is 
characterized with a bell shaped symmetrical distribution 
around the mean and closely captures the distribution of 
many random variables. Due to the symmetrical shape, how-
ever, it can produce negative values for the random variable, 
especially when the coefficient of variation is high.

Since many geotechnical properties cannot assume a 
negative value, an asymmetric distribution which can only 
produce non-negative values is preferred. Lognormal distri-
bution, which is the distribution of a variable whose loga-
rithm is normally distributed, only produces non-negative 
values. It closely captures the observed variability of many 
geotechnical properties and is extensively used in proba-
bilistic slope stability analysis (e.g., Parkin and Robinson 
1992; Nour et al. 2002; Griffiths and Fenton 2004). Weibull 
distribution is another asymmetric function producing non-
negative values which is widely used in statistical analysis 
of rock failure (e.g., Wong et al. 2006; Amaral et al. 2008; 
Krumbholz et al. 2014).

In the absence of sufficient data to establish a full sta-
tistical distribution, a triangular density function may be 
adopted by specifying the minimum, maximum, and the 
most likely value of a property. Empirical guidelines, past 
local experience and expert opinion can be used to define 
triangular distributions of geotechnical properties (El-Ramly 
et al. 2002). Figure 1a shows the probability density func-
tions for a random variable with a mean of 100 and COV of 
0.5. While the normal distribution extends into negative val-
ues, the Weibull and triangular functions start at zero with 
similarly high slopes. It can be observed that the lognormal 
distribution is more concentrated in the intermediate range 
and is less likely to produce near zero values.

In addition to the statistical distribution of the values 
of a geotechnical property, it is important to consider how 
those values are distributed in space. In a given geotechni-
cal unit, the values of a property obtained from samples in 
close proximity are expected to be closer than those obtained 
from samples farther apart. In statistical terms, as the dis-
tance between sampling locations increases the correlation 
between the obtained values of a property decreases. This 
phenomenon can be described using spatial correlation func-
tions such as the Markovian function:

(1)� = exp
(

−2
�

L

)

,
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where � represents the correlation between the values of a 
property sampled at a distance � in a random field with spa-
tial correlation length of L. As shown in Fig. 1b, the spatial 
correlation length may be interpreted as the distance beyond 
which the correlation is weak and the values are almost inde-
pendent. Random fields following the Markovian spatial cor-
relation structure are commonly generated using the local 
average subdivision method (Fenton and Vanmarcke 1990) 
and used in probabilistic analysis of geostructures (e.g., 
Griffiths and Fenton 2001, 2004, 2007; Allahverdizadeh 
et al. 2015; Javankhoshdel et al. 2017). The same approach 
is adopted in the analyses presented in this study. A more 
detailed discussion on statistical characteristics and meth-
ods of generation of spatially correlated random fields is 
beyond the scope of this study and is given by Vanmarcke 
(1980, 1983), Fenton and Vanmarcke (1990), El-Ramly et al. 

(2002), Griffiths and Fenton (2001, 2004, 2007), Griffiths 
et al. (2009) and Srivastava (2012).

Figure 2 shows the spatial distribution of a random vari-
able with identical lognormal statistics (mean of 100 and 
COV of 0.5) over a 100 × 100 m area using different correla-
tion lengths of 5 m and 20 m. While the smaller correlation 
length corresponds to a highly erratic spatial distribution 
with significant changes of variable over short distances, the 
higher correlation length leads to a higher degree of spatial 
continuity.

Quantifying the spatial correlation length requires sam-
pling and testing at close spacing, seldom feasible in practice 
(El-Ramly et al. 2005). In the absence of site specific data, 
the values reported for similar geological units may be used 
as a first estimate and the influence of correlation length on 
the design can be investigated through sensitivity analysis. 
The spatial correlation length for geomaterials reported in 
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Fig. 2  Spatial distribution of 
a variable with a lognormal 
distribution, mean of 100 and 
COV of 0.5 over a 100 × 100 m 
area using: a correlation length 
of 5 m and b correlation length 
of 20 m
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the literature is typically a few meters and can reach tens of 
meters (Phoon et al. 1995; Phoon and Kulhawy 1999; El-
Ramly et al. 2005).

3  Rock Strength Variability at Small Scale

Geomaterials are heterogeneous in microscopic scale. Even 
the most visibly uniform rocks are composed of numerous 
minerals, grains, cements, and voids of varying shapes and 
sizes. As a result, carrying out a series of standard test on 
carefully prepared samples of a macroscopically uniform 
rock provides a range of outcomes. While more pronounced 
in natural materials, strength variability is also observed in 
manufactured materials. Ellingwood et al. (1980) indicated 
that strength variability with coefficients of variation of up 
to 0.14, 0.15, and 0.21 can be observed in aluminum, steel, 
and concrete, respectively. Phoon et al. (1995) showed that 
coefficients of variation of effective friction angle and und-
rained shear strength of clay can reach up to 0.50 and 0.55, 
respectively.

In massive uniform geological units, strength variability 
of rocks may be modest making the determination of repre-
sentative strength a relatively straightforward task. On the 
other hand, considerable variability may be observed in rock 
masses located in complex geological settings experienc-
ing alteration, mineralization, and fault activity. For exam-
ple, El-Ramly et al. (2005) reported the results of tests on a 
highly decomposed granite in which coefficient of variation 
of effective cohesion was as high as 1.0. Such conditions 
can also be found in large copper and gold-rich porphyry 
deposits due to alteration and mineralization events (Silli-
toe 1997). Figure 3 shows the cores obtained from a gold-
rich porphyry deposit. Determining a representative value 
of intact rock strength for slope stability analysis in such 
highly variable rock masses poses a major design challenge.

Quantifying the extent of strength variability is the first 
step in establishing a representative strength. Small-scale 
variability of rock strength may be explored using a series of 
standard uniaxial and triaxial compression tests. However, it 
should be noted that due to strict sample preparation require-
ments, such standard tests may only be carried out on larger 
and stronger pieces of rock obtained from a core. For exam-
ple, significant portions of the cores shown in Fig. 3 do not 
meet the size and shape requirements of a standard uniaxial 
compression test. Typical exclusion of the weaker portions 
of rock from standard testing introduces a bias in statistical 
analysis leading to overestimating the mean strength and 
underestimating the coefficient of variation.

In an attempt to investigate the true distribution of rock 
strength, unaffected by sampling bias, Kostak and Bielen-
stein (1971) carried out an extensive testing program on 420 
samples of Matinenda sandstone obtained from uniformly 

distributed locations over the investigated volume of rock. 
Through careful drilling and sampling at predetermined 
regular intervals, they were able to obtain an unbiased sam-
ple including original defects in correct proportion to sound 
core. Statistical analysis of their test results showed that the 
mean strength obtained by typical exclusion of defective 
samples is overestimated by 10%, but more importantly, the 
obtained coefficient of variation is almost half the true value.

Since performing such an extensive direct testing pro-
gram is not practical in most projects, carrying out indirect 
tests such as the point load test on core samples at regular 
intervals may provide an unbiased estimate of the strength 
distribution. Not only the point load test is quicker and easier 
to perform than standard uniaxial compression test, but it 
can also be carried out on small irregular shaped pieces of 
rock which would otherwise be excluded from testing.

In this study, a comprehensive point load testing program 
was carried out to quantify strength variability in highly het-
erogeneous porphyry deposits. Test samples were obtained 
from 54 mm NX cores and tested according to the ISRM 
suggested method (ISRM 1985). The tests were carried out 
on 446 samples of altered porphyry chlorite, 364 samples 
of altered primary sulfide, 95 samples of altered secondary 
sulfide and 51 samples of altered granodiorite. The values 
of point load strength index were used to estimate uniaxial 
compressive strength using the correlation recommended 
by Bieniawski (1975) and ISRM (1985). Figure 4 shows the 
strength histograms obtained from the point load tests on 
porphyry samples. It can be observed that lognormal distri-
bution can provide a reasonable fit to the histograms of rock 
strength in porphyry deposits.

The results of tests on a wide range of rocks published 
in literature (Kostak and Bielenstein 1971; Martin 1993; 
Medhurst and Brown 1998; Ruffolo and Shakoor 2009; 
Glamheden et al. 2010; Azimian 2017; Cui et al. 2017) were 
compiled to establish a possible range for the coefficient 

Fig. 3  Cores from a gold-rich porphyry deposit with significant vari-
ability
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of variation of intact rock uniaxial compressive strength. 
Figure 5 shows that the coefficient of variation in massive 
uniform rocks such as Lac du Bonnet granite and Aspo dior-
ite is typically below 0.20. On the other end of the spectrum, 
highly heterogeneous rocks in porphyry deposits can show 
coefficients of variation of nearly 1.0.

4  Framework of Probabilistic Analysis

Probabilistic analysis can be carried out once the variability 
of model parameters is defined in terms of statistical distri-
butions. By incorporating the distributions of input parame-
ters in the analysis, it is possible to estimate the distributions 
of desired output parameters such as overall strength, maxi-
mum displacement or factor of safety. There are a number 
of ways in which probabilistic analysis can be conducted.

In terms of the approach used to estimate the statistics of 
output parameters, there are two general categories of meth-
ods. The first category includes methods such as the point 
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estimate method (Rosenblueth 1975) and first-order second 
moment method (Wong 1985) which estimate the mean and 
standard deviation of model output by carrying out a limited 
number of analyses with certain input parameters. Once the 
mean and standard deviation of the output parameter are 
estimated, a statistical distribution is assumed to calculate 
the probability of the output parameter exceeding an accept-
able threshold. These methods are relatively quick but the 
results may not be very accurate due to the estimation of 
mean and standard deviation from relatively limited number 
of data and also the assumptions made regarding the distri-
bution of the output parameters.

The second category of probabilistic approaches includes 
methods such as the Monte Carlo and Latin Hypercube 
methods (Olsson and Sandberg 2002). These methods 
require running numerous simulations with random values 
of input parameters to obtain a representative sample of the 
output parameter. While computationally expensive, these 
methods can provide more accurate estimates of the mean 
and standard deviation of the output parameter. In addition, 
no assumption is required regarding the distribution of the 
output parameter as it is directly obtained in the process. 
Finally, probability of unacceptable outputs can be readily 
estimated by dividing the number of simulations with unac-
ceptable outputs by the total number of simulations.

In probabilistic analysis of slopes, the objective is typi-
cally estimating the distribution of factor of safety, FOS. 
There are two general approaches for determining the slope 
FOS. The Limit Equilibrium (LE) method is based on divid-
ing the sliding mass into slices, solving force and/or moment 
equilibrium equations, calculating FOS, and repeating the 
process using different slip surfaces to find the most criti-
cal slip surface with the lowest FOS. It is very common to 
use the LE method in practical slope stability analysis as it 
relatively quick and easy, and there is extensive experience 
in using the results of the LE method for slope design. On 
the other hand, the results depend on the force and/or equi-
librium equations satisfied, assumed relationship between 
interslice normal and shear forces, and more importantly 
the assumptions and algorithms used in finding the most 
critical slip surface (Krahn 2003). Traditional probabilis-
tic limit equilibrium analysis involves solving numerous 
random realizations with different parameters. However, 
in each realization, the values of parameters were constant 
throughout the slope. This corresponds to an unrealistic cor-
relation length of infinity. In this study, recent developments 
in modeling spatial variability in limit equilibrium analysis 
have been utilized and the effect of finite correlation length 
is considered.

An alternative approach for calculating slope FOS is 
using the Shear Strength Reduction (SSR) method imple-
mented in a full stress–strain analysis with finite element or 
finite difference method (Dawson et al. 1999; Griffiths and 

Lane 1999). In this approach, trial SSR factors are applied 
to shear strength parameters to bring the slope to the verge 
of failure. The SSR factor corresponding to a state of limit-
ing equilibrium (transition from numerical convergence to 
divergence) is defined as the critical SSR factor. This is the 
same definition used for factor of safety in limit equilibrium 
analysis (Griffiths and Lane 1999). While computationally 
demanding, the SSR method involves a full stress–strain 
analysis in which not only full equilibrium but also displace-
ment compatibility is satisfied. As a result, it provides useful 
information regarding the slope movement and deformation 
pattern making it possible to use displacement as a design 
factor. More importantly, no assumptions or secondary algo-
rithms are required to find the critical slip surface as it is 
naturally formed during the analysis. The inherent domain 
discretization schemes in finite difference or finite element 
method readily accommodate the incorporation of spatial 
variability by assigning variable properties to elements in a 
single slope model.

5  Probabilistic Analysis of Large 
Heterogeneous Samples

In addition to heterogeneity in small scale, rock properties 
are also variable at large scale due to geological processes 
such as sedimentation, metamorphism, folding and faulting. 
It is crucially important to properly identify different geo-
logical and geotechnical units present in the domain of the 
project and treat them separately in analysis and design. The 
difference in properties of such units is a major contributor 
to overall rock mass heterogeneity. Inside each geological 
unit, however, there is another level of heterogeneity. Due to 
difficulties in carrying out a sufficient number of large-scale 
tests, it is typically not feasible to directly determine large-
scale strength variability.

Probabilistic analysis offers an alternative approach for 
estimating large-scale strength variability in a given geologi-
cal unit. It is possible to model spatial variability of rock 
properties in finite element or finite difference analysis by 
assigning variable mechanical properties to different ele-
ments. Large heterogeneous samples can be subjected to 
loading and their overall strength can be recorded. By gen-
erating and testing a sufficient number of large heterogene-
ous samples in the framework of probabilistic analysis, the 
distribution of large-scale strength may be obtained. This 
approach of generating and testing samples through numeri-
cal modeling is similar to that adopted in the framework of 
synthetic rock mass modeling (e.g., Mas Ivars et al. 2011) 
using discrete element methods.

In this study, a series of uniaxial compression tests on 
large heterogeneous samples were simulated in the finite dif-
ference code, FLAC3D (Itasca Inc 2012). The bottom of the 
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samples was fixed and an increasing downward displacement 
with a slow rate of  10−8 m/s was applied to the top boundary 
to induce compression without undesirable dynamic effects. 
Vertical stresses at the midheight of the samples were moni-
tored during loading and the maximum stress was recorded. 
The Hoek–Brown criterion (Hoek et al. 2002) was used to 
specify the strength of rock:

where �1 and �3 are the major and minor principal effective 
stresses at failure, respectively, �

ci
 is the uniaxial compres-

sive strength of intact rock and m
b
, s, and a are dimensionless 

parameters related to the rock type and rock mass quality.
Lognormal and Weibull distributions with mean of 

100 MPa and COV of up to 1 were used to represent the 
small-scale variability of uniaxial compressive strength with 
a correlation length of 2 m. To isolate the effect of vari-
ability in uniaxial compressive strength, typical parameters 
for a fracture-free rock were used with Young’s modulus of 
40 GPa, Poisson’s ratio of 0.25 and m

b
, s, and a values of 

20, 1 and 0.5, respectively. To investigate the effect of sam-
ple size, numerical tests were carried out on samples with 
6 × 6 × 15 m, 10 × 10 × 25 m, and 20 × 20 × 50 m dimensions. 
For each combination of coefficient of variation and sample 
size, 100 numerical tests were carried out to obtain a repre-
sentative distribution of large-scale strength.

As an example, Fig. 6a shows the contours of small-
scale uniaxial compressive strength in a 10 × 10 × 25 m 
sample following a lognormal distribution with a COV of 
1.0. The cumulative distribution of small-scale strength 

(2)�1 = �3 + �
ci

(

m
b

�3

�
ci

+ s

)a

,

within the correlation length (2 × 2 × 2 m) as well as large-
scale strength for heterogeneous samples of various sizes 
obtained from numerical tests is shown in Fig. 6b. It can 
be observed that mean strength of all large-scale samples is 
about 65 MPa representing a 35% reduction from the mean 
small-scale strength of 100 MPa. In addition, large-scale 
strength varies over a much narrower range than small-scale 
strength. Figure 6b shows that increasing sample size leads 
to decreasing strength variability.

Figure 7 shows the summary of numerical test results 
on large-scale heterogeneous samples. It can be observed 
that increasing small-scale variability leads to a reduction 
in mean and increase in the COV of large-scale strength. For 
a given level of small-scale variability, the mean strength 
values of large-scale samples were similar, while the largest 
sample showed the least amount of strength variability. The 
results of lognormal and Weibull distributions were very 
similar for samples with the COV of small-scale strength 
below 0.5. At higher levels of strength variability, however, 
the Weibull distribution gave slightly lower mean and some-
what higher COV of large-scale strength.

6  Probabilistic Analysis of Heterogeneous 
Slopes

In this section, application of probabilistic slope stability 
analysis is illustrated using two examples. The first exam-
ple involves a simple slope with a single geological unit 
with Mohr–Coulomb behavior while the second example 
is focused on a realistic slope with more complex geom-
etry and nonlinear Hoek–Brown strength criterion. Limit 
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equilibrium analysis and shear strength reduction method 
were used in stability analysis of the slopes. General limit 
equilibrium method (Morgenstern and Price 1965; Fredlund 
and Krahn 1977) satisfying both force and moment equilib-
rium along with non-circular slip surface search was used 
in the LE software, SLIDE. Slope stability analysis with the 
shear strength reduction method was carried out using the 
finite difference code, FLAC3D.

6.1  Slope #1 with Mohr–Coulomb Behavior

The first series of probabilistic analyses were carried out on 
a slope with simple geometry and Mohr–Coulomb material. 
The slope is 100 m high with a 60° slope angle, unit weight 
of 26.5 kN/m3, cohesion of 426 kPa and friction angle of 
35°. First, deterministic analyses were carried out using the 
LE and SSR methods and the results are shown in Fig. 8. It 
can be observed that the value of FOS and the predicted slip 
surfaces from both methods are quite similar.

A series of probabilistic analyses were followed with 
Mohr–Coulomb shear strength parameters, cohesion and 
friction angle as variables. It was assumed that cohesion 
and friction angle follow a lognormal distribution with simi-
lar coefficients of variation. In probabilistic analysis using 
the limit equilibrium method, Monte Carlo approach was 
adopted. In addition to the infinite spatial correlation length 
in traditional probabilistic limit equilibrium analysis, corre-
lation lengths of 4, 8, 16 m were also modeled. The distribu-
tion of FOS obtained from Monte Carlo method was used to 
calculate mean FOS and probability of failure, POF.

In probabilistic analysis using the strength reduction 
method, a limited number of realizations with correlation 
length of 4 m were analyzed due to prohibitive computation 

time. Subsequently, mean and standard deviation of FOS 
were determined and used to estimate POF. As an example, 
Fig. 9 shows the distribution of cohesion throughout the 
slope with COV of 0.5.

To evaluate the sufficient number of realizations in proba-
bilistic analysis using the LE and SSR methods, convergence 
curves indicating the evolution of mean and standard devia-
tion of FOS with increasing number of realizations were 
examined. Figure 10 shows the convergence curves for a 
slope with a COV of 0.5 for 1000 realizations using the 
LE method and 100 realizations using the SSR method. 
Although it is ideal for a consistent comparison to analyze 
the same number of realizations using the LE and SSR meth-
ods, it is currently impractical because analyzing one reali-
zation using the SSR method can take longer than 1000 trials 
using the LE method. Using finite correlation lengths in the 
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SSR: FOS=1.70 
LE: FOS=1.69 

Fig. 8  Deterministic analysis of Slope#1, the dashed line indicates 
the slip surface using the LE method and the velocity vectors show 
the zone of failure using the SSR method
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LE method, mean and standard deviation of FOS become 
stable after about 300 realizations. Ignoring spatial corre-
lation (using infinite correlation length) in the LE method 
causes the mean FOS to shows more volatility and standard 
deviation of FOS to significantly increase compared to finite 
correlation length scenarios. Fortunately, the results of the 
more computationally expensive SSR method converge with 
fewer realizations, taking about 20 trials for mean FOS and 
50 trials for standard deviation of FOS to stabilize.

Probabilistic analyses were carried out with different 
values of spatial correlation lengths and COV of cohesion 
and friction angle. Using the large representative samples of 
FOS values obtained from the LE method, it was possible 
to investigate the type of distribution function produced for 
each scenario. As an example, Fig. 11 shows the best fit 
distributions for the slope with COV of 0.5 using differ-
ent correlation lengths. It can be observed that increasing 
correlation length leads to a wider range of possible FOS 
values. Note that while the FOS distribution for finite corre-
lation lengths was symmetric and could be represented with 
a normal distribution, ignoring spatial variability led to an 
asymmetric lognormal distribution for FOS. The combined 
effect of asymmetric distribution and higher spread of FOS 
using infinite correlation length resulted in a large probabil-
ity of failure represented by the area under the probability 
density function with FOS < 1.

Figure 12a shows the effect of strength variability and 
spatial correlation length on the mean FOS in Slope #1. It 
can be observed that as material heterogeneity increases 
mean FOS obtained from LE and SSR methods decreases. 
The results of LE and SSR methods using finite correlation 
lengths are reasonably close. Ignoring spatial correlation, 
however, can lead to an overestimation of mean FOS, espe-
cially at higher levels of strength variability.

Having established the mean, standard deviation, and 
probability distribution of FOS, it is also possible to deter-
mine POF. In probabilistic analysis using LE method, POF 
was determined as the ratio of the number of Monte Carlo 

realizations with FOS < 1 to the total number of realizations. 
In probabilistic analysis with the SSR method, the mean and 
standard deviation of FOS along with the normal distribu-
tion obtained from the finite correlation lengths (Fig. 11) 
were used to estimate POF.

The relationship between probability of failure, strength 
variability and spatial correlation length is shown in 
Fig. 12b. Both LE and SSR methods predicted that for 
Slope#1, increasing strength variability causes an increase 
in POF. The results of LE and SSR methods using similar 
correlation lengths were in good agreement. Increasing spa-
tial correlation length led to an increase in POF, especially at 
higher levels of strength variability. It can be observed that 
the values of POF obtained by ignoring spatial correlation 
(infinite correlation length) are considerably overestimated.

Cohesion and friction angle were assumed to be inde-
pendent variables in most of the analyses. However, nega-
tive cross correlation between cohesion and friction angle 
has been reported for some geomaterials which can reach 
correlation coefficient of − 0.5 in certain cases (e.g., Yuce-
men et al. 1973; Wolff 1985; Hata et al. 2012). To explore 
the effect of strong negative cross correlation, a correlation 
coefficient R of − 0.5 between cohesion and friction angle 
was also incorporated in probabilistic analysis with spatial 
correlation length of 16 m. It can be observed from Fig. 12 
that introducing the negative cross correlation causes an 
increase in mean FOS and decrease in POF. This is because 
negative cross correlation causes lower values of cohesion to 
be likely accompanied with higher friction angles and vice 
versa which effectively reduces the overall strength variabil-
ity. This is consistent with previous findings (e.g., Griffiths 
et al. 2009; Chiwaye and Stacey 2010; Javankhoshdel and 
Bathurst 2016).

6.2  Slope #2 with Hoek–Brown Behavior

The framework of probabilistic analysis described previ-
ously can be extended to more realistic slopes with complex 
geology and nonlinear failure envelope. The second slope 
analyzed in this study has an overall slope angle of 46° with 
effective height of 75 m. The Hoek–Brown criterion (Hoek 
et al. 2002) was used to specify the strength of the two geo-
logical units encountered in the slope. Hoek et al. (2002) 
provided relationships to determine the cohesion and friction 
angle of an equivalent Mohr–Coulomb criterion fitted to the 
Hoek–Brown envelope. The Hoek–Brown parameters for the 
two rock mass units along with unit weight γ and equivalent 
cohesion c∗ and friction angle �∗ are given in Table 1.

Deterministic slope stability analyses were carried out 
with the Hoek–Brown criterion using LE and SSR methods. 
In addition, the equivalent Mohr–Coulomb criterion was 
used in limit equilibrium analysis denoted as LE*. It can be 
observed from Fig. 13 that the critical slip surface is almost 

Fig. 9  Spatial distribution of cohesion with COV of 0.5 in Slope#1
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identical in all cases starting at the crest from the bound-
ary of the two rock units, going through the weaker rock 
mass and daylighting at the slope face. The values of FOS 
obtained from LE and SSR methods with the Hoek–Brown 
criterion were in close agreement. Limit equilibrium 

analysis using the equivalent Mohr–Coulomb criterion led 
to 4% overestimation of the FOS for Slope#2.

In probabilistic stability analysis of this slope, uniaxial 
compressive strength of intact rock �

ci
 was considered as the 

only variable with a lognormal distribution. The COV(�
ci

 ) 
was assumed to be the same for Unit 1 and Unit 2 rock 
masses. To investigate the effect of strength heterogene-
ity, different values of COV ( �

ci
 ) were used in probabilis-

tic analysis. Due to prohibitively long computation times, 
a single correlation length of 2.5 m was used in numerical 
modeling. Probabilistic analysis with SSR method was car-
ried out using the nonlinear Hoek–Brown criterion. As an 
example, Fig. 14 shows the distribution of intact rock uni-
axial compressive strength with COV of 0.5 in the weaker 
Unit 1 and stronger Unit 2.

In probabilistic limit equilibrium analysis, a wide range 
of correlation lengths were analyzed. For the case of infinite 
correlation length (ignoring spatial correlation), the nonlin-
ear Hoek–Brown criterion was used. However, simultaneous 
implementation of spatial variability and the Hoek–Brown 
criterion was not supported in the current version of the 
SLIDE software and it was necessary to use the equivalent 
Mohr–Coulomb criterion in those cases. Hence, it was nec-
essary to translate the distribution of �

ci
 to those of equiva-

lent cohesion and friction angle.
To this end, equations relating the Hoek–Brown and 

equivalent Mohr–Coulomb parameters (Hoek et al. 2002) 
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Table 1  Rock mass properties 
for Slope#2

Rock mass γ (kN/m3) �
ci
  (MPa) m

b
s a c

∗  (kPa) �∗  (°)

Unit 1 26.5 25 0.177 5.36 × 10−5 0.511 201 24
Unit 2 26.5 75 0.683 5.53 × 10−4 0.504 577 43
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were utilized. Due to the complex forms of these equations, 
an analytical approach for calculating the statistics of equiv-
alent cohesion and friction angle is cumbersome and there-
fore, a numerical approach was adopted. For each scenario, 
10,000 random values were generated from the distribution 
of �

ci
 and were used in the equations to generate representa-

tive distributions of equivalent cohesion and friction angle.
As an example, the distributions of equivalent cohesion and 

friction angle of Unit 1 corresponding to COV(�ci ) of 0.5 are 
shown in Fig. 15. The relationship between mean and COV 
of equivalent Mohr–Coulomb parameters with COV(�ci ) for 
Unit 1 is shown in Fig. 16. It can be observed that by increas-
ing COV(�ci ), the mean values of equivalent cohesion and 

friction angle slowly decrease while their COV values linearly 
increase. The relationships between COV(�ci ), and COV of 
equivalent Mohr–Coulomb parameters for Unit 1 can be given 
by

  
Having established the distribution of equivalent cohe-

sion and friction angle, probabilistic analysis of Slope #2 was 
carried out using the LE* method with 1000 realizations and 
mean factor of safety and probability of failure were calculated. 
The results of probabilistic analysis of Slope #2 using the LE 
and SSR methods with the nonlinear Hoek–Brown criterion as 
well as the LE* method with the equivalent Mohr–Coulomb 
criterion are shown in Fig. 17.

Similar to the Slope #1, increasing strength variability 
led to a reduction in mean factor of safety and increase in 
probability of failure. The mean FOS obtained using finite 
spatial correlation lengths in the LE* and SSR methods fol-
lowed a similar trend. However, there was a consistent gap 
of about 0.07 between mean FOS values obtained from the 
LE* and SSR methods due to approximation of the nonlinear 
Hoek–Brown criterion with an equivalent Mohr–Coulomb cri-
terion. The values of probability of failure obtained from the 
LE* and SSR methods with finite correlation lengths were in 
close agreement. It can be observed that ignoring spatial cor-
relation in Slope #2 leads to considerable overestimation of 
the probability of failure, especially at higher levels of strength 
variability. In cases where spatial correlation is ignored, the 
POF from the LE method with the Hoek–Brown criterion is 
higher than that from the LE* method with the equivalent 
Mohr–Coulomb criterion due to overestimation of mean FOS 
in the LE* method.

While equivalent cohesion and friction angle were inde-
pendent in most of the analyses, a cross-correlation coefficient 
R of − 0.5 was also used in probabilistic analysis along with 
spatial correlation length of 25 m. It can be observed from 
Fig. 17 that considering the negative cross correlation leads to 
an increase in mean FOS and decrease in POF. The negative 
cross correlation causes the effect of lower cohesions to be 
likely compensated with higher friction angles and vice versa 
which improves the overall slope stability. This is consistent 
with the results for Slope#1 and previous studies (e.g., Grif-
fiths et al. 2009; Chiwaye and Stacey 2010; Javankhoshdel 
and Bathurst 2016).

(3)COV(c∗) = 0.38COV
(

�ci
)

,

(4)COV(�∗) = 0.25COV
(

�ci
)

.

Fig. 13  Deterministic analysis of Slope #2, the dashed line indicates 
the slip surface using the LE method and the velocity vectors show 
the zone of failure using the SSR method

Fig. 14  Spatial distribution of intact rock uniaxial compressive 
strength with COV of 0.5in Slope #2
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7  Discussion

The deterministic factors of safety and slip surfaces 
obtained from LE and SSR methods were in reasonable 
agreement for the slopes analyzed in this study. The results 
of probabilistic analysis using both approaches showed 
that increasing strength variability leads to a reduction in 
mean FOS and increase in POF. This is the case for slopes 
with deterministic FOS > 1 such as those analyzed in this 
work. A reverse trend may be observed for slopes with 
deterministic FOS < 1 (Griffiths and Fenton 2004).

Traditional probabilistic analysis in which spatial vari-
ability is ignored consistently gave the highest mean factors 
of safety. This is because properties are constant within the 
slope in each realization which does not capture the forma-
tion of failure surface through weaker regions. The stand-
ard deviation of factor of safety is also significantly higher 
when spatial variability is ignored implying a wider spread 
of FOS (Fig. 10). This is again due to using constant proper-
ties within the slope in each realization where occurrence 
of extreme strength properties directly leads to extreme 
values of FOS. In reality; however, regions with extreme 
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properties are surrounded by zones with intermediate prop-
erties and the effect of extreme properties is significantly 
moderated. The distribution of FOS is also quite asymmetric 
when spatial variability is ignored making lower values of 
FOS more likely to occur (Fig. 11). The combined effect of 
wide spread and asymmetric distribution of FOS leads to 
significant overestimation of probability of failure. This is 
in keeping with previous findings of El-Ramly et al. (2002), 
Cho (2007), Hong and Roh (2008) and Allahverdizadeh 
et al. (2015). Ignoring spatial variability in probabilistic 
slope analysis may only be justified if the spatial correlation 
length is significantly greater than the length of the critical 
slip surface. Preliminary findings of Allahverdizadeh et al. 
(2015) and Javankhoshdel et al. (2017) suggest that there 
is minimal change in probability of failure once the spatial 
correlation length exceeds about five times the slope height.

Natural variability of properties can be modeled more 
realistically when properties are allowed to vary spatially 
within the slope. Incorporating spatial variability in proba-
bilistic analysis of Slope#1 with Mohr–Coulomb behavior 
provided similar results using LE and SSR methods. This 
suggests that mean factor of safety and probability of fail-
ure of simple slopes with Mohr–Coulomb behavior may 
be obtained using the more computationally efficient limit 
equilibrium analysis. However, for slopes with more com-
plex geometry, loading and mechanical behavior or in cases 
where information about displacements is required, numeri-
cal modeling and SSR method may be adopted. Increasing 
correlation length from 4 m to 16 m led to minor reduction 
in mean FOS and increase in POF only at very high levels 
of strength variability. This is consistent with the findings 
of El-Ramly et al. (2006) who reported negligible change 

in FOS and POF by increasing spatial correlation length 
over a reasonable range. This suggests that using reasonable 
estimates of correlation length may give sufficiently accurate 
results in stable slopes with average variability.

For Slope #2 with Hoek–Brown behavior, the results of 
LE and SSR methods followed a similar trend. However, 
using the equivalent Mohr–Coulomb criterion with empiri-
cally estimated parameters led to a consistent gap between 
mean FOS values obtained from the LE* and SSR methods. 
This is in keeping with the findings of Li et al. (2008) who 
reported slight overestimation of FOS due to approximation 
of the nonlinear Hoek–Brown criterion. One way to reduce 
the discrepancy is to apply a correction factor to the FOS 
values obtained using the equivalent Mohr–Coulomb crite-
rion to match the FOS from the Hoek–Brown criterion in a 
deterministic analysis. In Slope #2 for example, applying a 
correction factor of 1.35/1.39 causes the deterministic FOS 
obtained from the Hoek–Brown and equivalent Mohr–Cou-
lomb criteria to match (Fig. 13).

In most of the analyses presented here, cohesion and 
friction angle were considered as independent variables. 
However, it was shown that incorporating a negative cross 
correlation between cohesion and friction angle can lead to 
an increase in mean FOS and decrease in POF. Therefore, 
for slopes with deterministic FOS > 1, probabilistic analysis 
with independent cohesion and friction angle provides con-
servative results (e.g., Chiwaye and Stacey 2010; Javankho-
shdel and Bathurst 2016). The negative cross correlation, 
though reported for certain geomaterials, is not always sig-
nificant (e.g., El-Ramly et al. 2005, 2006) and may be relied 
on only if confirmed by the results of experiments on a given 
material.
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While spatial variability of strength properties was dis-
cussed in this study and incorporated in slope stability analy-
sis, it is recognized that such analysis can be prohibitively 
time consuming, especially using the SSR method. Hence, 
it is valuable to establish relationships to approximate 
the behavior of a heterogeneous material with that of an 
equivalent homogeneous material. Once the parameters of 
the equivalent material are obtained, a single deterministic 
analysis can be carried out to estimate the results of a com-
putationally expensive probabilistic analysis with numerous 
realizations.

Eurocode 7 (CEN 2004) suggests the use of a characteris-
tic value defined as a cautious estimate of the value affecting 
the occurrence of design failure. As suggested by Schneider 
(1999) and confirmed by Orr (2000), the characteristic value 
of a strength property such as intact uniaxial compressive 
strength can be estimated using

where �EC7
ci

 is the characteristic intact uniaxial compressive 
strength according to Eurocode 7 and �̄�ci and COV 

(

�ci
)

 are 
mean and coefficient of variation of intact uniaxial compres-
sive strength, respectively.

It is useful to examine how the regulatory-based guide-
lines of Eurocode 7 compare with the results of modeling-
based probabilistic analysis in this study. Based on the 
results of numerical tests on large-scale heterogeneous 
samples shown in Fig. 7, the equivalent strength �∗

ci
 can be 

estimated using

For heterogeneous slopes, it is constructive to estab-
lish relationships between the model parameters in a 

(5)𝜎EC7
ci

≈ �̄�ci
[

1 − 0.5COV
(

𝜎ci
)]

,

(6)𝜎∗

ci
= �̄�ci

[

1 − 0.35COV
(

𝜎ci
)]

.

deterministic analysis which gives the FOS equal to the 
mean FOS from a probabilistic analysis. A series of deter-
ministic analyses were carried out on Slope#2 using the 
Hoek–Brown criterion with gradually reducing the intact 
uniaxial compressive strength down to 20% of the mean 
value. Figure 18a shows that as expected, reducing strength 
leads to reduction of factor of safety. Once the relationship 
between strength and FOS in a deterministic analysis is 
established, it is possible to match the deterministic FOS 
with mean probabilistic FOS in Fig. 17 and find correspond-
ing levels of COV of intact uniaxial compressive strength. 
Figure 18b shows the relationship between the equivalent 
intact strength used in deterministic analysis which gave the 
FOS identical to mean FOS from a probabilistic analysis 
for any given level of strength variability.Adopting a linear 
function similar to that used in Eurocode 7, the relation-
ship between equivalent strength and strength variability for 
slope stability analysis can be given by

 
The slight nonlinearity of the trend can be captured using 

the following equation for median strength assuming lognor-
mal distribution:

Note that Eqs. (7) and (8) are developed based on the 
results of slope stability analysis with COV 

(

�
ci

)

 < 1 and 
caution should be exercised in extrapolating beyond this 
range. The equivalent strength from these equations can be 

(7)𝜎∗

ci
= �̄�ci

[

1 − 0.3COV
(

𝜎ci
)]

.

(8)𝜎∗

ci
=

�̄�ci
√

1 + COV2
(

𝜎ci
)

.
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readily used in a single deterministic slope analysis to esti-
mate the mean FOS. This is useful in early stages of design 
where data are limited and estimating the factor of safety of 
a heterogeneous slope is the primary objective. Probability 
of failure, however, may only be obtained from a complete 
probabilistic analysis such as those presented in Sect. 6.

It can be observed that the results of probabilistic analysis 
of large heterogeneous samples and slopes suggest relation-
ships for equivalent strength similar to the Eurocode 7 guide-
lines. In Eurocode 7, however, the characteristic strength 
is conservatively chosen whereas the equivalent strength in 
this study provides an unbiased estimate of the strength of 
a heterogeneous material. Considering the completely dif-
ferent geometry and loading path of the numerically tested 
heterogeneous samples and heterogeneous slopes, similarity 
of the relationships obtained for equivalent strength is worth 
noting.

Over decades of consulting at the Rosario open pit mine 
in northern Chile, a dataset of back-analyzed intact rock 
strength values which reproduced the observed behavior of 
highly heterogeneous slopes has been compiled (Silva-Man-
diola 2018). The independently developed dataset of back-
analyzed strength values was used to evaluate the equiva-
lent strength relationships proposed in this study. Figure 19 
shows that there is a surprisingly close agreement between 
the equivalent strength calculated from Eq. (7) and the back-
analyzed strength values which predicted slope behavior.

For Slope#1 in this study, the Mohr–Coulomb criterion 
was used and rock mass cohesion and friction angle were 
considered as variables. In probabilistic analysis of Slope#2, 
however, the uniaxial compressive strength of intact rock 

was the only variable while other Hoek–Brown parameters 
were kept constant. This was done intentionally to isolate the 
effect of variability in intact rock strength and develop rela-
tionships for an equivalent strength. In reality, there is also 
some level of variability in other strength parameters which 
add to the overall strength variability of rock mass (Hoek 
1998). The framework of probabilistic analysis described 
in this study can be readily applied to include any num-
ber of strength properties as variables with no additional 
complexity.

8  Conclusions

Variability of properties is an inherent characteristic of geo-
materials which can affect the performance of engineering 
structures. Strength variability of rocks was discussed and 
the results of systematic point load testing program in por-
phyry deposits were presented indicating that coefficient of 
variation of intact rock uniaxial compressive strength can 
reach unity.

The effect of small-scale strength variability on the 
strength of large samples was explored using numeri-
cal modeling. Heterogeneous samples following specific 
strength distributions were generated and tested under uni-
axial compression to determine large-scale strength. Fol-
lowing the framework of probabilistic analysis, numerous 
realizations were analyzed and strength distribution of large-
scale heterogeneous samples was established.

Strength heterogeneity was also introduced in slope sta-
bility analysis using limit equilibrium and shear strength 
reduction methods. The results of deterministic analysis 
with both approaches were similar. It was observed that for 
the stable slopes analyzed in this study, increasing strength 
variability leads to a reduction in mean factor of safety and 
increase in probability of failure. Traditional probabilistic 
analysis in which spatial variability is ignored consistently 
overestimated mean factor of safety. Due to high spread 
and asymmetric distribution of factor of safety in this case, 
probability of failure was significantly overestimated. More 
realistic modeling of rock heterogeneity was achieved by 
incorporating spatial variability and allowing properties to 
vary within the slope. The results of limit equilibrium and 
shear strength reduction methods were in good agreement 
for Mohr–Coulomb slopes with finite spatial correlation 
lengths. Approximation of the nonlinear Hoek–Brown cri-
terion with an equivalent Mohr–Coulomb criterion caused 
minor overestimation of factor of safety.

The results of the comprehensive probabilistic analysis of 
large-scale heterogeneous samples and slopes were utilized 
to develop relationships for equivalent strength. Despite con-
siderable difference in geometry and loading path involved 
in the analysis of heterogeneous samples and slopes, a 
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Fig. 19  Comparison of the proposed equivalent strength with back-
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similar linear relationship was found between equivalent 
strength and coefficient of variation of intact strength. Based 
on the results of this study, reducing mean uniaxial com-
pressive strength of intact rock by one-third of its standard 
deviation can provide an estimate of the equivalent strength 
of intact rock. This relationship was further validated using 
the values of back-analyzed strength which reproduced the 
observed behavior of heterogeneous slopes.
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