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Abstract
We present an analytical model for the shear behaviour of a rock joint with waviness and unevenness. The waviness and 
unevenness of a natural joint profile are quantitatively separated through wavelet analysis. The critical waviness and criti-
cal unevenness of a joint profile are subsequently determined. The degradation process of each-order asperity is predicted 
by considering the role of plastic tangential work in shear, by which the sheared-off asperity area and the dilation angle 
are quantified. Both the dilation angles of critical waviness and critical unevenness decay, as plastic tangential work accu-
mulates. The analytical predictions are compared with the experimental data from direct shear tests on both regular- and 
irregular-shaped joints. Good agreement between analytical predictions and laboratory-measured curves demonstrates the 
capability of the developed model. Therefore, the model is capable of assessing the stability of rock-engineering structures 
with ubiquitous joints.
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List of Symbols
Au	� Amplitude of critical unevenness
Aw	� Amplitude of critical waviness
A0
u
	� Initial amplitude of critical unevenness

A0
w
	� Initial amplitude of critical waviness

as	� Sheared area ratio
as
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	� Sheared area ratio of critical unevenness
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w
	� Sheared area ratio of critical waviness

cu	� Degradation coefficient of critical unevenness
cw	� Degradation coefficient of critical waviness
dSs

u
	� Increment of the sheared area of critical 

unevenness
dWp

s 	� Increment of plastic tangential work
d�	� Increment of shear stress
F	� Reduction factor
i0	� Initial inclination angle of critical waviness
id	� Dilation angle of critical waviness
im
d

	� Mobilisable dilation angle of critical waviness
K	� Dimensionless coefficient
ks	� Joint shear stiffness
S0
u
	� Initial area of critical unevenness

S0
w
	� Initial area of critical waviness

Su	� Unsheared area of critical unevenness
Sb
u
	� Area of critical unevenness base

Ss
u
	� Sheared area of critical unevenness

Sw	� Unsheared area of critical waviness
Sb
w
	� Area of critical waviness base

Ss
w
	� Sheared area of critical waviness

Ws
e
	� Elastic tangential energy

W
p
s 	� Plastic tangential work

�0	� Initial inclination angle of critical unevenness
�d
m

	� Mobilisable dilation angle of critical unevenness
�ave	� Average percent error
�ave(�n)	� Average percent error of dilation
�ave(�)	� Average percent error of shear stress
�
pre
n 	� Predicted dilation
�
exp
n 	� Experimental dilation
�e
ms

	� Maximum elastic shear displacement
�e
s
	� Elastic shear displacement

�
p
s 	� Plastic shear displacement
�n	� Joint dilation
Δ�n	� Incremental dilation
Δ�

p
s 	� Plastic shear displacement increment

�u	� Wavelength of critical unevenness
�0
u
	� Initial wavelength of critical unevenness

�w	� Wavelength of critical waviness
�0
w
	� Initial wavelength of critical waviness
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�c	� Uniaxial compressive strength of rock
�n	� Normal stress
�n
T
	� Transitional normal stress

�s
T
	� Transitional shear stress

�	� Shear stress
�b	� Basic frictional strength
�m	� Mobilisable shear strength
�exp	� Experimental shear stress
�pre	� Predicted shear stress
�b	� Basic friction angle

1  Introduction

The stability of natural and engineering rock structures, 
such as rock slopes and underground excavations, is largely 
affected by the presence of rock joints along which slide 
failure can easily take place. Natural joints possess two-
order roughness, i.e., waviness (first-order) and unevenness 
(second-order). Both order asperities experience dilation and 
degradation, leading to the non-linear mechanical response 
of a rock joint to shear loading. Quantifying the evolution of 
waviness and unevenness is crucial to constitute an adequate 
model for simulating the shear behaviour of a rock joint.

The mechanical reaction of a rock joint to shear mainly 
depends on normal stress, rock properties, and surface 
roughness (Patton 1966; Ladanyi and Archambault 1969; 
Barton 1973). When the normal stress is low, the rock joint 
fails due to the slide of asperities against each other. Under 
this circumstance, dilation dominates the mode of shear fail-
ure. If the normal stress grows to an adequately high level, 
the asperities are severely damaged. That is to say, the shear 
behaviour of the rock joint is controlled by asperity degra-
dation. Dilation and degradation of asperities occur concur-
rently for a rock joint subjected to shear under non-extreme 
normal stress conditions. Several models have been proposed 
to quantify the degradation of joint asperities, most of which 
suffer the following limitations. First, the applicability of the 
models is limited to two-dimensional joints with idealised 
profiles (Ladanyi and Archambault 1969; Plesha 1987; Saeb 
and Amadei 1992). Second, the models are highly empirical, 
lacking solid theoretical foundation (Barton and Choubey 
1977; Grasselli and Egger 2003; Asadollahi and Tonon 
2010; Li et al. 2018). Third, the models commonly demand 
more than one coefficients, the determination of which relies 
on back-analysing experimental data or empirical judge-
ment (Schneider 1976; Lee et al. 2001; Ghazvinian et al. 
2012; Oh et al. 2015). Thus, the practicality of these models 
in the field is still under examination. Fourth, few models 
have considered the roles of waviness and unevenness play-
ing in shear. The dilation and degradation of waviness and 

unevenness mutually dictate the shear stress evolution as 
shear proceeds (Li et al. 2016, 2017, 2018).

This paper presents an analytical model for the shear 
behaviour of rock joints with two-order asperities. Wavi-
ness and unevenness are separated through wavelet analysis, 
based on which critical waviness and critical unevenness are 
quantitatively determined. The dilation and degradation of 
critical waviness and critical unevenness are, respectively, 
predicted by considering the dominance of plastic tangen-
tial work in asperity deterioration. The sheared areas of 
two-order asperities are assessed by accounting for the true 
asperity areas participating in shear. The capability of the 
analytical model is illustrated by correlating with experi-
mental data from both sawtooth- and natural-shaped joints.

2 � Analytical Modelling

2.1 � Problem Description

We consider a rock block cut by a tightly closed joint 
(Fig. 1). The upper block under a normal stress ( �n ) can 
move vertically, and the lower part is restricted to displace 
horizontally subjected to a shear stress ( � ). The joint asperi-
ties consist of waviness and unevenness. The mechanical 
contributions of waviness and unevenness to shear resistance 
can be separately represented by critical waviness and criti-
cal unevenness (Li et al. 2016). Geometrical properties of 
the two-order asperities include the initial inclination angles 
( i0 and �0 ), wavelength ( �0

w
 and �0

u
 ), and amplitude ( A0

w
 and 

A0
u
 ) of critical waviness and critical unevenness, respectively. 

In the following, we show the determination of critical wavi-
ness and critical unevenness of a natural joint profile.

2.2 � Roughness Decomposition

Waviness and unevenness of a rock joint occur in varying 
scales. Waviness initially refers to large-scale undulations 
in the field, and unevenness represents small-scale asperi-
ties that are observed in the laboratory (Patton 1966; ISRM 
1978). The roughness of a laboratory-scale joint also com-
prises waviness and unevenness (Jing et al. 1992; Yang et al. 
2001; Lee et al. 2001). Waviness with comparatively larger 
wavelength mainly contributes to the dilation behaviour, 
whereas unevenness of a smaller asperity size is sheared off 
and broken, providing shear resistance to the shear move-
ment. The roles of waviness and unevenness playing in shear 
can be correspondingly represented by a critical waviness 
and a critical unevenness (Li et al. 2016, 2017). The criti-
cal waviness was practically determined as the waviness 
with the highest amplitude along the shear direction, and 
the critical unevenness is the unevenness with the longest 
wavelength on the critical waviness (Li et al. 2016, 2017). 
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This pragmatic approach is effective for a joint profile with 
unmissable undulations and unevenness, whereas natural 
joints, particularly those with low degree roughness, may 
exhibit waviness and unevenness that are hardly discern-
able. Therefore, a quantitative approach is required to 
decompose joint roughness into waviness and unevenness 
at different scales. Recently, wavelet analysis stemming from 
signal processing has been utilised to isolate waviness from 
unevenness, for the purpose of studying joint permeability 
(Zou et al. 2015), implying the potential of the method for 
predicting the shear behaviour of rock joints with waviness 
and unevenness.

Following the approach of Zou et al. (2015), Fig. 2 illus-
trates the decomposition of a natural joint profile into wavi-
ness and unevenness through wavelet analysis. The Wavelet 
Design and Analysis Toolbox in Matlab is utilised to per-
form the analysis. A digitised joint profile is imported into 
the toolbox. The Daubechies’ wavelet (db8) producing the 
best match of the joint profile is used as the mother wavelet. 
The fourth level of the approximation profile is determined 
as waviness. Unevenness is acquired by subtracting waviness 
from the original profile. To remove the noise of unevenness, 
wavelet analysis is conducted again. Critical waviness is eas-
ily determined as the undulation with largest wavelength 
and amplitude along shear direction. The critical uneven-
ness is chosen as the largest asperity on the critical waviness 
(Fig. 2b). The geometrical properties of critical waviness 
and critical unevenness are measured.

2.3 � Model Framework

Li et al. (2016, 2017, 2018) reported that the shear behav-
iour of a rock joint is governed by the mobilisation of wavi-
ness and unevenness. For a rock joint under shear, there is 
a bounding or mobilisable shear strength ( �m ) that repre-
sents the maximum reachable shear stress, resembling the 
continuously-yielding model (Cundall and Hart 1984). Fig-
ure 3 shows typical shear stress–shear displacement and dila-
tion–shear displacement relationships based on the mobilis-
able shear strength model.

The mobilisable shear strength of a natural rock joint ( �m ) 
consists of strength components to overcome basic friction, 
dilation, and degradation of critical waviness and critical 
unevenness, respectively:

where im
d

 and �m
d

 represent the mobilisable dilation angles of 
critical waviness and critical unevenness, respectively. The 
mobilisable dilation angle contributed by critical waviness 
and critical unevenness is

as denotes the sheared area ratio, which equals

(1)�m = �n tan(�b + i
m
d
+ �m

d
)(1 − as) + as�

s
T
,

(2)d
m
n
= i

m
d
+ �m

d
.

where Ss
w
 and Ss

u
 denote the sheared areas of critical waviness 

and critical unevenness, respectively, and S0
w
 and S0

u
 represent 

the initial areas of critical waviness and critical unevenness, 
correspondingly.

�s
T
 in Eq. (1) is the transitional shear stress, subjected to 

which the asperities are completely sheared off without joint 
dilation, and is estimated as:

where �b is the joint basic friction angle, and �n
T
 is the tran-

sitional normal stress (Ladanyi and Archambault 1969; Ger-
rard 1986; Saeb and Amadei 1992; Li et al. 2018).

The shear stress–shear displacement and dilation–shear 
displacement curves of a rock joint under shear can be pre-
dicted based on the mobilisable shear strength. Upon shear 
loading, joint asperities deform elastically, producing a 
linear relationship between shear stress increment (d� ) and 
shear displacement increment ( d�e

s
 ), that is

where ks denotes the joint shear stiffness.
In the elastic stage, the joint dilation angle ( dn ) is zero, 

whereas the mobilisable dilation angle ( dm
n

 ) decreases from 
the maximum value which equals the sum of the initial 
inclination angles of the critical waviness and the critical 
unevenness ( i0 + �0 ) (Fig. 2). Once the shear stress exceeds 
the basic frictional strength ( �b = �n tan�b ) (Oh et al. 2015), 
the joint enters the plastic stage due to asperity degrada-
tion, where dilation commences. The mobilisable dilation 
angle ( dm

n
 ) continues to decrease. The dilation angle ( dn ) 

is maximum at the beginning of plastic stage, followed by 
continuous decrease as shear proceeds. During the whole 
shear process, the mobilisable shear strength �m reduces due 
to the deformation of waviness and unevenness. The shear 
stress ( � ) in the plastic stage is dictated by the shear stiff-
ness that is the slope of the shear stress–shear displacement 
curve ( Fks ), where F is a reduction factor and depends on the 
difference between the shear stress ( � ) and the mobilisable 
shear strength ( �m ) (Cundall and Hart 1984), that is

When the critical waviness and the critical unevenness are 
entirely sheared off at a sufficiently large shear displacement, 
the shear stress ( � ) equals the mobilisable shear strength 
( �m ) (Fig. 2).

(3)as =
Ss
w
+ Ss

u

S0
w
+ S0

u

,

(4)�s
T
= �n

T
tan�b,

(5)d� = ks d�
e
s
,

(6)F = 1 −
�

�m
.
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2.4 � Asperity Degradation

In the plastic stage, asperities are degraded and dilation occurs, 
resulting in the shear stress variation. The degradation of an 
asperity depends on the combination of shear stress and shear 
displacement (Plesha 1987). Based on the classic wear theory 
(Queener et al. 1965; Leong and Randolph 1992; Li et al. 
2016) and considering plastic tangential work, for the critical 
waviness, we propose that the increment of the sheared area 
of the critical waviness (dSs

w
 ) over the increment of plastic tan-

gential work (dWp
s  ) is linearly proportionate with the unsheared 

area of the critical waviness ( Sw ), that is

where the increment of plastic tangential work ( dWp
s  ) is the 

product of shear stress and plastic shear displacement incre-
ment, i.e., dWp

s = � d�
p
s  . cw is the degradation coefficient of 

the critical waviness with a unit of length / force.
Considering the area variation of the unsheared area of the 

critical waviness ( Sw ) due to plastic shear displacement, as 
illustrated in Fig. 4, the unsheared area of the critical wavi-
ness ( Sw ) is

(7)
dSs

w

dW
p
s

= cwSw,

(8)Sw =
Aw�w

2
=

(�0
w
− 2�

p
s )

2

2(cot id + cot i0)

Note that the sinusoidal-shaped critical waviness is simpli-
fied triangular.

The sheared area of the critical waviness is

where Sb
w
 is the area of the critical waviness base that is no 

longer involved in shear due to dilation, and is calculated as

Combining Eqs. (7) and  (8), the sheared and unsheared 
areas of the critical waviness are, respectively 

Thus, the sheared area of the critical waviness is

Equating Eqs. (11b) and  (8) yields the dilation angle of the 
critical waviness ( tan id):

(9)S
s
w
= S

0
w
− Sw − S

b
w
,

(10)S
b
w
= ∫

�n

0

(�w + �0
w
− 2�

p
s )

2
d�n.

(11a)S
s
w
= (S0

w
− S

b
w
)(1 − e−cwW

p
s )

(11b)Sw = (S0
w
− S

b
w
) e−cwW

p
s .

(12)S
s
w
= S

0
w
− Sw − S

b
w
=

�0
w
A0
w

2
−

(�0
w
− 2�

p
s )

2

2(cot id + cot i0)
− S

b
w
.

Table 1   Input parameters used 
in the analytical model for 
predicting the shear behaviours 
of sawtooth-shaped joints with 
20

◦ and 30◦ initial inclination 
angles

Critical waviness �n (MPa) k
s
 (MPa/mm) �e

ms
 (mm) K

i
0
(◦) �0

w
(mm) A0

w
(mm)

20 25 4.55 1.5 1.56 1.10 0.6
3.5 2.76 1.67
5.0 2.98 2.35

30 25 7.22 1.0 1.94 1.36
3.0 2.60 2.16
5.0 3.28 2.37

Fig. 1   Illustration of a natural 
rock joint subjected to shear ( � ) 
under a normal stress ( �n)
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The sheared area ratio of the critical waviness ( as
w
 ) is

(13)tan id =
2 tan i0 (S

0
w
− Sb

w
) e−cwW

p
s

tan i0 (�
0
w
− 2�

p
s )

2 − 2(S0
w
− Sb

w
)
.

(14)a
s
w
=

Ss
w

S0
w

.

The mobilisable dilation angle of the critical waviness in 
the elastic stage decreases as the elastic tangential energy 
( We

s
= ∫ �d�e

s
 ) accumulates in the asperity:

(15)tan im
d
=

e−cwW
e
s

2 − e−cwW
e
s

tan i0.

Fig. 2   Roughness decomposi-
tion using wavelet analysis
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The degradation coefficient of the critical waviness ( cw ) 
relies on the geometric properties of the asperity and the 
uniaxial compressive strength of the rock ( �c):

where K is a dimensionless constant that represents the influ-
ence of experimental environments, such as humidity and 
temperature, on the degradation process of waviness.

Similarly, for the critical unevenness, the mobilisable 
dilation angle of the critical unevenness in the elastic stage 
( tan �m

d
 ) is

where �0 denotes the initial inclination angle of the critical 
unevenness, and cu is the degradation coefficient of the criti-
cal unevenness.

In the plastic stage, we have 

(16)cw = K
id

�c

√
Sw

,

(17)tan �m
d
=

e−cuW
e
s

2 − e−cuW
e
s

tan �0,

(18a)tan �d =
2 tan �0 (S

0
u
− Sb

u
) e−cuW

p
s

tan �0 (�
0
u
− 2�

p
s )

2 − 2(S0
u
− Sb

u
)

(18b)S
s
u
=
�0
u
A0
u

2
−

(�0
u
− 2�

p
s )

2

2(cot �d + cot �0)
− S

b
u

(18c)S
b
u
= ∫

�n

0

(�u + �0
u
− 2�

p
s )

2
d�n

(18d)a
s
u
=
Ss
u

S0
u

 where A0
u
 , �0

u
 , and S0

u
 are the initial amplitude, wavelength, 

and area of the critical unevenness, respectively. �d and 
�u denote the dilation angle and wavelength of the criti-
cal unevenness under shearing, respectively. Su and Ss

u
 are 

the unsheared and sheared areas of the critical unevenness, 
respectively. Sb

u
 is the area of the critical unevenness base, 

and as
u
 is the sheared area ratio of the critical unevenness.

3 � Model Validation

3.1 � Model Implementation

Figure 5 illustrates the procedures for implementing the 
proposed model. Equation (5) yields the linear relationship 

(18e)cu =K
�d

�c

√
Su

,

Table 2   Input parameters used in the analytical model for predicting the shear behaviour of the JRC-shaped joints

Sample �n (MPa) Critical waviness Critical unevenness k
s
 (MPa/mm) �e

ms
 (mm) K

i
0
(◦) �0

w
(mm) A0

w
(mm) �

0
(◦) �0

u
(mm) A0

u
(mm)

JRC 4–6 1 1.7 60 0.9 5.1 16 0.71 0.67 0.5 0.5
JRC 10–12 3.5 9.3 60 4.9 7.2 10 0.63 1.5 1.0
JRC 14–16 5.0 12.4 53 5.8 12.7 8.0 0.9 2.7 1.3

Table 3   Input parameters used 
in the analytical model for 
predicting the shear behaviour 
of the irregular joints in 
Flamand et al. (1994)

Critical waviness Critical unevenness Elastic stage �n (MPa) K

i
0
(◦) �0

w
(mm) A0

w
(mm) �

0
(◦) �0

u
(mm) A0

u
(mm) 7 14 21

5.1 35.2 1.6 14.0 4.0 0.5 k
s
(MPa/mm) 32.7 53.5 62.8 0.2

�e
ms

(mm) 0.34 0.25 0.28

Table 4   Average percent errors ( �
ave

 ) between experimental data and 
analytical predictions

Experiments Cases �
ave
(�) (%) �

ave
(�n) (%)

20
◦ �n = 1.5MPa 5.2 6.1

�n = 3.5MPa 8.7 5.3
�n = 5.0MPa 8.5 6.4

30
◦ �n = 1.0MPa 11.4 11.5

�n = 3.0MPa 10.7 12.3
�n = 5.0MPa 6.3 10.2

JRC 4-6 �n = 1.0MPa 8.5 8.3
JRC 10-12 �n = 3.5MPa 7.9 17.4
JRC 14-16 �n = 5.0MPa 10.7 15.4
Flamand et al. (1994) �n = 7.0MPa 5.2 11.1

�n = 14.0MPa 9.1 10.9
�n = 21.0MPa 8.5 10.7
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between the shear stress and the shear displacement in the 
elastic stage. Once the shear displacement exceeds the maxi-
mum elastic shear displacement ( �e

ms
 ), plastic deformation 

appears accompanied by asperity degradation. Equation (6) 
is employed to continuously update the shear stiffness, i.e., 
the slope of the shear stress–shear displacement curve. 
When the shear displacement reaches the prescribed value, 
i.e., the iterative step (i) equals the maximum loop number 
(n), the calculation ends and outputs shear stress, dilation, 
and shear displacement.

The model’s validity has been demonstrated by compar-
ing with the experimental data from direct shear tests on 

both sawtooth- and irregular-shaped joints under varying 
normal stresses. The shear stiffness ( ks ) and the maximum 
shear displacement ( �e

ms
 ) are obtained based on the experi-

mental curves. The transitional normal stress is conveniently 
assessed as 20%–30% of the uniaxial compressive strength 
of the rock (Flamand 2000; Grasselli and Egger 2003).

3.2 � Model Validation

We performed direct shear tests on both sawtooth- and JRC-
shaped joints with a Geotechnical Consulting and Testing 
Systems (GCTS) servo-hydraulic testing machine, RDS-300 

Fig. 3   Shear stress–shear 
displacement and dilation–shear 
displacement relationships 
based on the mobilisable shear 
strength model. � , �b , and �m 
denote shear stress, basic fric-
tional strength, and mobilisable 
shear strength, respectively. �e

ms
 , 

�s , and �n represent maximum 
elastic shear displacement, shear 
displacement, and dilation, 
correspondingly. dn and dm

n
 are 

dilation angle and mobilisable 
dilation angle, respectively. i0 
and �0 refer to inclination angles 
of the critical waviness and the 
critical unevenness, separately. 
ks denotes joint shear stiffness, 
and F is the reduction factor. d � , 
d�n , and d�s are increments of 
shear stress, dilation, and shear 
displacement, respectively

Fig. 4   Degradation process of a sawtooth-shaped critical waviness. i0 , 
�0
w
 , and A0

w
 are the initial inclination angle, wavelength, and ampli-

tude of the critical waviness, respectively. id , �w , and Aw are the dila-
tion angle, wavelength, and amplitude of the critical waviness under 
shearing. d�ps  and d�n are the incremental plastic shear displacement 

and the incremental dilation, respectively. �n denotes dilation. Ss
w
 is 

the sheared area of the critical waviness, and d Ss
w
 is the incremental 

sheared area of the critical waviness. Sb
w
 is the area of the critical wav-

iness base
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(Li 2016). Two types of sawtooth-shaped joints with the 
same wavelength of 25 mm and different initial inclination 
angles of triangular asperities, i.e., 20◦ and 30◦ , and three 
types of JRC-shaped joints, i.e., JRC 4–6, JRC 10–12, and 
JRC 14–16, were prepared (Fig. 6). The digitising interval 
of the standard JRC profiles was 0.5 mm. To ensure that the 
profiles of the replicas were as identical as possible, cast 
moulds were designed and manufactured of high-strength 
stainless steel. Figure 7a–c illustrates the decomposition of 
the three JRC profiles, respectively.

The synthetic joints were made of the Hydrostone gyp-
sum cement, which consisted of CaSO4 ⋅ H2O > 95% and 
Portland cement < 5% . The cement and water were mixed 
at a weight ratio of 1:0.35. All the samples dimensioned 
100mm × 100mm × 100mm were seasoned at 42◦C in a 
curing oven for 14 days. The uniaxial compressive strength 

of the cement mixture was 46.3 MPa, the tensile strength 
was 2.4 MPa, and the basic friction angle was 42◦ . The tran-
sitional normal stress was estimated at 0.2 �c.

We analytically simulated the shear stress and dilatancy 
of the sawtooth- and JRC-shaped joints under different nor-
mal stresses from 1.0 to 5.0 MPa. Tables 1 and 2 detail the 
input parameters used in the analytical model. Figures 8, 9 
and 10 show an overall good agreement between the analyti-
cal predictions and the experimental data. Some differences 
appear between the analytical and the experimental curves 
in the post-peak stages, particularly for the sawtooth-shaped 
joints under higher normal stresses (Figs. 8, 9). These dis-
crepancies mainly resulted from the brittle dynamic failure 
of the regular asperities, which are not well captured by 
the proposed model that assumes asperities undergo grad-
ual degradation. For the JRC- shaped joints, the predicted 

Fig. 5   Flowchart for model 
implementation

I
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dilatancy does not match the experimentally observed values 
very well (Fig. 10). The omission of higher order (third or 
fourth) asperities is mainly responsible for the disagreement, 
as higher order asperities have more pronounced influence 
on dilation than shear stress.

We further compared the analytical predictions to the 
experimental data of joints with natural profiles. Flamand 
et al. (1994) carried out direct shear tests on synthetic joints 

cast from the natural joints sourced in the Guèret granite 
(France). Figure 7d shows the decomposition of the joint 
profile. The non-shrinking mortar was used to replicate joint 
samples with a diameter of 90 mm. The uniaxial compres-
sive strength of the mortar was 82 MPa, the tensile strength 
was 6.6 MPa, and the basic friction angle was 37◦ . The tran-
sitional normal stress was estimated at 0.3 �c.

Fig. 6   Sawtooth- and JRC-
shaped joint samples used in the 
direct shear tests

(b)

(c)

(d)

(a)
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We analytically reproduced the shear stress–shear dis-
placement and dilation–shear displacement curves of 
the irregular-shaped joints under three different normal 
stresses, namely, 7 MPa, 14 MPa, and 21 MPa. Table 3 
lists the input parameters used in the analytical prediction. 

Figure 11 shows that the proposed model predicts effectively 
the shear stress–shear displacement behaviour, but slightly 
overestimates the dilation–shear displacement relationship. 
This overestimation of dilation possibly results from the fact 
that one two-dimensional joint profile may be inadequate to 
describe the joint surface characteristics reproduced from 
natural joints.

We demonstrated the performance of the proposed model 
by comparing the analytical predictions to the experimen-
tal data obtained from direct shear tests on sawtooth- and 
irregular-shaped joints under different normal stresses. To 
quantify the accuracy of the analytical predictions, the aver-
age percent error ( �ave ) is used as a precision indicator. The 
average percent errors of shear stress ( �ave(�) ) and dilation 
( �ave(�n) ) are, respectively: 

 where z is the number of data for analysis, �exp and �pre 
denote the experimental and the analytical shear stresses, 
respectively; �expn  and �pren  are the experimental and the pre-
dicted dilation, separately.

Table 4 lists the average percent errors of shear stress 
and dilation between the experimental data and the ana-
lytical predictions. For all cases, the average percent errors 
are lower than 18%, most of which do not exceed 15%. 
Therefore, the proposed model satisfactorily predicts the 
shear behaviour of rock joints under direct shear. How-
ever, the capability of the proposed model can be further 
improved by incorporating the sudden brittle breakage 
of large asperities in the post-peak stage and the effect 
of higher order asperities on the shear behaviour of rock 
joints.

4 � Discussion

In this paper, the shear behaviour of a rock joint exhibiting 
two-order roughness is analytically modelled. The proposed 
model possesses the following advantages. First, critical 
waviness and critical unevenness are determined based on 
quantifiable separation of waviness and unevenness through 
wavelet analysis technique. Second, asperity degradation is 
predicted by establishing the relationship between asper-
ity area variation and plastic tangential work, which mim-
ics the physically motivated process of asperity evolution. 
Third, the model reproduces the non-linear variations of 
shear stress and dilation of a rock joint under shearing with 

(19a)�ave(�) =
1

z

z∑

m=1

|�
exp − �pre

�pre
| × 100%

(19b)�ave(�n) =
1

z

z∑

m=1

|
�
exp
n − �

pre
n

�
exp
n

| × 100%,

(a)

(b)

(c)

(d)

Fig. 7   Roughness decomposition of three JRC profiles and the joint 
profile in Flamand et al. (1994)
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acceptable accuracy, as demonstrated by the comparison 
between analytical predictions and experimental data.

Although the proposed model owns the above-mentioned 
strengths, it has limitations. First, transitional normal stress 
is empirically determined as 20–30% �c based on limited 
experimental data of Flamand (2000) and Grasselli and 
Egger (2003). The magnitude of transitional normal stress 
depends on a number of variables such as rock mineral-
ogy, joint roughness, and porosity (Wong and Baud 2012). 

Accurate acquisition of transitional normal stress requires 
performing direct shear tests in the high normal stress range. 
Second, the dimensionless coefficient K in Eqs. (16) and 
(17) was obtained by back-analysing experimental data. The 
estimation of K is quite challenging based on our current 
understanding on asperity degradation, since it depends 
heavily on the experimental environments such as humidity 
and temperature.

(a) (b)

Fig. 8   Comparison between the analytical predictions and the experimental curves from direct shear tests on the sawtooth-shaped joints with 20◦ 
initial inclination angle

(a) (b)

Fig. 9   Comparison between the analytical predictions and the experimental curves from direct shear tests on the sawtooth-shaped joints with 30◦ 
initial inclination angle
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5 � Conclusions

This paper introduces an analytical model for the mechani-
cal behaviour of a rock joint subjected to shear. Two-order 
asperities, i.e., waviness and unevenness of a natural joint 
profile, were separated using wavelet analysis method. 
Critical waviness and critical unevenness were, respec-
tively, chosen to represent the mechanical involvements 
of waviness and unevenness in shear. The evolution of 
each-order asperity was quantified by formulating the 

relationships among plastic tangential work, sheared and 
unsheared asperity areas. The dilation angle of each-order 
asperity decreased over the accumulation of plastic tan-
gential work. The incremental sheared asperity area was 
assessed by considering the asperity area truly involved in 
shear. The proposed model was validated against experi-
mental results from direct shear tests on sawtoothed, JRC-
shaped, and natural-profiled joints. The analytical predic-
tions overall matched the experimental curves, although 
some discrepancies appeared. The performance of the 

(a) (b)

Fig. 10   Comparison between the analytical predictions and the experimental curves from direct shear tests on three JRC-shaped joints

(a) (b)

Fig. 11   Comparison between the analytical predictions and the experimental curves from direct shear tests on the irregular joints in Flamand 
et al. (1994)
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proposed model can be improved by accounting for the 
effect of higher order asperities on joint shear behaviour. 
The developed model, after being implemented in finite 
and discrete element codes, is practicable to appraise the 
stability of rock-engineering structures.
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