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Abstract
Microseismic source location (MSL) provides crucial information for the interpretation of rock mass stability and early 
warning of rock mass hazards. The accuracy of MSL mainly depends on the formation of the sensor array, the multi-velocity 
model, and the locating algorithm. Especially, the choice of algorithm plays a decisive role, which requires both optimal 
accuracy and efficiency for searching the global optimal solution. In this paper, an advanced heuristic algorithm, Gravitational 
Search Algorithm (GSA), is applied for MSL in tunnel engineering. A standard framework of the GSA-based searching pro-
cess is first built. Its accuracy, stability, and speed of convergence are rigorously compared and analyzed with particle swarm 
optimization and simplex algorithm using synthetic and real microseismic data. Four types of equivalent velocity models are 
combined with the searching algorithm to further discuss the applicability and performance of GSA in different situations. 
The studies show that for all the cases, GSA has the highest speed of convergence with the best accuracy. Locating errors 
are controlled within 10 m, which fulfills the requirement of engineering accuracy. A representative case study is conducted 
using microseismic data prior to a major rockburst in a twin-tube highway tunnel. The calculated cluster of seismic events 
using GSA-based algorithm well matches the actual unstable areas. This work indicates that GSA is an optimal algorithm 
for microseismic source location and rockburst warning in tunneling.

Keywords  Microseismic source location · Gravitational search algorithm · Velocity models · Rockburst warning · Tunnel 
engineering

List of symbols
MSL	� Microseismic source location
GSA	� Gravitational search algorithm
SA	� Simplex algorithm
GA	� Genetic algorithm
PSO	� Particle swarm optimization
G	� Gravitational constant
fit	� Fitness function of MSL
Rij	� Euclidian distance between agent i and j
V	� Equivalent velocity at the path of an MS signal
ti	� Observed arrival (trigger) time at the ith sensor

M	� Set of agents’ masses in solution space
Xi	� Set of ith agent’s solution values
Fd
i
	� Resultant force at dth dimension for the ith agent

ad
i
	� Acceleration at dth dimension for the ith agent

�
d
i
	� Velocity at dth dimension for the ith agent

xd
i
	� Position at dth dimension for the ith agent

1  Introduction

Microseismic (MS) monitoring is the foundation of rock 
mass stability monitoring and rockburst warning in under-
ground engineering. It is widely used in modern tunnel engi-
neering and mine industry to identify the high-risk areas 
(Feng et al. 2013). The technology involves two main pro-
cedures: recording the microseismic signals that released 
from cracking or deformation events in the surrounding rock 
mass; tracing back the microseismic source location (MSL) 
in the three-dimensional space; and extracting seismic prop-
erties (e.g., seismic moment, magnitude and apparent stress, 
etc.). The MSL provides essential information for the MS 
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monitoring. It could locate the real position of the crack-
ing event cluster, which precisely portraits the distribution 
and formation of the fracture network in surrounding rocks. 
Further inversion and forward modeling based on an accu-
rate network model could reveal the evolutionary pattern of 
rock stability. The early warning of the rockburst during the 
engineering process can be achieved to ensure the safety (Ma 
et al. 2016, 2018).

However, problems still lie in the theoretical bases of 
MSL, especially when the drill-and-blasting method is 
applied for the tunnel excavation. Such engineering activity 
inevitably induces strong dynamic disturbances and gener-
ates a large amount of MS events around the tunnel face. 
Unlike traditional MS monitoring in industries of coal min-
ing, oil and coal seam gas exploration (Grigoli et al. 2013; 
King and Talebi 2007; Gong et al. 2012; Zhang et al. 2015), 
the spatial distribution of the MS detector array in the tun-
nel cannot fully cover the MS space due to a highly limited 
underground space. Hence, the accuracy of the MSL is com-
promised or even unreliable. Meanwhile, the propagation of 
MS wave could be strongly affected by the excavated areas 
of the tunnel, which physically represents a void area that 
may distort and delay MS signals. High-frequency compo-
nents of a signal might be deflected and attenuated by the 
tunnel wall. Fracture zones and other geological structures 
introduce the heterogeneity and anisotropy into the wave 
velocity. In such situations, the basic assumption of constant 
velocity model, which widely applied for MSL methods, is 
no longer unacceptable. Other factors such as environmental 
noises could also reduce the quality of signals. Therefore, 
it is imperative to develop an advanced locating method 
which has the optimal searching ability and computational 
efficiency and can also incorporate a multi-velocity model.

Certain progress has been made by some studies. For 
example, ISRM (Xiao et al. 2015) suggested an improved 
formation of the sensor array for drill-and-blast and TBM 
methods in a single tunnel. However, this improvement is 
still limited by features of the ill-covered array. Heuristic 
algorithms (Tang et al. 1996; Vandenbergh and Engelbre-
cht 2006; Rashedi et al. 2009; Farmer et al. 1986; Dorigo 
et al. 1996; Jiang and Xing 2016; Gazi and Passino 2004) 
have also been used for calculating the locations of MS 
events and their equivalent velocities. This kind of algo-
rithms is particularly powerful for solving high-dimen-
sional optimization problems (i.e., MSL with multiple 
variables). A more realistic velocity model in MSL inevi-
tably introduces extra variables into the searching process. 
The application of heuristic algorithms has been studied 
with few classic methods such as the genetic algorithm 
(GA) (Jones and Rayne 1994; Li et al. 2017), simulated 
annealing (SA) (Pei et al. 2009), and particle swarm opti-
mization (PSO) (Feng et al. 2015). Their procedures at 
each iteration step can be summarized into three parts: (i) 

self-adaption, where agents update their positions towards 
the global optimal solution; (ii) cooperation, which allows 
agents to communicate and exchange information with 
each other; and (iii) competition, which chooses the opti-
mal solution at the current step and examines the conver-
gence. Although heuristic algorithms are sharing a similar 
framework, each method possesses its unique advantages. 
It requires researchers and engineers to find the superior 
method for different situations. SA (Wang et al. 2017; Li 
et al. 2003) can guarantee a convergence at each iteration 
step, but has a slow speed for searching the optimal solu-
tion. PSO (Chen et al. 2009; Lagos and Velis 2018; Yang 
et al. 2015) has higher speed of convergence; however, it 
is relatively easier to be trapped by local minimum values 
due to the lack of interaction between searching agents. 
It makes this method less suitable for the problem that 
has a high-dimensional solution space. GA (Gong et al. 
2011; Yuan and Li 2017) generally has a lower efficiency 
compared with other heuristic algorithms and does not 
guarantee a global optimal solution after a considerable 
computational time. However, there is no focused study 
that addresses this key issue and provides a comprehen-
sive comparison for those algorithms. Therefore, it is very 
meaningful to study the performance and applicability of 
existing algorithms. Furthermore, advanced heuristic algo-
rithms should be applied to MSL-related problems and 
combine it with suitable velocity models to achieve an 
even better result. For example, Feng et al. (2015) intro-
duced a sectional velocity model into the PSO-based MSL 
algorithm. They received a significantly better result com-
pared with traditional iterative/non-iterative methods.

In the work, we introduced an advanced heuristic method, 
gravitation search algorithm (Rashedi et al. 2009) (GSA), to 
solve MSL problems in deep-buried tunnel engineering with 
improved velocity models. Its optimization strategy is based 
on Newtonian gravitational law and the updating strategy is 
using second Newtonian law. Studies indicate that compared 
with existing methods, this algorithm is particularly power-
ful at the second procedure ‘communication’ and, therefore, 
shows superiority in both accuracy and efficiency. The basic 
methodology and framework for GSA–MSL are introduced 
in Sect. 2. A detailed discussion about its advantages and 
limitations compared with other MSL methods are also 
provided. In Sect. 3, the performance of GSA is carefully 
compared and analyzed with classic MSL methods. A serial 
of algorithm tests is conducted with both synthetic and real 
data. Improved velocity models for the twin-tube tunnel are 
proposed and applied for the tests. Eventually, in Sect. 4, a 
representative case study of pre-burst MSL that recorded 
at the MICANG Mountain tunnel is conducted to further 
demonstrate the application GSA–MSL for early warning 
of the rockburst. Main findings and general conclusions are 
presented in the last section.
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2 � GSA Algorithm for Microseismic Source 
Location

2.1 � Introduction of GSA Algorithm

The searching strategy of GSA is built based on the Newto-
nian gravitational law, which is written as

where M1 and M2 are the mass of two agents or, in a solution 
space, two solutions; R and G denote the Euclidean distance 
between two agents and the gravitational constant, respec-
tively; and F represents the gravitational force. The mass 
of an agent is calculated with a target function at each time 
step as an evaluation of the fitness of a solution (i.e., fitness 
value). A better solution will be assigned to a larger mass. 
It can be observed from Fig. 1 that this strategy guarantees 
a better solution/agent generates a larger attractive force, 
which attracts other agents move towards its location with 
a larger acceleration. Meanwhile, this mass also makes the 
superior agent less movable.

The fitness function is proposed to sum the absolute val-
ues of the difference between the observed (tp,s i − t0) and 
calculated arrival time (Ri/Vp,s) at each sensor. The solution 
with the smallest difference is the most desirable one for the 
MSL. The function can be written as

where fit denotes the fitness value; n is the number of sen-
sors; ti is the observed arrival time at the ith sensor; t0 
denotes the occurrence time of an MS event; Ri represents 

(1)F = G
M1M2

R2
,

(2)fit =

n∑

i=1

||
||
t
p,s

i
− to −

Ri

Vp,s

||
||
,

the Euclidean distance between the source location and the 
ith sensor; Vp,s is the equivalent velocity of the propagating 
path of an MS signal; the superscripts p and s denote the 
compressive and shear wave, respectively. If a fitness value 
is relatively lower, a larger mass value will be assigned to 
that agent.

2.2 � Implementation of Microseismic Source 
Location

a.	 At the initial step N, number of agents is randomly dis-
tributed in the pre-defined solution space; each of the 
agents has the mass Mi and a solution Xi with n dimen-
sions:

	 

where xi
d represents the ith agent’s values in the dth 

dimension that bounded by the range xd
i
∈
(
xd
min

, xd
max

)
.

b.	 Fitness value (fit) for each agent is calculated through 
Eq. (2) based on its solution values, which contain the 
coordinates and velocities. The best (minimum) fitness 
value fitbest and its solution Xbest are recorded

c.	 fitbest is compared to the tolerance ε (stopping criteria) 
to decide whether to accept the solution or continue the 
iteration.

d.	 The calculation of the interacting force is written as
	 

where Fd
ij
(k) denotes the interaction force between agents 

j and i at the dth dimension in the kth step; Mpi(k) and 
Maj(k) are the passive mass for agents i and active mass 
for agents j, respectively; and λ is set to be a small con-
stant value to maintain the stability for small Rij. G(k) is 
the gravitational constant that evolving with the iteration 
time step k:
	 

where the initial gravitational coefficient G0 and gravita-
tional attenuation coefficient α are constant coefficients 
based on the range of solution space at each dimension, 
K denotes the total number of the iteration step. Rij(k) is 
the Euclidian distance between the two agents:

	   The resultant force at the dth dimension for agent i 
can be written as

(3)M =
(
M1,… ,Mi,… ,MN

)
, (i = 1, 2,… ,N),

(4)�i =
(
x1
i
,… , xd

i
,… , xn

i

)T
, (d = 1, 2,… , n),

(5)Fd
ij
(k) = G(k)

Mpi(k)×Maj(k)

Rij(k) + �

(
xd
j
(k) − xd

i
(k)

)
,

(6)G(k) = G0e
−α

k

K

(7)Rij(k) =
‖‖
‖
Xi(k),Xj(k)

‖‖
‖2
.

Fig. 1   Schematic diagram of the gravitational interaction between 
particles (Rashedi et al. 2009)
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where randj is a random value in the range of [0,1], 
which introduces the randomness into the searching pro-
gress to improve its ability for avoiding the local mini-
mum value. The inertia mass Mi of an agent i is updated 
every iteration step according to its fitness values:

	   where a better solution is guaranteed with a larger 
mass in the searching progress. For a minimum values 
problem, the best and worst is defined as:

(8)Fd
i
(k) =

N∑

j=1,j≠i

randjF
d
ij
(k),

(9)Mai = Mpi = Mii = Mi, (i = 1, 2,… ,N),

(10)mi(k) =
fiti(k) − worst(k)

best(k) − worst(k)
,

(11)Mi(k) = mi(k)∕

N∑

j=1

mj(k),

(12)best(k) = min
i∈{1,2,.…N}

fiti(k),

(13)worst(k) = max
i∈{1,2,…N}

fiti(k).

e.	 With a known resultant force and mass, the accelera-
tion and velocity of each agent at dth dimension can be 
updated by

f.	 At the end of an iteration step, the position of agents is 
updated with its velocity:

g.	 After the update of positions, a new iteration step is 
initiated to calculate new fitness values; if error crite-
ria are fulfilled or the maximum number of iterations 
has reached, the algorithm gives the result of MSL and 
the best fitness value. Figure 2 shows the framework of 
GSA–MSL that includes the procedures of data input 
and output.

The searching progress of GSA is visualized in a three-
dimensional space. The initial gravitational coefficient 
G0 = 100, gravitational attenuation coefficient α = 20, the 
number of agents is 100, and total iteration steps are 1000. 
The initial position of agents is randomly given, and initial 

(14)ad
i
(k) =

Fd
i
(k)

Mi(k)
,

(15)vd
i
(k+1) = randi × vd

i
(k) + ad

i
(k).

(16)xd
i
(k + 1) = xd

i
(k) + vd

i
(k + 1).

Fig. 2   Searching process of 
GSA–MSL
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values of mass are 0.5. The size of an agent represents its 
mass that linked with its fitness value at the current step 
(Fig. 3a). Gravity forces are generated between agents; larger 
mass agents (high-quality solutions) apply stronger attractive 
forces to small agents at each iteration step. The position, fit-
ness values, and mass (Fig. 3b, c) are constantly updated. As 
iteration goes on, the agents are attracted by each other and 
converging towards the global optimal solution (Fig. 3c). 
Eventually, all agents are converged to the global optimal 
solution, as shown in Fig. 3d.

2.3 � Advantages and Limitations of GSA–MSL

As a heuristic algorithm, GSA possesses unique advantages 
over classic MSL methods, which can be categorized as 
iterative and non-iterative methods. Non-iterative methods 
(e.g., USBM, Inglada) are favored for their simple imple-
mentation. However, the most common problem for these 
methods is the assumption of a single velocity in the under-
ground space, which severely restricts their application for 
tunnel engineering (Ge 2003a, b). Iterative MSL methods 

(e.g., Geiger’s Method and Thurber’s Method) could avoid 
such issue by building a series of arrival-time functions and 
thus more suitable for the multi-velocity situation. However, 
their convergence highly relies on the quality of the initial 
solution. This is because the Tylor expansion is necessary 
for the linearization of the arrival-time function. Based on 
this linearization, the Jacobian or Hessian matrix is calcu-
lated as the coefficient matrix. Therefore, the convergence 
of the iterative methods cannot be guaranteed (Ge 2003a, b), 
and it is particularly true if a complicated velocity model is 
involved. The GSA–MSL could easily overcome both issues. 
It allows the consideration of a complex velocity model 
through the fitness function (Eq. 2), and it is much more 
robust for the quality of the initial values, since its initial 
agents are populated in the solution space.

Theoretically, GSA could be regarded as an advanced 
mutation of particle swarm optimization (PSO), since they 
are sharing a similar algorithm frame: a group of agents is 
updated towards the optimal one at each iterative step in 
a pre-defined solution space, and eventually converges to 
the global optimal solution. However, there are two main 

Fig. 3   The movement of agents in the solution space during the GSA searching process. a Initial; b and, c in progress; d final positions
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attributes that make the GSA far more accurate and effi-
cient. First, due to the gravitational equation, the attractive 
forces are ubiquitous in the solution space, which allows all 
the agents to participate in the updating process and thus 
provides GSA a higher speed of convergence. It also grants 
a better ability for GSA to avoid the local optimal solution. 
The updating strategy of PSO only involves the individual 
and global best fitness value (ibest and gbest). Second, GSA 
does not require the storage of ibest and the comparison 
between ibest and gbest, while PSO does. Apparently, with a 
large number of agents or iteration steps, these extra proce-
dures would make PSO more computationally expensive.

The GSA–MSL inevitably suffers the common limitations 
existing in the family of the heuristic algorithm. Despite 
its optimal performance, GSA cannot provide an analytical 
formula for estimating the speed of convergence or accuracy. 
Neither can we quantitatively analysis its sensitivity for the 
parameters such as the value of the gravitational attenuation 
constant (Eq. 6). The convergence cannot be guaranteed if 
the dimension of the solution space is as high as seven or 
eight, while the formation of the sensor array is limited in 
the tunnel space. Unexpected errors could also be introduced 
by the poor quality of the MS singles. Still, the tests that 
conducted with both synthetic and real data demonstrate the 
superior performance of GSA–MSL. It indicates that this 
method is more stable and accurate than its competitors and 
predecessors.

3 � Performance Analyses of Microseismic 
Source Location

In this section, the accuracy and computational efficiency 
of GSA–MSL are first tested with synthetic microseismic 
data generated by a simplified model, and then, it is further 
applied with real data collected from a twin-tube tunnel. The 
particle swarm optimization algorithm (PSO) and another 
non-heuristic-algorithm simplex algorithm (SA) are used as 
comparisons to demonstrate the ability of GSA for searching 
the global optimal value with optimal efficiency. Both PSO 
and GSA use 1000 agents with a random initial distribution 
for all the tests.

3.1 � Performance Analyses by Synthetic 
Microseismic Data

Five synthetic microseismic data sets are generated to study 
the performance of the algorithms in the simplest situation. 
This model is simplified as a full-infinite space with a homo-
geneous velocity; no influence of tunnel space or geological 
structure is involved. Therefore, a four-dimensional solution 
space is constructed with three position coordinates and one 
velocity value. A fixed sensor array with nine sensors well 

covers all the microseismic sources, which means no limi-
tation applied to the layout of the sensor array. Since these 
assumptions of synthetic model guarantee the convergences 
of all three methods, the performances will be able to reflect 
the fundamental difference of these algorithms. Conditions 
of source coordinates, velocity, and arrival time are listed in 
Table 1 (the trigger time is t = 0).

The searching process of the solution (source location 
and velocity) and the changes of fitness value are shown 
in Fig. 4. The number of convergence step, minimum fit-
ness value, and location error is used to evaluate the per-
formances. All the final solutions, from an engineering 
perspective, can be regarded as accurate MSL due to the 
simplification of the model. However, there are few impor-
tant features must be noticed. SA, as a non-heuristic algo-
rithm, has relatively the worst performance; both speed of 
convergence and search accuracy are much lower than those 
of the other two. For the comparison between the heuristic 
algorithms, GSA does not always provide better accuracy 
than that of PSO. Such result is also caused by the idealized 
assumptions. However, as discussed earlier, GSA shows a 
distinctively higher speed of convergence. The results of the 
synthetic data tests support the theoretical analysis of GSA’s 
better performance.

3.2 � Performance Analyses in the Twin‑Tube Tunnel 
Engineering

3.2.1 � Microseismic array and velocity models in the tunnel

To better demonstrate the optimal performance of 
GSA–MSL more complicated models needs to be used. The 
GSA–MSL is applied for the twin-tube tunnel engineering, 
which usually accompanied by abundant MS events during 
its excavation. An MS-monitoring system and the layout of 
the sensor array are shown in Fig. 5. Both tunnels are moni-
tored sectionally with three sensors as one group; two sensor 
groups (L1 and L2) are distributed at the leading tunnel and 
one (F3) at the following tunnel; three sensors in each group 
are located at the top and two sides of the tunnel, respec-
tively. The sensor group at the leading tunnel has the effect 
of covering the monitoring range of the following tunnel 
and improves the accuracy of the MSL in that range. The 
data acquisition station is installed at the lining support area, 
which is in a crossing tunnel between two tubes.

As discussed earlier, the heuristic-algorithm-based MSL 
has an advantage for searching the optimal solution in a 
high-dimensional solution space and, therefore, allows the 
use of a more realistic velocity model. Here, we propose 
four types of wave velocity model for MSL in deep-buried 
tunneling based on the common orientations of underground 
strata. The influence of tunnel’s excavated area for MS sin-
gles is also considered.
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	 (i)	 Model I (Fig. 6a) is the sectional velocity model or 
triple-velocity group. It means that the equivalent 
velocity at each sensor group is unique and should be 
considered as different values for the MSL algorithm. 
This model is proposed to represent the heterogeneity 

of geological conditions, which is strong along the 
tunnel but negligible at the same section. This model 
is particularly useful when the orientation of strata 
and the tunnel are nearly perpendicular to each other.

	 (ii)	 Model II (Fig. 6b) divides the sensors into differ-
ent velocity groups based on their specific locations. 
There are two situations that are suitable for using 
model II: one is when the heterogeneity of strata is 
strong both along the tunnel and at the same sec-
tion. Therefore, sensors should be divided into three 
velocity groups according to their regional lithology: 
group 1 (1–2, 1–3), group 2 (1–1, 2–1, 2–2, and 2–3), 
and group 3 (3–1, 3–2, 3–3). The other situation is 
when the stress-induced seismic anisotropy needs to 
be considered. In which case, seismic signals that 
propagate along the direction of the maximum prin-
cipal stress have the highest velocity. Sensors should 
also be categorized based on their local stress state.

	 (iii)	 Model III (Fig. 6c) divides the sensors into differ-
ent velocity groups based on their relative position 
to microseismic sources. It is proposed to represent 
the influence of the void space of the tunnel. The 
propagation of microseismic signal might be strongly 
affected if its wavelength is on the same scale of 
the length of the tunnel’s cross section. For exam-
ple, sensors 1–2 and 2–1 at the leading tunnel may 
receive a distorted MS signal triggered at the black 
dot. Because the void space of the leading tunnel 
could significantly delay the signal. If such phenom-
enon is found, they should be assigned with the same 
velocity value, which is different from unaffected 
sensors (1–1, 1–3, 2–1, 2–3) and the sensor group 
F3 at the following tunnel.

Fig. 4   Search process for optimal fitness value and solution in Case 1. a Searching for the optimal fitness value by the three methods, b search-
ing for the solution by the GSA method

Fig. 5   MS-monitoring system and layout of the sensor array in a 
twin-tube tunnel. a Model I, b Model II, c Model III
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	 (iv)	 (iv) If both geological heterogeneity and the effect 
of void space need to be considered, the Model IV 
should be to be used. It is a combination of model 
I or II and model III. In this case, more variables of 
velocity need to be introduced into the algorithm and 
the solution space would have an even higher dimen-
sion.

3.2.2 � Five‑dimensional searching test in the tunnel

The accuracy and computational efficiency of GSA are 
tested in this section with real microseismic data and veloc-
ity models proposed in the previous section. Similarly, the 
PSO and SA algorithms are used as comparisons to dem-
onstrate the ability of GSA for searching the global optimal 
value in various situations. Equation (2) is also applied here 
as the fitness function for all the tests and algorithms. The 
trigger time, velocity model, and coordinates of sensors for 
each test are detailed in Table 2 and calculation results are 
shown in Table 3.

The five-dimensional test searches a solution space with 
three-dimensional source coordinates and two equivalent 
velocities. The actual source location in Case 6 is 908, 900, 
and 1020 m. It is located near the following tunnel. The 
velocity model III is used to construct the solution space, 
which includes three unknown source coordinates plus 
V1 for void-unaffected sensors (1–1, 2–2, 2–3) and V2 for 
void-affected sensors (1–2, 2–1). According to the searching 
results, GSA provides a minimum absolute error (5.995 m) 
that slightly better compared with that of PSO (6.5 m). 
SA fails to provide a reasonable result as its error reaches 
to 36.8 m due to its poor ability to avoid local minimum 
values in a solution space with multiple variables. Both 

heuristic methods are reliable enough for the engineering 
requirement.

The convergence progress for each algorithm is shown 
in Fig. 7. It can be observed from the figure that GSA has 
the highest speed of convergence. Its exceptional capacity 
for the ‘communication’ enables all the agents in GSA to 
converge towards the global optimal solution within six 
iterations. PSO needs more than 300 steps to converge. The 
irregular shape of its iteration curve indicates the search-
ing progress in not uniformly converging towards the final 
solution. Such lower speed also results from its deficiency in 
‘communication’. SA has the slowest progress and eventu-
ally stopped at a position with the lowest accuracy.

3.2.3 � Six‑Dimensional Searching Test in the Tunnel

This test involves using Case 7 (model III) and Case 8 (mode 
I). The searching process is shown in Figs. 8 and 9, respec-
tively. Both cases have three velocities which together with 
the coordinates construct a six-dimensional solution space. 
Similarly, the GSA has the best performance in both accu-
racy and efficiency; the source is located with a percentage 
error of 8.9–14.9% for Cases 7 and 8, respectively. These 
high-accuracy results are obtained within ten iterations. PSO 
can locate the source position with acceptable accuracy, and 
its convergence is completed within 150 steps. SA cannot 
provide a reliable solution and shows a non-converging 
performance.

In addition to the above three test cases, Table 4 listed 
performances of Cases 9, 10 with velocity model III and 
Cases 11, 12 with velocity model I. Like the Cases 6–8, 
GSA received a reliable result within a range of 5–23 steps, 
while the searching process of PSO converges in a range of 

(a) Model I                                            (b) Model II                                           (c) Model III

Group L1

Group L2

Group F3
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Group L2

Group F3

Microseismic Source Group L1
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1-11-2 1-3

2-22-1 2-3

3-33-1 3-2

1-11-2 1-3
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1-11-2 1-3
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σh1
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Fig. 6   Schematic diagram of wave velocity model of tunnel surrounding rock



4008	 C. Ma et al.

1 3

60–293 steps. SA still shows a poor performance of speed of 
convergence or fails to provide an acceptable result.

4 � Engineering Case Study

A representative rockburst hazard is chosen to demon-
strate the ability of GSA for guiding the early warning of 
the rockburst and interpretation of unstable areas. This 

Table 2   Trigger time, velocity model, and coordinates of the sensor array

Two sensor arrays with different three-dimensional coordinates (north, east, and depth) are selected for MSL; Case 1 and Case 2 (microseismic 
sources) are collected from array one and Case 3 collected from array two; equivalent velocities (V1, V2, and V3) are assigned to sensors; “–” 
indicates that the sensor was not deployed or selected for a searching process of MSL

Sensor array Sensor group L1 Sensor group L2 Sensor group F3

1–1 1–2 1–3 2–1 2–2 2–3 3–1 3–2 3–3

Array 1 North (m) 868.37 861.8 – 835.38 841.91 845.61 860.14 862.84 866.82
East (m) 847.29 832.15 – 846.47 860.16 852.13 889.99 895.12 904.63
Depth (m) 1007.9 1007.9 – 1008.4 1008.6 1016.6 1009.6 1017.3 1009.7

Case 6 Trigger time (s) 0.4938 0.5002 – 0.5012 0.4973 0.4973 – – –
Velocity model V1 V2 – V2 V1 – – –

Case 7 Trigger time(s) 0.4988 0.5027 – 0.5051 0.5002 0.5003 0.4907 0.4904 0.4882
Velocity model V1 V2 – V2 V1 V3

Sensor array Sensor group 1# Sensor group 2# Sensor group 3#

1–1 1–2 1–3 2–1 2–2 2–3 3–1 3–2 3–3

Array 2 North (m) 936.19 931.73 932.14 901.93 908.86 904.35 893.46 896.87 901.89
East (m) 814.92 798.12 805.86 811.06 827.74 818.91 873.96 877.95 886.39
Depth (m) 1007.9 1007.2 1015.4 1007.1 1007.3 1015.4 1010.7 1017.9 1010.8

Case 8 Trigger time(s) 0.496 0.4964 0.4967 0.5007 0.5021 0.5019 0.5177 0.5186 0.5024
Velocity model V1 V2 V3

Table 3   PSO, GSA, and Simplex-based source location method (search results and error analysis)

Search results

Case 6 Methods North (m) East (m) Depth (m) V1 (m/s) V2 (m/s)
GSA 911.2 904.4 1017.4 5768.47 5185.25
PSO 905.8 894.2 1021.9 5523.11 5000.02
SA 930.5 928.8 1015.1 5424.62 5241.22

Case 7 Methods North (m) East (m) Depth (m) V1 (m/s) V2 (m/s) V3 (m/s)
GSA 916.4 919.8 1006.9 4231.55 4106.49 4856.42
PSO 912.2 911.2 1002.6 3736.25 3567.57 4103.88
SA 936.5 931.0 1006.7 4758.6 4613.61 5077.58

Case 8 Methods North (m) East (m) Depth (m) V1 (m/s) V2 (m/s) V3 (m/s)
GSA 1014.4 766.4 1012.1 5566.37 5600.91 4178.35
PSO 1001.6 792.8 999.1 5856.71 5936.65 4085.45
SA 972.3 807.6 1014.6 5008.08 5020.23 4988.02

Actual source location Error analysis

North (m) East (m) Depth (m) GSA (m & %) PSO (m & %) SA (m & %)

Case 6 908 900 1020 5.995 12.2 6.5 13.2 36.824 74.6
Case 7 910 920 1010 7.105 14.9 11.717 24.5 28.911 60.6
Case 8 1008 770 1010 7.648 8.9 26.074 30.4 52.065 60.7
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accident was accompanied by a serial of microseismic 
events which released during a brewing time of the rock-
burst. The locations of these events form a cluster, which 
could informatively indicate the unstable area around the 
tunnel. The correctness of this indication mainly depends 
on the accuracy of MSL. Meanwhile, if the MSL has a 
proper efficiency, an immediate MS monitoring can be 
achieved. By combining the accurate MSL information 
and temporal distribution of the MS events, an effective 
early warning framework for the rockburst can be built. 
It could prevent the casualty and economic losses during 
tunneling.

4.1 � Engineering Overview

The microseismic monitoring tests were conducted at the 
high-risk area of Michang mountain twin-tube tunnel in 
China. It spans Sichuan and Shanxi province with a total 
length of 13.8 km, which is ranked as the third longest high-
way tunnel in the world. Its geographical position is shown 
in Fig. 10a.

Strong rockburst events were repeatedly observed at the 
area of K45 + 880–K46 + 170 due to the local high stress in 
the surrounding rock strata. The depth of this area ranges 

from 530 m to 760 m. The regional lithology mainly con-
tains quartz diorite, gabbro, and tectonic granulite. The 
grade of surrounding rocks consists of grade III, and grade 
II with partially grade IV. Especially, the alternating layout 
of gabbro and tectonic granulite is the dominating pattern 
(Fig. 10b). It represents a tectonic granulite section, where 
rockburst hazards usually occur. The original rock of the tec-
tonic granulite is granitic rock, which was broken down by 
the tectonic compression and later transformed into granular 
rock under the effect of static recrystallization. Such a phe-
nomenon also indicates that micro-fractures in the rock mass 
were generated by a horizontal compressive force during the 
diagenetic process.

The features of rockburst are complicated due to the 
special geological conditions. The maximum energy of 
microseismic events from the rockburst can reach millions 
of joules. It even equals the energy that required for tun-
nel drilling and blasting activity. Under the impact of large-
energy microseismic events, construction equipment in the 
tunnel was overturned, the surrounding rocks (sidewall 
and floor) show a large area of cracking, dislocation, and 
collapse and supports structures of the tunnel are severely 
damaged. The Rockburst zone is controlled by two or more 

Fig. 7   Search process for fitness values of GSA, PSO, and simplex 
optimal agent in Case 6. a Entire search process in 1000 steps, b 
enlarged grey area for first 50 steps

Fig. 8   Search process for fitness values of GSA, PSO, and simplex 
optimal sample in Case 7. a Entire search process in 1000 steps, b 
enlarged grey area
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sets of fracture planes, and deposits left by the burst events 
are highly fragmented. There are several failure types of 
rockburst in the Micang Mountain tunnel, such as two-tube 
rockburst, tunnel roof or face rockburst, and hazard by large-
energy shock, see Fig. 11.

The MS events that accompanied these rockbursts are 
recorded in both temporal and spatial scale with their 

moment magnitudes. It can be observed from Fig. 12a, b 
that multiple rockburst hazards are developed and a serial of 
MS signals are received during the brewing process of these 
rockburst events. Such phenomenon indicates a potential 
causality between MS events and rockbursts, which would 
allow us to use this information of MSL to achieve the early 
warning or prediction.

4.2 � Application and Discussion

To better understand how to choose a proper velocity model 
in real field, we need to first look at two minor MS events 
that happened near the tunnel face of the leading and fol-
lowing tunnel, respectively. The layout of the sensor array 
is shown in Fig. 14 and their recorded signals are provided 
in Fig. 13. Figure 13a indicates that velocity model I is more 
suitable for the MSL of leading-tunnel event. Because the 
arrival time for each sensor group shows a clear spatial 
sequence of L1, L2, and F3, while the difference of arrival 
time within the same group is much smaller. Therefore, the 
sectional velocity model (Model I) is better for the MSL 
algorithm.

However, the same velocity model cannot be applied to 
the following tunnel event. It can be observed from Fig. 13b 
that there are strong differences of the arrival time between 
sensors within the same group (1–1, 1–2 and 2–1, 2–2). The 
differences for L1 (1–1, 1–2) and L2 (2–1, 2–2) are 4.4E−3 
and 3.4E−3, respectively, which exceed the theoretical limit 
of the arrival-time difference that made based the single-
velocity assumption. This is because the MS signal released 
from the following tunnel event is significantly delayed 
by the void part of the leading tunnel. The seismic wave 
reached the leading tunnel and propagates along its surface 
in a velocity that closes to the Rayleigh wave. Hence, the 
velocity model (Model III) that considers this effect should 
be used for the MSL.

A distinctive rockburst hazard and its pre-burst MS 
events that occurred at the following tunnel in 12.29.2017 

Fig. 9   Search process for fitness values of GSA, PSO, and simplex 
optimal sample in Case 8. a Entire search process in 1000 steps, b 
enlarged grey area

Table 4   Convergence steps and 
minimum fitness value for all 
test cases

Italics are tested cases shown with the search process and results; “–” indicates convergence not achieved at 
the maximum number of iteration steps

Methods GSA PSO SA

Results Convergence 
steps

Minimum fit-
ness value

Convergence 
steps

Minimum fit-
ness value

Convergence 
steps

Minimum 
fitness value

Case 6 5 0.00041 293 0.00042 – 0.00073
Case 7 18 0.00035 140 0.00036 – 0.00096
Case 8 4 0.00054 68 0.00205 – 0.00317
Case 9 5 0.00027 130 0.00027 703 0.00038
Case 10 11 0.00032 116 0.00032 742 0.00086
Case 11 8 0.00069 60 0.00059 – 0.00158
Case 12 23 0.00045 57 0.00071 512 0.00101
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are chosen to further discuss the application of GSA–MSL 
for the rockburst. This event is brewed near the top of the 
following tunnel face. The local lithology and sensor layout 
are shown in Fig. 14.

The MS clusters obtained from the GSA–MSL are shown 
in Fig. 15. MSL results using both Model I and Model III 
are compared to determine the optimal velocity model. It 
can be observed from the figures that Model III obtains a 
better result. MS events are concentrated around the right 
wall area of the following tunnel, which is consistent with 

the actual locations; the results based on Model I is much 
less reliable, as the located events are sparsely distributed 
along the following tunnel with a relatively larger distance 
from each other. Such a result cannot precisely represent 
the unstable area that generates rockburst. The choose of 
the velocity model is crucial for the accuracy of the GSA or 
other MSL algorithms.

The magnitude of spatial deviations in Fig. 15 is further 
quantitatively evaluated. The distances between each seis-
mic event and the averaged centre of the event cloud (i.e., 
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Fig. 10   Micang Mountain tunnel, China. a Location and plan of the Micang Mountain tunnel, b geological cross section along the tunnel
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inter-event distance) are calculated. Then, the distribution 
of the percentage of events with different deviating magni-
tudes is shown in Fig. 16. The results indicate that for the 

reliable velocity model (Model III), the deviation distance 
distributed in a range of 1–61 m with the highest number of 
the event is at 20 m, which occupies 2.4%. The distribution 

Fig. 11   Rockburst events in 
the Micang Mountain tun-
nel. a Two-tube rockburst on 
17 December 2017, b tunnel 
roof and face rockbursts, and c 
hazard by large-energy shock on 
2 March 2018
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Fig. 12   Microseismic events’ distribution along tunnels. a Plain view, b lateral view

Fig. 13   a MS signals received from an MS event near the leading-tunnel face. b MS signals received from an MS event near the following tunnel 
face



4014	 C. Ma et al.

1 3

of inter-event distances is flattened towards a larger range in 
the unreliable model (Model I), which decreases the percent-
age of events with small deviations. These results suggest 
that the locations of MS events are relatively spread. Such 
results are less help for locating the unstable areas around 
the tunnel.

The performance of PSO and GSA is also further exam-
ined with the same set of data from other rockburst events. 
Figure 17 represents the percentage errors of MSL results in 
a different combination of algorithms (GSA and PSO) and 
velocity models (Model I and Model III). In general, the 
GSA has a higher accuracy for the same velocity model. This 

indicates the superior stability of the algorithm; the GSA is 
less affected by changes in the number of dimensions. In 
this case, the Model III shows better accuracy than that of 
Model I. It is mainly because the propagation of the seismic 
wave is affected by the void space of the tunnel. It must be 
pointed out that there is no velocity model that can be well 
applied to any case. The performance of a velocity model 
always depends on the actual geological conditions, which 
requires further information from the geological survey and 
analysis for the pattern of the arrival time.

5 � Conclusions

An advanced heuristic algorithm is introduced for search-
ing the location of microseismic events in the tunneling. Its 
framework is built with a twin-tube-tunnel MS-monitoring 
system. Four equivalent velocity models are proposed and 
further applied to the algorithms to demonstrate the perfor-
mance of GSA–MSL. Using both synthetic and filed data, 
the accuracy and speed of convergence of GSA–MSL are 
rigorously examined and compared with heuristic and non-
heuristic algorithms. It can be concluded from these studies 
that GSA is superior in both accuracy and speed of conver-
gence than that of PSO for each velocity mode. The stability 
of GSA–MSL is outstanding, as its overall performance does 
not show a strong dependency upon the number of dimen-
sions of the solution space. The variation of solutions also 
becomes negligible after the iteration reached a stable state. 
The non-heuristic algorithm, simplex algorithm, fails to 
provide reliable results, since it is not suitable for searching 
high-dimensional issues.

Group L1

Group L2

Group F3

1-11-2 1-3

3-2 2-2

3-33-1 3-2

Leading
Tunnel

Following
Tunnel

2-1

Tectonic
granulite

Gabbro

Rockburst
area

Microseismic
event

Sensor

Fig. 14   Lithology and sensor layout along tunnel. The black circle 
denotes the area of “12.29” rockburst hazard; two black triangular 
dotes represent the two minor MS events at the leading and following 
tunnel, respectively

Fig. 15   Microseismic events location of “12.29” rockburst. a Velocity model III, b velocity model I
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A representative case study prior to a strong rockburst 
event in the twin-tube tunnel is conducted using GSA–MSL. 
The results prove that GSA–MSL could accurately narrow 
the spatial distribution of clouds of MS events and help to 

further identify high-risk areas. It also indicates that veloc-
ity models presented in this paper could sufficiently cover 
typical situations, which include the heterogeneity of under-
ground media and the effect of void space. A velocity model 
that properly considers the geological conditions could sig-
nificantly reduce the searching errors and increase the speed 
of convergence. In conclusion, the computational advantages 
of GSA well satisfy the requirement of using realistic veloc-
ity model (i.e., more unknown quantities of velocities) in 
MSL. Optimal locating results can be obtained with a proper 
combination of GSA–MSL and velocity models. The gravi-
tational searching algorithm shows a great potential to ben-
efit the early warning of rock mass hazards in tunneling.

Acknowledgements  This work was financially supported by the 
National Natural Science Foundation of China (Grant numbers 
41807255 and 41772329); State Key Laboratory of Geohazard Pre-
vention and Geo-environment Protection Independent Research Project 
(Grant number SKLGP2018Z016); Sichuan Science and Technology 

Fig. 16   Inter-event distance distribution of “12.29” rockburst. a Velocity model III, b velocity model I

Fig. 17   Composition of location error in typical microseismic events



4016	 C. Ma et al.

1 3

Project (Grant number 2019YJ0465). The authors would also like to 
give special thanks to the engineers and project managers of Micang 
Mountain who collected the valuable data of rockburst in a high-risk 
environment. This study could not be completed without their unwaver-
ing professionalism.

References

Chen BR, Feng XT, Li SL, Yuan JP, Xu SH (2009) Microselsm source 
location with hierarchical strategy based on particle swarm opti-
mization. Cn J Rock Mech Eng 28(4):740–749

Dorigo M, Member I, Maniezzo V, Colorni A (1996) Ant System: 
optimization by a colony of cooperating agents. IEEE Trans Syst 
Man Cybern B Cybern 26(1):29–41

Farmer JD, Packard NH, Perelson AS (1986) The immune system, 
adaption, and machine learning. Physica 22D:187–204

Feng GL, Feng XT, Chen BR, Xiao YX, Jiang Q (2015) Sectional 
velocity model for microseismic source location in tunnels. Tunn 
Undergr Space Technol 45:73–83

Feng XT, Chen BR, Ming HJ, Wu XY, Xiao YX, Feng GG, Zhou 
H, Qiu SL (2013) Evolution law and mechanism of rockbursts 
in deep tunnels: immediate rockburst. Cn J Rock Mech Eng 
31(3):433–444

Gazi V, Passino KM (2004) Stability analysis of social foraging 
swarms. IEEE Trans Syst Man Cybern B Cybern 34(1):539–557

Ge MC (2003a) Analysis of soruce location algorithms part I: overview 
and non-iterative methods. J Acoustic Emission 21:14–28

Ge MC (2003b) Analysis of soruce location algorithms Part II: iterative 
methods. J Acoustic Emission 21:29–51

Gong SY, Dou LM, Ma XP, He J, Liu YG (2011) Study on the improve-
ment of the microseismic network configuration for san He-Jian 
coal mine. Proc Eng 26:1398–1405

Gong SY, Dou LM, Ma XP, Mou ZL, Lu CP (2012) Optimization algo-
rithm of network configuration for improving location accuracy 
of microseism in coal mine. Chin J Rock Mech Eng 31(1):8–17

Grigoli F, Cesca S, Vassallo M, Dahm T (2013) Automated seismic 
event location by travel-time stacking: an application to mining 
induced seismicity. Seismol Res Lett 84(4):666–677

Jiang Y, Xing HL (2016) Micro-seismic waveform matching inversion 
based on gravitational search algorithm and parallel computation 
(abstract). AGU fall meeting

Jones HR, Rayne CM (1994) The use of a genetic algorithm for the 
optimal design of microseismic monitoring networks. SPE/ISRM 
Rock Mech Petro Eng. Delft, The Netherlands: Society of Petro-
leum Engineers, pp 615–619

King A, Talebi S (2007) Anisotropy effects on microseismic event 
location. Pure Appl Geophys 164(11):2141–2156

Lagos SR, Velis DR (2018) Microseismic event location using global 
optimization algorithms: an integrated and automated workflow. 
J Appl Geophys 149:18–24

Li SJ, Liu YX, He X, Liu YJ (2003) Global search algorithm of mini-
mum safety factor for slope stability analysis based on annealing 
simulation. Chin J of Rock Mech Eng 22(2):236–240

Li Y, Sui Q, Wang J, Wang Z, Jia L (2017). Localization of micro-
seismic source based on Genetic-Simplex hybrid algorithm. In: 
Chinese Automation Congress, pp 4002–4007

Ma CC, Li TB, Xing HL, Zhang H, Wang MJ, Liu TY, Chen GQ, 
Chen ZQ (2016) Brittle rock modeling approach and its valida-
tion using excavation-induced micro-seismicity. Rock Mech Rock 
Eeng 49(8):3175–3188

Ma CC, Li TB, Zhang H, Wang JF (2018) An evaluation and early 
warning method for rockburst based on EMS microseismic source 
parameters. Rock Soil Mech 39(2):765–774

Pei D, Quirein JA, Cornish BE, Quinn D, Warpinski NR (2009) Veloc-
ity calibration for microseismic monitoring: a very fast simulated 
annealing (VFSA) approach for joint-objective optimization. Geo-
physics 74(6):47–55

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravita-
tional search algorithm. Inf Sci 179(13):2232–2248

Tang KS, Man KF, Kwong S, He Q (1996) Genetic algorithms and their 
application. IEEE Signal Process Mag 96:22–37

Vandenbergh F, Engelbrecht A (2006) A study of particle swarm opti-
mization particle trajectories. Inf Sci 176(8):937–971

Wang J, Liu J, Liu H, Tian Z, Cheng F (2017) Modeling and locat-
ing underground water pipe leak with microseismic data. J Appl 
Geophys 136:1–8

Xiao YX, Feng XT, Hudson JA, Chen BR, Feng GL, Liu JP (2015) 
ISRM suggested method for in situ microseismic monitoring 
of the fracturing process in rock masses. Rock Mech Rock Eng 
49(1):343–369

Yang Y, Wen J, Chen X (2015) Improvements on particle swarm opti-
mization algorithm for velocity calibration in microseismic moni-
toring. Earthq Sci 28(4):263–273

Yuan D, Li A (2017) Joint inversion for effective anisotropic velocity 
model and event locations using S-wave splitting measurements 
from downhole microseismic data. Geophysics 82(3):133–143

Zhang J, Liu H, Zou Z, Huang Z (2015) Velocity modeling and inver-
sion techniques for locating microseismic events in unconven-
tional reservoirs. J Earth Sci 26(4):495–501

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Gravitational Search Algorithm for Microseismic Source Location in Tunneling: Performance Analysis and Engineering Case Study
	Abstract
	1 Introduction
	2 GSA Algorithm for Microseismic Source Location
	2.1 Introduction of GSA Algorithm
	2.2 Implementation of Microseismic Source Location
	2.3 Advantages and Limitations of GSA–MSL

	3 Performance Analyses of Microseismic Source Location
	3.1 Performance Analyses by Synthetic Microseismic Data
	3.2 Performance Analyses in the Twin-Tube Tunnel Engineering
	3.2.1 Microseismic array and velocity models in the tunnel
	3.2.2 Five-dimensional searching test in the tunnel
	3.2.3 Six-Dimensional Searching Test in the Tunnel


	4 Engineering Case Study
	4.1 Engineering Overview
	4.2 Application and Discussion

	5 Conclusions
	Acknowledgements 
	References




