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Abstract
The phenomena of progressive failures are very common and important in geotechnical engineering. In this paper, a reliable 
prediction model is proposed to interpret the progressive failure phenomenon of roof collapse in deep tunnels using the func-
tional catastrophe theory. The progressive collapse mechanisms and collapsing block shapes of deep circular tunnels under 
conditions of plane strain are investigated. The analytical solutions for the shape curves of the collapsing blocks of circular 
tunnels are derived based on the nonlinear power-law failure criterion considering variable dilatancy angle and detaching 
velocity. Moreover, criterions with variable dilatancy angle on progressive failure occurrence for deep tunnels are obtained. 
Then, the analytical predictions obtained in this paper are compared with experimental testing results, which indicate that the 
impacts of variable detaching velocity on the shape curves of the several continuous collapsing blocks should be considered 
to obtain more consistent prediction results with the corresponding experimental testing results.

Keywords  Deep tunnel · Tunnel roof collapse · Progressive failure · Functional catastrophe theory · Nonlinear power-law 
failure criterion · Dilatancy angle · Detaching velocity

List of symbols

Latin symbols
L1	� Half-width of the first collapsing block
h1	� Intercept in y axis of the first collapsing block
L2	� Half-width of the second collapsing block
h2	� Intercept in y axis of the second collapsing block

R	� Tunnel radius
w	� Thickness of the plastic detaching zone
g(x)	� Function describing the shape of a circular tunnel
f(x)	� Shape curves of the collapsing blocks
f1(x)	� Shape curves of the first collapsing blocks
f2(x)	� Shape curves of the second collapsing blocks
m	� Nonlinear coefficient
c0	� Initial cohesion of soil at zero stress
J	� Functional of f(x), total potential energy of the 

studied system
Ui	� Strain energy of the internal forces on the detaching 

zone
We	� Applied loads of the detaching surface
P	� Parameter describing the variable detaching 

velocity
Q	� Parameter describing the variable detaching 

velocity
Pi	� Overall weight of each collapsing block

Greek symbols
ρ	� Weight per unit volume of the rock mass
σn	� Normal stress on the failure surface
τn	� Shear stress on the failure surface
σt	� Absolute value of tensile stress when τ = 0
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ψ	� Dilatancy angle
η	� Dilative coefficient
Kψ	� Dilatancy factor
γp	� Plastic shear strain
η′	� Angle between u and the vertical direction

1  Introduction

The stability of excavated tunnels remains one of the most 
important and difficult problems in geotechnical engineer-
ing. To reveal the collapse mechanism of tunnel roof is of 
high significance for providing reference for the design and 
construction of tunnels. However, geotechnical materials 
are filled with cracks and fractures, which make geotech-
nical materials random variability of mechanical proper-
ties and far more complex than traditional elastic–plastic 
materials. Researchers have developed a variety of analyti-
cal approaches to investigate the tunnel roof stability and 
reveal the collapse mechanism of tunnel roof. Analytical 
approaches mainly include the limit analysis methods (e.g., 
Atkinson and Potts 1977; Davis et al. 1980; Yang and Yang 
2010; Wang et al. 2014; Sloan and Assadi 1993; Lyamin 
and Sloan 2000; Osman et al. 2006; Klar et al. 2007; Fraldi 
and Guarracino 2009, 2010, 2011, 2012; Yang and Huang 
2011; Yang and Yao 2017; Huang and Yang 2011) and the 
catastrophe theory (e.g., Zhang et al. 2014a, 2016; Zhang 
and Han 2015; Yang et al. 2017).

Most of analytical approaches mentioned above mainly 
focused on the first collapse mechanism of tunnel roof; 
however, the phenomena of progressive failures are also 
very common and important in geotechnical engineering 
(e.g., Stone and Wood 1992; Santichaianant 2002; Costa 
et al. 2009; Jacobsz 2016; Zhang et al. 2014b). For example, 
some typical failure mechanisms including the development 
of failure patterns in active trapdoor model tests are shown 
in Fig. 1 (e.g., Stone and Wood 1992; Santichaianant 2002; 
Costa et al. 2009; Jacobsz 2016). With the vertical move-
ment of the trapdoor, first failure surface initiates from the 
corners of the trapdoor and propagates toward the center 
of the trapdoor. Then, continued vertical movement of the 
trapdoor would lead to the developments of a series of 
new failure surfaces. In the final stage involving relatively 
large trapdoor movements, the failure surface is almost 
vertical. Figure 2 shows the progressive failure in roof col-
lapse of deep and shallow tunnels in model tests (Zhang 
et al. 2014b). The plane strain model tests were conducted 
to investigate the failure modes and dynamic evolutionary 
rules of soft ground tunnels in urban areas under two differ-
ent cover depths (2.0D or 3.5D and D is tunnel diameter). 
As shown in Fig. 2a, b, the tunnel roof collapses under two 
different cover depths which are both progressive failure pro-
cesses. Several collapses occur and at the same time several 

short-term stable collapsing arches form during each col-
lapse. The failure under the condition of 3.5D does not reach 
the ground surface while the failure under the condition of 
2.0D affects the ground surface. Although many researches 
were conducted using the numerical simulations and the 
model tests, there are few analytical researches on the pro-
gressive failure of tunnel roof after the initial collapse for 
the complexity of this phenomenon. 

Based on the above results of model tests, there are some 
features in progressive failure. First, the parameters char-
acterizing the geotechnical materials are constantly chang-
ing and geotechnical materials undergo stress redistribution 
during the whole failure process. Second, failure surface 
propagation switches from one discontinuity to the next in 
a relatively sudden manner, which means that each collaps-
ing block can be regarded as rigid. In this part, soil remains 
elastic and the total soil mass have displacement. Finally, 
soil dilatancy angle ψ defined as the vertical and the tangent 
along surface decreases from its initial value to zero and 
successive failure surfaces are in accordance with several 
discrete values of dilatancy angle ψ during the development 
of the successive failure surfaces (Stone and Wood 1992; 
Santichaianant 2002). In general, the phenomenon of pro-
gressive failure can be described as the continuous changes 
of system characteristic variables leading to several catas-
trophe changes of system state, which is fitting with the con-
ception of the nature of the catastrophe theory (Thom 1972; 
Zeeman 1976; Arnold and Afraimovich 1999; Du 1994). 
Therefore, the catastrophe theory is well suited to analyze 
this kind of phenomenon.

Using the functional catastrophe theory, the first fail-
ure collapse mechanisms was studied and the first possible 
shapes of the collapsing blocks for deep and shallow tunnels 
was derived, respectively (Zhang et al. 2014a; Zhang and 
Han 2015). In this paper, functional catastrophe theory is also 
used to investigate the progressive collapse mechanisms and 
collapsing block shapes of circular tunnels under conditions 
of plane strain. The analytical solutions for the shape curve 
of the collapsing block of deep circular tunnels are derived 
based on the nonlinear power-law failure criterion and the 
non-associated flow rule. Moreover, criterions on progres-
sive failure occurrence for deep tunnels are derived. Then, 
the analytical predictions obtained in this paper are compared 
with the corresponding experimental testing results.

2 � Problem Description

2.1 � Progressive Failure Mechanism of the Tunnel 
Roof

The estimation of the roof stability of deep tunnels pri-
marily lies in determining the shape and dimension of the 
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collapsing blocks which can actually collapse from the roof 
of the tunnel. To solve the proposed problem using the catas-
trophe theory, some assumptions are made. In this study, 
only the gravity field is considered, regardless of the tectonic 
stress field. The behavior of the rock mass is elastic-perfectly 
plastic. For the rock mass that follows the Hoek–Brown 
failure criterion, plastic potential energy within the total 
external load potential energy on the detaching surface is 
important and more dominant than elastic potential energy. 
Therefore, the paper ignores elastic potential energy and 
mainly concentrates on the plastic potential energy of the 
total external load potential energy on the detaching surface. 
The changes in the geometry of the collapsing block can 

be regarded as insignificant through the onset of the col-
lapse (rigid-plastic behavior), which is consistent with the 
results of experimental tests (e.g., Stone and Wood 1992; 
Santichaianant 2002; Costa et al. 2009; Jacobsz 2016; Zhang 
et al. 2014b). The problem is considered as under conditions 
of plane strain. Progressive failure in roof collapse of deep 
tunnel model tests shown in Fig. 2 is emphatically analyzed 
in this paper. Therefore, progressive failure mechanisms of 
a tunnel roof adopted in this paper is shown in Fig. 3, in 
which L1 and h1 are the half-width and the intercept in y axis 
of the first collapsing block and L2 and h2 are the half-width 
and the intercept in y axis of the second collapsing block, 
respectively. R is the tunnel radius, ρ is the weight per unit 

Fig. 1   Progressive failure in 
active trapdoor model tests 
(e.g., Stone and Wood 1992; 
Santichaianant 2002; Costa 
et al. 2009; Jacobsz 2016)
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volume of the rock mass, w is the thickness of the plastic 
detaching zone, and g(x) is a known function describing the 
shape of a circular tunnel:

 
The first consideration adopted in this paper is that the fol-

lowing derivation is based on the nonlinear failure criterion 
and the non-associated flow rule. Many experiments have 
shown that the failure envelop of soils is not linear in the σn–τn 
stress space, and the linear failure criterion is merely a par-
ticular case. Thus, a nonlinear failure criterion may be more 
suitable for the stability analysis of geotechnical structures. For 
this reason, the nonlinear power-law failure criterion is adopted 
in this paper, which can be expressed as follows (Zhang and 
Chen 1987; Zhang and Wang 2015; Yang and Yao 2017):

where c0 = initial cohesion of soil at zero stress; σn and 
τn = normal and shear stresses on the failure surface, respec-
tively; σt = absolute value of tensile stress when τ is equal to 
zero; and m = nonlinear coefficient.

(1)g(x) = −
√
R2 − x2.

(2)�n = c0

(
�n + �t

�t

)1∕m

,

Using the non-associated flow rule, the real deformation 
and failure characteristics of soil can be better simulated. 
Similar to the associated flow rule, the velocity at velocity 
discontinuities for a soil following a non-associated flow 
rule inclines at an angle, dilatancy angle ψ, with respect 
to the velocity discontinuity line. In general, the dilatancy 
angle ψ varies from zero to the friction angle φ (0 ≤ ψ ≤ φ). 
Correspondingly, dilative coefficient, η, which relates the 
dilatancy angle and the soil friction angle, is defined as:

Theoretically, the magnitude of dilative coefficient is 
0 ≤ η ≤ 1. The case η = 1 indicates that the material follows 
an associated flow rule. According to reference (Zhang and 
Wang 2015), when the geotechnical materials subject to 
nonlinear power-law failure criterion and non-associated 
flow rule, Eq. (2) can be modified to Eq. (4). For the sake of 
derivation, the term ηc0 is replaced by a new parameter c0i:

The second key consideration adopted in this paper is that 
dilatancy angle ψ decreases from its initial value to zero and 

(3)� =
�

�
.

(4)�ni = �ic0

(
�ni + �t

�t

)1∕m

= c0i

(
�ni + �t

�t

)1∕m

.

Fig. 2   Progressive failure of tunnel roof collapse in model tests: a progressive failure of surrounding rock under the condition of 2D depth; b 
progressive failure of surrounding rock under the condition of 3.5D depth (Zhang et al. 2014b)



3991Functional Catastrophe Analysis of Progressive Failures for Deep Tunnel Roof Considering…

1 3

successive failure surfaces are in accordance with several 
discrete values of dilatancy angle ψ during the development 
of the successive failure surfaces. In addition, it should be 
pointed that the dilatancy angle ψ can be considered as a 
function of plastic strain and confining stress, and subse-
quently a dilatancy factor Kψ that decays from an initial 
value Kψ in accordance with an exponential function of 
plastic shear strain is proposed as follows (Detournay 1986; 
Alejano and Alonso 2005):

(5)K� = 1 +
(
K� ,peak − 1

)
e−�

p∕ �p∗ ,

where Kψ = (1 + sinψ)/(1 − sinψ).
By making simple derivation, the variation of dilatancy 

angle ψ along with of plastic shear strain γp is as follows:

As shown in Eq. (6), dynamic (continuous) variation of 
plastic shear strain γp leads to dynamic (continuous) varia-
tion of dilatancy angle ψ, which results in dynamic (continu-
ous) variation of dilative coefficient η in Eq. (4). However, 
based on the features in progressive failure mentioned above 
in Introduction, not the whole continuous values of dilatancy 
angle ψ correspond to the tunnel roof collapses but only 
several discrete values of dilatancy angle (ψ1, ψ2, ψ3, …) 
correspond to several collapses. Therefore, the catastrophe 
state analysis of progressive failure lies in the derivation of 
the occurrence conditions for each collapse and determining 
the shape and dimension of the collapsing blocks.

The failure mechanism of tunnel roof (Fraldi and Guar-
racino 2009) is modified by considering variable detaching 
velocity along yield surface (Li and Yang 2017). And they 
concluded that the impact of variable detaching velocity is 
more remarkable on the shape of collapsing block. There-
fore, the third key consideration adopted in this paper is the 
variable detaching velocity along detaching surface to obtain 
more consistent prediction results with the corresponding 
experimental testing results.

2.2 � Catastrophe Theory and Catastrophic 
Conditions for a Functional

Since the deformation and failure of tunnel surrounding 
rock are characterized by nonlinear and discontinuous phe-
nomena, catastrophe theory is suitable for investigating the 
behaviors of tunnel collapse. The nature of the catastrophe 
theory is continuous change of system characteristic quan-
tity which leads to catastrophe change of system state. The 
results of model test show that several continuous collapses 
of tunnel roof correspond to several discrete value of dila-
tancy angle. Moreover, the dilatancy angle changes continu-
ously with plastic shear strain. In other words, progressive 
failure can be considered as successive catastrophe phenom-
ena, which means that continuous change of plastic shear 
strain γp leads to several catastrophe changes of system state.

If the potential function of the system is defined by a 
functional J [f(x)], as in Eq. (7), determining the non-Morse 
critical point fc(x) of the potential function of the system 
becomes challenging:

(6)

sin� =
sin�0

sin�0 +
(
1 − sin�0

)
e�

p∕ �p∗

(
� from �0 to 0

)
.

(7)J
[
f (x)

]
=

b

∫
a

F
[
x, f (x), f �(x)

]
dx,

(a)

(b)

L1

f1(x)
w

Free boundary sym

g (x)

xo

y

Tunnel

Collapsing
    block

u

dx
dy

R

h1

L1

Ground surface sym

g (x)

xo

y

Tunnel
R

h1

L2

h2

f 2(x)

f1(x)

Fig. 3   Progressive failure mechanisms of the deep tunnel roof: a first 
collapsing block of a tunnel roof; b possible successive collapsing 
block of a tunnel roof
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where the primes indicate the derivatives of the func-
tions with respect to their subscript coordinates, i.e., 
f �(x) = �f (x)∕�x.

With a subsection integral, the two specific forms of the 
catastrophic conditions are obtained for functional J [y] as 
follows (Zhang et al. 2014a; Zhang and Han 2015):

3 � Catastrophe State Analysis of a Deep 
Tunnel Collapse

3.1 � First Collapsing Block of a Tunnel Roof

This paper proposed a new approach to determine critical 
state of tunnel roof collapse based on plastic strain energy 
and catastrophe theory. Based on the basic theory of elas-
tic–plastic mechanics, the stress state of a point flows along 
the yield surface when the stress state of a point yields and 
the plastic strain energy of a point will increase. Therefore, 
the plastic strain energy can be used as an index to evaluate 
the state of the studied system. The larger the plastic strain 
is and the larger the accumulated plastic strain energy is. The 
collapse occurs when plastic strain energy reaches a certain 
value (i.e., critical state or catastrophic state).

To analyze the catastrophe state of a deep tunnel collapse, 
the total potential energy of the studied system should be 
first obtained. The total potential energy of the studied sys-
tem includes the plastic strain energy of the internal forces 
on the detaching zone and the external force power induced 
by the weight of the detaching zone.

First, for standard geotechnical materials (i.e., those obey-
ing to an associated flow rule), the plastic potential, Ψ, is 
assumed to be coincident with the nonlinear power-law yield 
curve and takes the following form by virtue of Eq. (4):

So that the plastic strain rate can be derived as follows:

(8)
�F

�f (x)
−

�

�x

(
�F

�f �(x)

)
= 0, (Euler equation),

(9)

�2F

�f (x)2
− 2

�

�x

(
�2F

�f (x)�f �(x)

)
+

�2

�x2

(
�2F

�f �(x)2

)
= 0,

(Catastrophic Euler equation).

(10)� = �n1 − c01

(
�n1 + �t

�t

)1∕m

.

(11)𝜀̇n = 𝜆
𝜕𝛹

𝜕𝜎
= −𝜆

c01

m𝜎t

(
𝜎n1 + 𝜎t

𝜎t

)(1−m)∕m

,

(12)𝛾̇n = 𝜆
𝜕𝛹

𝜕𝜏
= 𝜆.

Moreover, from a purely geometrical line of reasoning, 
the plastic strain rate components can be written in the fol-
lowing form (Fraldi and Guarracino 2009):

The comparison of Eqs. (13) and (14) shows that:

Then, substituting Eq. (15) into (11), it follows:

Considering the compatibility, the plastic strain rate com-
ponents in Eqs. (13) and (16) must be equated, that is:

Combining Eqs. (17) and (4), the following equation is 
obtained:

Now the plastic strain energy of the internal forces on 
the detaching zone is derived using Eqs. (13) and (14), and 
(17) and (18):

For the geotechnical materials that obey non-associated 
flow rule, the plastic strain energy of the internal forces on 
the detaching zone should be modified into the following 
form (Li and Yang 2017) by virtue of two parameters P 
and Q:

where P and Q are two parameters describing the impacts of 
variable detaching velocity on the shape curves of collapsing 

(13)𝜀̇n = (u̇∕w)
[
1 + f �(x)2

]−1∕2
,

(14)𝛾̇n = −(u̇∕w)f �(x)
[
1 + f �(x)2

]−1∕2
.

(15)𝜆 = −(u̇∕w)f �(x)
[
1 + f �(x)2

]−1∕2
.

(16)

𝜀̇n = (u̇∕w)f �(x)
[
1 + f �(x)2

]−1∕2 c01
m𝜎t

(
𝜎n1 + 𝜎t

𝜎t

)(1−m)∕m

.

(17)�n = �t

(
m�t

f �(x)c01

)m∕(1−m)

− �t.

(18)�n = c01

(
m�t

f �(x)c01

)1∕(1−m)

.

(19)
Ui = ∫

(
�
n
�
n
+ �

n
�
n

)
du = (u∕w)

[
1 + f �(x)2

]−1∕2
{
−�

t
+ �

1∕(1−m)

t

(c
01

m

)m∕(m−1)

[1 − m] f �(x)m∕(m−1)
}
.

(20)

Ui = �
n
�
n
+ �

n
�
n

= Q

[
−�t + �t

[
c
01
∕(m�t)

]m∕(m−1)
(1 − m)

[
P

Q
f �
1
(x)

]m∕(m−1)]

× u

/[
w

√
1 + f �

1
(x)2

]
,
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blocks, which are defined as (η′ is the angle between u and 
the vertical direction) (Li and Yang 2017):

In addition, the work of the applied loads per unit length 
(We) of the detaching surface is

Then, the total potential energy of the studied system can 
be expressed as:

Based on the functional catastrophe theory, the function 
F studied is

The key in the catastrophic state analysis is to find the 
specific expression of f1(x) with the help of Eqs. (8) and (9).

Substituting Eq. (23) into Eqs. (8) and (9), the explicit 
forms of the group of differential equations of f1(x) for the 
problem are

{
P = 1 +

tan ��

f �
1
(x)

,

Q = 1 − tan ��f �
1
(x).

(21)We = �
[
f1(x) − g(x)

]
u.

(22)

J[x, f
1
(x), f �

1
(x)] = −∫

L
1

0

�[f
1
(x) − g(x)]udx

+

L
1

∫
0

Q

[
−�

t
+ �

t

[
c
01
∕(m�

t
)
]m∕(m−1)

(1 − m)

[
P

Q
f �
1
(x)

]m∕(m−1)]
udx.

(23)

F = F[x, f
1
(x), f �

1
(x)]

=

{
−�[f

1
(x) − g(x)] + Q

[
−�

t
+ �

t

[
c
01
∕(m�

t
)
]m∕(m−1)

(1 − m)

[
P

Q
f �
1
(x)

]m∕(m−1)]}
u.

(24)

−� −
d

dx

(
−Q

(
P

Q

)m∕(m−1)

�t
[
c01∕(m�t)

]m∕(m−1)
mf �

1
(x)1∕(m−1)

)
= 0,

(25)

d
2

dx2

(
−Q

(
P

Q

)m∕(m−1)

�
t

[
c
01
∕(m�

t
)
]m∕(m−1) m

m − 1
f �
1
(x)(2−m)∕(m−1)

)
= 0.

The detaching curve f1(x) is obtained by integrating 
Eq. (24):

where τ0 and h1 are two integration constants.
Substituting Eq. (26) into (25), the following equation 

is obtained:

Equation (27) is required to be zero for any value of x. 
This means that the value of m must be 2, which is the result 
of Eq. (9), i.e., one of the catastrophic conditions. In addi-
tion, the parameter m determines the power exponent of 
f1(x), so it also describes the shape of the collapsing block. 
Based on the value of m, the reduced form of f1(x) can be 
obtained:

There are two unknown parameters τ0 and h1 in Eq. (28), 
which can be determined by transversality conditions in 
variational analysis. It states that Eq. (23) should satisfy 
both Eqs. (29) and (30) (Zhang et al. 2014a; Zhang and Han 
2015):

Substituting Eq. (23) into Eqs. (29) and (30), the explicit 
forms of the transversality conditions are

(26)f1(x) = QP−m
(
�t�

m−1∕cm
01

)
(x + �−1�0)

m − h1,

(27)
Pm

Q

(
�2−mcm

01

�t

)(
2 − m

m

)
(x + �−1�0)

−m = 0.

(28)f1(x) = QP−2
(
�t�∕c

2
01

)
(x + �−1�0)

2 − h1.

(29)
�F

�f �
1
(x)

|||||x=0
= 0,

(30)F −
[
f �
1
(x) − g�(x)

] �F

�f �
1
(x)

|||||x=L1
= 0.

(31)

− �
t

[
c
01
∕(m�

t
)
]m∕(m−1)

mf �
1
(0)1∕(m−1)

= −Q

(
P

Q

)m∕(m−1)

�t
[
c
01
∕(m�

t
)
]m∕(m−1)

× m
[
m
(
�
t
�m−1∕cm

01

)
(0 + �−1�

0
)m−1

]1∕(m−1)
= 0,

(32)

{
−�[f1(L1) − g(L1)] + Q

[
−�t + �t

[
c01∕(m�t)

]m∕(m−1)
(1 − m)

[
P

Q
f �
1
(L1)

]m∕(m−1)]}

−
[
f �
1
(L1) − g�(L1)

][
−Q

(
P

Q

)m∕(m−1)

�t
[
c01∕(m�t)

]m∕(m−1)
mf �

1
(L1)

1∕(m−1)

]
= 0.
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Simplifying Eqs. (31) and (32), the values of τ0 and h1 in 
the expression of collapsing block are determined as follows:

Substituting the values of τ0 and h1 into Eq. (28), the 
shape curve of collapsing block can be obtained as follows:

Now we obtain the curve which describes the shape and 
dimensions of the collapsing block of deep tunnels. The 
curve is a parabola with y axis being the axis of symmetry 
and h1 being the y intercept.

However, the value of L1 is still unknown in Eq. (35). 
Then the value of L1 can be easily obtained using the geo-
metric compatibility condition:

Substituting Eqs. (1) and (35) into Eq. (36) results in:

From the mathematical perspective, whether or not the 
first collapse occurs is equivalent to whether Eq. (37) has a 
solution under the condition of 0 < L1 < R.

Moreover, it is possible to compute the overall weight of 
the first collapsing block per unit length (P1) by

3.2 � Possible Successive Collapsing Block of a Tunnel 
Roof

Similarly, the shape curves of possible successive collapsing 
blocks can be obtained as:

Similarly, the value of Li is still unknown in Eq. (39). 
Then the value of L can be easily obtained using the geo-
metric compatibility condition:

Moreover, from the mathematical perspective, whether or 
not the successive collapse occurs is equivalent to whether 
Eq. (40) has a solution under the condition of 0 < Li < Li−1.

Substituting Eqs. (35) and (39) into Eq. (40) results in:

(33)�0 = 0,

(34)h1 = Q
(
�t∕� − g(L1) + g�(L1)L1

)
.

(35)

f1(x) = Q

{(
�t�∕c

2
01

)( x

P

)2

−
[
�t∕� − g(L1) + g�(L1)L1

]}
.

(36)f1(x = L1) = g(x = L1).

(37)

Q
(
�t�∕c

2
01

)(L1

P

)2

− Q
(
�t∕�

)
+ (Q − 1)g(L1) − Qg�(L1)L1 = 0.

(38)P1 = 2

L1

∫
0

�[g(x) − f1(x)]dx.

(39)

fi(x) = Q

{(
�t�∕c

2
0i

)( x

P

)2

−
[
�t∕� − fi−1(Li) + f �

i−1
(Li)Li

]}
.

(40)fi(x = Li) = fi−1(x = Li).

Considering the inequation 0 < Li, the result is as follows:

In addition, considering the inequation Li<  Li−1, the 
result is as follows:

With Eqs. (42) and (43), the condition of progressive fail-
ure occurrence for deep tunnel based on nonlinear power-law 
failure criterion is as follows:

The occurrence of progressive failure in tunnel roofs from 
an analytical perspective was analyzed (Fraldi and Guarra-
cino 2012) and it is demonstrated that within the framework 
of limit analysis after the collapse of a first block from the 
tunnel roof no additional detachments can take place (i.e., 
ηi−1 = 1). This shows those results in Eq. (34) are consistent 
with the conclusion (Fraldi and Guarracino 2012). As a con-
sequence, it is further confirmed that the attention must be 
focused mainly on degradation processes of the rock mass.

Moreover, it is possible to compute the overall weight of 
each collapsing block per unit length (Pi) by

4 � Comparisons with the Results of Model 
Test

The results obtained from this paper were compared with 
the results from model tests (Zhang et al. 2014b). The plane 
strain model tests were conducted to investigate the failure 
modes and dynamic evolutionary rules of soft ground tun-
nels in urban areas under different overburden depths. The 
geometrical similarity ratio of the model tests were 1/30. 
A kind of material, composed of barite, quartz and vase-
line, was selected to represent the surrounding ground. The 
weight ratio of the ingredients barite:quartz:vaseline was 

(41)L2
i
=

P2

�2

(
c2
0,i
c2
0,i−1

c2
0,i−1

− 2c2
0,i

)
.

(42)c0,i <
c0,i−1√

2
or 𝜂i−1 <

√
2

2
.

(43)𝜂i−1 <
Li−1𝜌√

P2c2
0,i−1

+ 2L2
i−1

𝜌2
.

(44)𝜂i−1 < min

⎛⎜⎜⎜⎝

√
2

2
,

Li−1𝜌�
P2c2

0,i−1
+ 2L2

i−1
𝜌2

⎞⎟⎟⎟⎠
.

(45)Pi = 2

Li

∫
0

�[fi−1(x) − fi(x)]dx.
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8.0:5.0:0.6. The tunnel excavation process was modeled by 
the pressure release of an airbag inside the tunnel. The stress 
field of the model test was produced by gravity alone.

The comparison between the estimated values by experi-
mental and analytical results is shown in Fig. 4. The spe-
cific initial values of parameters in this model test are 
c01 = 20 kPa, σt = 22 kPa and ρ = 18 kN/m3, R = 3 m. Table 1 

shows the specific values of parameters in each collapse of 
model test.

The results show that the modes and rules of progressive 
failure of deep circular tunnel are similar. The authors claim 
that the precise extraction of dynamic test parameters is very 
difficult which leads to the differences of experimental and 
analytical results. Moreover, as shown in Fig. 5, only the 
variation of plastic shear strain γp (or dilatancy angle ψ) is 
considered and the variations of other parameters are not 
considered in this paper, which also leads to the differences 
of experimental and analytical results.

Furthermore, the impacts of variable detaching velocity 
on the shape curves of the several continuous collapsing 
blocks are shown in Fig. 6, which indicates that detaching 
velocity (P and Q) has a big effect on the shape curves of 
collapsing blocks. Therefore, variable detaching velocity 

Fig. 4   Comparisons of ana-
lytical results with the results 
obtained from model test: a 
experimental testing results; b 
analytical results (P = 1, Q = 1)

(b)(a)

Tunnel

First collapse

Second collapse

Terminal  collapse

Tunnel

First collapse

Second collapse

Terminal  collapse

Table 1   Values of parameters in each collapse of model test

Parameters First collapse Second collapse Final collapse

ψi ψ1 = φ ψ2 = 0.64φ ψ3 = 0.44φ
ηi 1 0.64 0.68
c0i (kPa) 20 14.12 9.57
fi (x) 0.74x2 − 4.95 1.80x2 − 8.66 3.93x2 − 16.09

Fig. 5   Catastrophe state analysis of a deep tunnel collapse

Fig. 6   Comparisons with two cases of P and Q: a first collapse; b 
second collapse; c final collapse (experimental testing results: blue 
curves; analytical results of P = 1 and Q = 1: red curves; analytical 
results of P = 1.2 and Q = 0.8: green curves) (color figure online)
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should be considered to obtain more consistent prediction 
results with the corresponding experimental testing results.

5 � Conclusions

This paper uses functional catastrophe theory to investigate 
the progressive collapse mechanisms and collapsing block 
shapes of circular tunnels under conditions of plane strain. 
The main conclusions are as follows.

1.	 In general, the phenomenon of progressive failure can be 
described as the continuous changes of system charac-
teristic variables leading to several catastrophe changes 
of system state, which is fitting with the conception 
of the nature of the catastrophe theory. Therefore, the 
catastrophe theory is well suited to analyze this kind of 
phenomenon and adopted in this paper.

2.	 The analytical solutions for the shape curve of the col-
lapsing block of circular tunnels are derived based on 
the nonlinear power-law failure criterion and non-asso-
ciated flow rule. Moreover, the conditions of progressive 
failure occurrence for deep tunnel were proposed. Those 
conditions would be used to judge whether or not the 
first and successive collapse occurs.

3.	 The analytical predictions obtained in this paper are 
compared with experimental testing results. The com-
parisons show that our analytical predictions are consist-
ent with the corresponding experimental testing results, 
thus demonstrating the validity of the proposed analyti-
cal methodology.
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