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Abstract
Probabilistic methods are the most efficient methods to account for different types of uncertainties encountered in the esti-
mated rock properties required for the stability analysis of rock slopes and tunnels. These methods require estimation of 
various parameters of probability distributions like mean, standard deviation (SD) and distributions types of rock properties, 
which requires large amount of data from laboratory and field investigations. However, in rock mechanics, the data available 
on rock properties for a project are often limited since the extents of projects are usually large and the test data are minimal 
due to cost constraints. Due to the unavailability of adequate test data, parameters (mean and SD) of probability distributions 
of rock properties themselves contain uncertainties. Since traditional reliability analysis uses these uncertain parameters 
(mean and SD) of probability distributions of rock properties, they may give incorrect estimation of the reliability of rock 
slope stability. This paper presents a method to overcome this limitation of traditional reliability analysis and outlines a new 
approach of rock mass characterization for the cases with limited data. This approach uses Sobol’s global sensitivity analy-
sis and bootstrap method coupled with augmented radial basis function based response surface. This method is capable of 
handling the uncertainties in the parameters (mean and SD) of probability distributions of rock properties and can include 
their effect in the stability estimates of rock slopes. The proposed method is more practical and efficient, since it considers 
uncertainty in the statistical parameters of most commonly and easily available rock properties, i.e. uniaxial compressive 
strength and Geological Strength Index. Further, computational effort involved in the reliability analysis of rock slopes of 
large dimensions is comparatively smaller in this method. Present study also demonstrates this method through reliability 
analysis of a large rock slope of an open pit gold mine in Karnataka region of India. Results are compared with the results 
from traditional reliability analysis to highlight the advantages of the proposed method. It is observed that uncertainties in 
probability distribution type and its parameters (mean and SD) of rock properties have considerable effect on the estimated 
reliability index of the rock slope and hence traditional reliability methods based on the parameters of probability distribu-
tions estimated using limited data can make incorrect estimation of rock slope stability. Further, stability of the rock slope 
determined from proposed approach based on bootstrap method is represented by confidence interval of reliability index 
instead of a fixed value of reliability index as in traditional methods, providing more realistic estimates of rock slope stability.
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SD  Standard deviation
UCS  Uniaxial compressive strength
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AICD  Akaike Information Criterion value 
associated with distribution D

LD  Maximum likelihood estimator of the 
data set associated with the distribu-
tion D

KD  Number of parameters required to 
fully characterize the distribution D

�AICD
  Mean AIC value of distribution D

�AICD
  SD of AIC value of distribution D

B̄i  Mean of ith bootstrap sample
Si  SD of ith bootstrap sample[
X̄Ns

]
mean

  Mean of Ns bootstrap sample means
𝜎X̄Ns

  SD of Ns bootstrap sample means[
SNs

]
mean

  Mean of Ns bootstrap sample SDs
�SNs

  SD of Ns bootstrap sample SDs
MC  Monte Carlo
PDF  Probability density function
FEM  Finite element method
FDM  Finite difference method
JCond89  Joint condition factor of RMR 89
LH  Latin hypercube
g(X)  Performance function with X vector 

as input
�(r)  Radial basis function
Pj(X)  Monomial terms of augmented poly-

nomial P (x)
�i  Unknown constants associated with 

ith RBF
bj  Unknown coefficients
r  Euclidean norm (distance) of vector 

X from Xi
r0  Radius of compact support of RBF
t  r/r0
LOOCV  Leave-one-out cross-validation error
yi  Output obtained from g(Xi)

n  Number of LH samples drawn from 
input space

HDMR  High dimensional model 
representation

Si  First-order Sobol index for ith input 
parameter

STi  Total effects Sobol index for ith input 
parameter

X∼i  Input vector having all components 
except the ith component

RQD  Rock quality designation
RMR  Rock mass rating
Ei  Young’s modulus
�  Poisson’s ratio
�t  Tensile strength
�  Unit weight of rock mass
SSR  Shear strength reduction

mi  Hoek–Brown constant for intact rock
NSE  Nash–Sutcliffe efficiency
PBIAS  Percent bias
RSR  Ratio of root-mean-square error to 

SD of observed data
R  Reliability index
�FOS  Mean FOS for obtained from single 

bootstrap sample as input
VFOS  Coefficient of variation of FOS for 

obtained from single bootstrap sam-
ple as input

1 Introduction

Rock mass characterization is a challenging task due to high 
uncertainties involved in its various geological and mechani-
cal properties. These uncertainties in rock properties can be 
inherent, statistical or systematic based on their characteriza-
tion (Duzgun et al. 2002). Uncertainties in rock properties 
make the stability estimation of rock slopes difficult due to 
unavailability of a single deterministic value of a rock prop-
erty that can be used in stability analysis. In practice, aver-
age of the sample properties is generally used in the stability 
analysis in deterministic analysis (Pain et al. 2014; Tiwari 
and Latha 2016), resulting in overestimation of the stabil-
ity of rock slopes. Probabilistic approaches provide a better 
alternative as compared to deterministic approaches for the 
stability analysis of rock structures since they can include the 
effect of uncertainties in rock properties (Duzgun et al. 1995; 
Mauldon and Ureta 1996; Duzgun and Bhasin 2009; Li et al. 
2015a; Tiwari and Latha 2017). Different probabilistic meth-
ods like first-order reliability method (FORM), second-order 
reliability method (SORM), Monte Carlo (MC) simulation 
have been developed by researchers over the years. In these 
approaches, stability of rock structures is defined in terms 
of reliability index or probability of failure, which requires 
accurate values of the statistical parameters, i.e. mean, SD 
and type of distributions of different rock properties, which 
are random variables. To estimate these parameters of rock 
properties, generally rock samples are collected from a few 
locations of the site for laboratory testing or some in situ 
tests are carried out in excavated drifts. Samples collected 
for laboratory testing are often limited because of high costs 
involved in samples extraction and testing. Limited number 
of in situ tests are generally carried out inside the excavated 
drift due to high costs and practical difficulties (Ramamurthy 
2013). Considering the variable nature of rock masses, it is 
impossible to represent the properties of entire rock mass in 
its spatial extents through properties determined from these 
limited number of tests. Reliability of rock slope stability 
estimated using these uncertain statistical parameters and 
distribution of various rock properties from limited test data 
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becomes questionable and the design of slopes based on 
these estimates may lead to errors.

The type of epistemic uncertainty associated with the 
limited availability of samples is called estimation uncer-
tainty (Rocquingny 2012). It includes limited size of sam-
ples, observation errors, discrepancies in expert opinion, etc. 
The impact of this type of epistemic uncertainty leads to 
uncertainty in plausible values of statistical parameters of 
input variables and the selection of appropriate model type 
(probabilistic distribution). It is important to incorporate 
estimation uncertainty along with the inherent variability 
in the analysis, when the number of samples available to 
characterize input parameters is small.

To include the above-mentioned uncertainties associated 
with limited number of samples, resampling techniques such 
as bootstrap (Efron 1979; Luo et al. 2013; Most and Knabe 
2010; Li et al. 2015b) can provide an efficient alternative. 
Resampling techniques provide complimentary cumulative 
distribution function (CCDF) representation of aleatory and 
epistemic uncertainty combination (Helton 1993). These 
resampling techniques could be more useful in the field of 
rock mechanics, since the projects are large in scale and data 
are often limited. Limited studies have been carried out in 
the past to estimate the effect of uncertainty in the statisti-
cal parameters and distributions of input soil properties in 
reliability estimation of small-scale soil slopes (Most and 
Knabe 2010; Luo et al. 2013). However, no studies are so 
far available in the literature which have tried to provide a 
method to overcome the difficulty regarding limited avail-
able data on rock properties in the stability analysis of rock 
slopes and which can be used for slopes of large dimensions 
with small computational effort.

In this study, a practical probabilistic rock mass charac-
terization approach is proposed, which considers the effect 
of uncertainties in the probability distributions, i.e. statisti-
cal parameters and distributions of different rock properties 
in the reliability estimation of rock slopes. This method is 
based on resampling technique coupled with Sobol’s global 
sensitivity analysis and response surface analysis. The 
method uses numerical tools like finite element method 
(FEM)/finite difference method (FDM) for calculation and 
hence can be used for rock slopes of any shape and rock 
masses exhibiting different constitutive behaviour. This 
method considers uncertainty in the statistical parameters 
and distribution types of most commonly available rock 
properties, i.e. uniaxial compressive strength (UCS) and 
Geological Strength Index (GSI) as they contribute the most 
towards the variability of factor of safety (FOS) of slope 
among all the input parameters, as determined by sensitiv-
ity analysis. The proposed method is demonstrated through 
an example of rock slope of large dimensions. The relia-
bility index of rock slope is estimated using the traditional 
approach for two cases, first by characterizing the rock mass 

strength parameters using fewer available data and second by 
accounting for the estimation uncertainty along with inher-
ent variability associated with fewer samples using bootstrap 
method. Further, a comparison is made between both the 
cases and importance of the proposed method is outlined.

2  Details of the Proposed Method

The proposed method is based on four components—con-
struction of response surface, global sensitivity analysis, 
applying resampling techniques (bootstrap method) and 
estimation of reliability index of rock structure with uncer-
tain distributions and statistical parameters of input random 
variables. This section provides brief details regarding these 
components of the proposed method.

2.1  Details of the Response Surface

In the reliability analysis, most important step is to find out 
the performance function in terms of input random variables. 
In case of slope stability problems, performance function is 
usually the FOS of slope and rock properties are input ran-
dom variables. In the sampling-based reliability methods, 
random realization of input random variables (rock prop-
erties) is generated and then using appropriate calculation 
methods like FEM/FDM, output (performance function) is 
evaluated for each realization. This process is repeated num-
ber of times which requires evaluation of numerical model 
many times, involving huge computational effort. To over-
come this limitation of huge computational effort, a simple 
surrogate relation called response surface between input 
variables and output is constructed by solving the numeri-
cal model using limited realizations of input variables. Once 
the response surface is constructed, MC simulations can be 
carried out on this response surface by generating a large 
number of random realizations of input variables to obtain 
the output for each realization, which is then used to estimate 
the distribution of output and thus avoiding repeated evalu-
ation of numerical models using FEM/FDM.

For the current study, we have adopted augmented RBF-
based response surface (Krishnamurthy 2003; Pandit and 
Babu 2017), owing to its high accuracy as compared to 
global polynomial-based response surface (Krishnamur-
thy 2003; Fang and Horstemeyer 2006). Construction of 
response surface is executed in two steps. First step involves 
careful selection of samples from input space and evaluation 
of numerical model on those samples. Second step involves 
computation of unknown coefficients in RBF equation, so 
that an appropriate correlation between input and output can 
be made. Several space-filling designs such as Latin hyper-
cube (LH) sampling, uniform design, etc., are employed to 
generate samples which are distributed throughout the input 
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space. Also, several RBFs can be adopted to construct the 
response surface (Krishnamurthy 2003). Augmented RBF 
response surface can be mathematically represented as:

where g(X) is a function representing the numerical model 
with inputs as vector X,Pi(X) are monomial terms of poly-
nomial P (x), bj are unknown coefficients, Xi is the input 
vector at ith sampling point, ϕ is the RBF, ∥ X − Xi ∥ is the 
Euclidean norm (distance) of vector X from Xi and λi are 
constants associated with ith RBF. In this study, LH sam-
pling was adopted and compactly supported RBF type-II 
developed by Wu (1995) was used in the response surface. 
It is represented as:

where t = r/r0, where r is Euclidean distance and r0 is the 
radius of compact support.

RBF approximation can be visualized as a weighted con-
tribution from the sampling points in the input space. As 
the point moves away from the sampling point, its contribu-
tion also reduces. The constant r0 is a free parameter and 
decides the region of influence of a sampling point. r0 can 
be different for different sampling points, but for simplic-
ity it is assumed equal for all sampling points. Value of r0 
is chosen by minimizing the leave one out cross validation 
error (LOOCV). LOOCV involves constructing the response 
surface with n − 1 points and checking approximation error 
at the left-out point. This procedure of leaving out one data 
is repeated for all n points, and squares of error are added 
cumulatively. Thus, the value of r0 for which LOOCV is 
minimum is adopted for RBF response surface:

where gi(Xi) is approximated output of left-out point from 
the response surface constructed from n − 1 points and yi 
is the actual output obtained from the numerical model at 
left-out point. Now, MC simulation can be performed by 
realizing random vectors from input space and substituting 
it in the response surface and subsequently reliability index 
of the structure can be estimated.

2.2  Global Sensitivity Analysis

Global sensitivity analysis (GSA) is conducted to identify the 
input parameters (rock properties) that significantly contrib-
ute towards the variability in the output (FOS). This generally 

(1)g(X) ≈

n∑
i=1

�i�
(
∥ X − Xi ∥

)
+

m∑
j=1

Pj(X)bj,

(2)

𝜙(r) = (1 − t)6 (6 + 36t + 82t2 + 72t3 + 30t4 + 5t5) 0 ⩽ r ⩽ r0

= 0 r > r0,

(3)LOOCV =

n∑
i=1

(
g(Xi) − yi

)2
,

fulfil two objectives: (1) efficiently allocate the resources 
towards the estimation of distribution type and its parameters 
of the input variables; (2) reduce the computational burden by 
reducing the number of input variables if they do not influence 
the output. Global sensitivity analysis is advantageous because 
it considers whole variation in the range of a parameter in the 
input space, keeping other parameters constant, in contrast to 
the local sensitivity analysis which deals with the impact of 
small perturbations of input parameters on the output, around 
a nominal point. In this study, GSA was used to identify the 
input parameters for which bootstrap resampling must be 
conducted. Other input variables which do not influence the 
FOS of slope by significant amount were assumed random 
variables whose distribution and parameters were derived 
from limited data available/literature and no bootstrap resam-
pling was conducted. GSA was conducted via Sobol/Saltelli 
method (Saltelli et al. 2008), which involves the computation 
of variance-based sensitivity indices that quantify the relative 
contribution of each input parameter on the output variability. 
Sobol variance decomposition procedure involves the repre-
sentation of performance function in high-dimensional model 
representation (HDMR), from which first order, interaction 
effects and total effects of the input parameters are determined. 
A detailed explanation of this method is mentioned in Satlelli 
et al. (2008). However, only first order and total effects of the 
parameters are determined in this study.

The first-order index gives the main contribution of each 
input parameter, excluding any contribution of that parameter 
from the interaction terms. For the ith input parameter, it is 
computed using the following equation:

where V is variance, E is expectation, Y is output, Y = g(X) 
is a function of input vector X and Xi is the ith component 
of X. Total effects of the input parameter include the main 
contribution (first order) as well as contribution from all 
the higher order interaction effects. It is computed using 
equation:

where X∼i is a vector having all components except the ith 
component of X.

Saltelli (2002) provides an MC-based numerical pro-
cedure to compute the first and total order Sobol indices. 
The number of quasi-random samples must be gradually 
increased until the computed Sobol indices become almost 
constant. This procedure is described in more detail in the 
“Appendix”.

(4)Si =
V
[
E
(
Y||Xi

)]
V(Y)

,

(5)STi = 1 −
V[E(Y|X∼i)

V(Y)
,
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2.3  Bootstrap Method for Characterizing 
Uncertainty in Distribution Type and Its 
Parameters

Traditional reliability analyses are often carried out in the sta-
bility analysis of different types of rock structures to coun-
ter the variability in rock mass properties (Wang et al. 2016; 
Dadashzadeh et al. 2017). These methods treat input param-
eters as random variables, define a performance function to 
obtain output from the input variables and aim at identify-
ing failure region in input domain. Evaluation of probability 
of failure of rock structures by traditional reliability analysis 
is accurate only if the input parameters of distributions are 
accurately characterized. Characterization of distributions of 
input variables requires testing of large number of samples, 
which is often not possible in rock engineering cases due 
to budget constraints, effort and time involved. Therefore, 
sample statistics and distribution type are determined using 
limited observations and hence, these parameters themselves 
contain estimation uncertainties. Resampling technique such 
as bootstrap (Efron 1979; Luo et al. 2013; Most and Knabe 
2010; Li et al. 2015b) can provide an alternate way to estimate 
the reliability of rock structures having limited data of rock 
properties. Basic principle of bootstrap method is to obtain 
the bootstrap samples by resampling from the original data 
(estimated rock properties) with replacement, i.e. sampling 
is performed directly from the empirical distribution. Con-
sider an input random variable (rock property) X having N 
observations X1, X2, X3,… ,XN with mean X̄N and SD SN. 
The bootstrap sample set Bi =

{
Bi,1,Bi,2,… ,Bi,N

}
 is obtained 

by random sampling with replacement from original data set 
X1, X2, X3,… ,XN . For each bootstrap sample, statistical 
parameters (mean, SD and distribution type) of a random vari-
able can be estimated. This is called non-parametric bootstrap 
which brings distribution free hypotheses for estimation uncer-
tainty (Rocquingny 2012). The above procedure is repeated 
Ns times to obtain Ns bootstrap sample sets which will give Ns 
values of statistical parameters of random variable and from 
these values, variability in statistical parameters (mean, SD 
and distribution type) of random variables, i.e. rock properties 
can be estimated. The uncertainty in the parameters of random 
variables is present in both the distribution type and statistical 
parameters (mean and SD) and it is important to characterize 
uncertainties in both as explained below.

2.3.1  Characterizing Probabilistic Distribution Type 
of Input Variables

Defining a single best-fit probability distribution to a ran-
dom variable with small sample size is not possible. Akaike 
Information Criterion (AIC), developed by Akaike (1973), 
is generally used to rank different probability distributions 
as to suggest which distribution is more suited for a data set. 

To characterize this uncertainty in distribution type, large 
bootstrap sample sets are generated, these bootstrap samples 
are evaluated for their AIC values to identify the best-fit dis-
tribution among different candidate distributions. AIC of a 
dataset associated with a probability distribution D denoted 
as  AICD is defined as:

where LD is maximum likelihood estimator of the data set 
associated with the distribution D and KD is the number of 
parameters required to fully characterize the distribution D. 
Among all the distributions, the best distribution is the one 
having the least value of  AICD. Moreover, after obtaining 
the Ns values of  AICD from bootstrap sampling, AIC value 
of original data set can be evaluated statistically (Li et al. 
2015b), with mean AIC (�AICD

) and SD of AIC (�AICD
) cal-

culated as follows:

where AICiD
 is the AIC value of ith bootstrap sample associ-

ated with the distribution D.

2.3.2  Characterizing Uncertainty in Parameters (Mean 
and SD) of Input Variables

To calculate the distribution parameters, bootstrap sample 
statistics are evaluated for each bootstrap sample. Statistics 
of the bootstrap sample—mean ( ̄Bi ) and SD ( Si ) are calcu-
lated using the equations:

Through bootstrap samples, statistical measures of origi-
nal data set can be evaluated statistically, i.e. each statistic 
(mean, SD) investigated for original data set can be evalu-
ated in terms of its mean and SD (Most and Knabe 2010; 
Luo et al. 2013; Li et al. 2015b). Thus, the bootstrap mean 
and SD of original data set mean value are estimated as:

(6)AICD = −2
(
log(LD)

)
+ 2KD,

(7)�AICD
=

1

Ns

Ns∑
i=1

AICiD
,

(8)�AICD
=

√√√√ 1

Ns − 1

Ns∑
i=1

(
AICiD

− �AICD

)2
,

(9)B̄i =
1

N

N∑
j=1

Bi,j,

(10)Si =

√√√√ 1

N − 1

N∑
j=1

(
Bi,j − B̄i

)2
.

(11)
[
X̄Ns

]
mean

≈
1

Ns

Ns∑
i=1

B̄i,
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Similarly, bootstrap mean and SD of original data set SD 
are estimated as:

A large value of Ns (Most and Knabe 2010) leads to con-
verged values of bootstrap mean and SD of sample mean 
and SD.

2.4  Proposed Methodology to Estimate Reliability 
of Rock Structure with Uncertain Input 
Parameters Distributions

Present section describes the methodology adopted to esti-
mate the reliability index of rock slopes from limited avail-
able data. Basic principle of the proposed methodology 
involves the estimation of the range of reliability index using 
bootstrap method coupled with response surface analysis. 
Figure 1 provides a flowchart for the proposed methodology. 
The following section outlines the steps to be followed in the 
proposed methodology.

Step 1: construct a numerical model which would take 
input as rock mass properties and outputs the system 
response. Define a failure condition of the rock structure 
based on exceedance of a certain threshold value of output. 
Further, using some sample vectors from the input space, 
evaluate the numerical model and construct the response 
surface as mentioned in Sect. 2.1. To increase the accuracy 
of the response surface, increase the number of sample vec-
tors and construct the response surface again till acceptable 
accuracy is reached. It should be noted that any type of 
response surface can be used whose accuracy is sufficient 
throughout the input space. In this paper augmented RBF 
based response surface is adopted because it is accurate for 
both linear and highly nonlinear performance functions.

Step 2: conduct a global sensitivity analysis to identify 
those parameters which highly influence the variability of 
the output. Computation of first order and total effects Sobol 
indices quantifies the relative contribution of each input 
parameter towards variability in output. The methodology 
of sensitivity analysis is given in Sect. 2.2. A set of candidate 
probability distributions are also defined for each sensitive 
parameter, as given in the literature.

(12)𝜎X̄Ns
≈

√√√√ 1

Ns − 1

Ns∑
i=1

(
B̄i −

[
X̄Ns

]
mean

)2

.

(13)
[
SNs

]
mean

≈
1

Ns

Ns∑
i=1

Si,

(14)�SNs
≈

√√√√ 1

Ns − 1

Ns∑
i=1

(
Si −

[
SNs

]
mean

)2

.

Step 3: determine the number of bootstrap sampling to be 
conducted for each sensitive parameter. The number of boot-
strap samples Ns must be sufficiently large so that for each 
parameter X, the bootstrap mean and SD of original data set 
mean 

([
X̄Ns

]
mean

, 𝜎X̄Ns

)
 and bootstrap mean and SD of origi-

nal data set SD 
([
SNs

]
mean

, �SNs

)
 becomes nearly constant.

Step 4: once bootstrap sample is obtained and its mean 
and SD values are determined. For each candidate probabil-
ity distribution,  AICD values are evaluated. Further, the best 
distribution is selected among the candidate distribution, and 
its parameters are computed based on bootstrap mean and 
SD. Now, MC simulation is conducted on the response sur-
face with this best distribution and its parameters and reli-
ability index are evaluated. This is repeated for Ns number of 
bootstrap samples. Thus, Ns reliability indices corresponding 
to each bootstrap sample are obtained and further interpreta-
tion is done.

3  Case Study

3.1  General Details

Slope selected for the case study is a part of an important 
mining project known as the Ganajur Gold Mining Project 
in Karnataka region of India. To extract gold deposits at 
the site, open pit mining was implemented which requires 
stability analysis of open pit gold mine slopes. One of these 
large slopes is selected for the current study to demon-
strate the current methodology. The slope is situated near 
the Ganajur village, 14°49′54.08″–14°50′16.84″N latitude; 
75°24′16.57″–75°24′48.39″E longitude. Figure 2 shows the 
location map of the site.

The major rock type present at the site is greywacke 
and inter-bedded banded auriferous ferruginous chert (the 
banded iron formation), which are the part of the green-
stone Shimoga belt. Figure 3 shows the site photograph. 
Geological features of the rock joints and rock mass were 
varying with the locations as observed during exploratory 
drilling carried out at the site. Random joint sets were 
observed along with four major joint sets. Joints param-
eters were characterized using ISRM-suggested methods 
(ISRM 1981). Undulating joints were more often found 
with smooth to rough texture. Water condition along the 
joints varied from wet to dry along different locations at 
the site. Joint spacing varied from extremely close to wide 
at greater depth. Rock mass was classified according to 
various well-accepted rock mass classification systems. 
A range of these ratings along with their average values 
is provided due to the varying quality of rock mass at the 
site. Table 1 shows the average value and range of the 
values of the rock mass classification ratings for the rock 
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mass present at the site. For more details on the geology 
of this site, refer to Pandit et al. (2018).

Samples of intact rock were collected during drilling 
to determine various intact rock properties. Statistical 
description of different intact rock properties, i.e. UCS, 
Young’s modulus ( Ei ), Poisson’s ratio (ν), tensile strength 
(σt) and unit weight (γ) estimated from laboratory testing 
methods suggested by ISRM (1981) are given in Table 2.

3.2  Stability Analysis of the Slope by Characterizing 
the Rock Mass Strength Parameters Using 
Fewer Data

Traditional reliability analysis was carried out using MC 
simulation performed on response surface, with distribu-
tion type and its parameters of input random variables 
determined using limited samples. For the construction of 
response surface, FOS of slope is evaluated at n vectors 
of input parameters, i.e. UCS, Hoek–Brown constant for 

Fig. 1  Flowchart of the proposed bootstrap methodology
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intact rock (mi), Ei and GSI which were obtained from LH 
sampling (Montgomery 2001) from input parameter space. 
Since, the FOS of the slope is governed by rock mass param-
eters, these n vectors are converted into rock mass properties 
using relations provided by Hoek et al. (2002) and Hoek and 
Diederichs (2006) and serve as input to numerical model.

Numerical calculation has been carried out using finite dif-
ference program FLAC2D (Itasca 2011) in plane strain mode. 
Figure 4 shows the numerical model prepared in FLAC2D for 
the calculation. Height of the benches in the slope is 10 m and 
inclination is 68°. Bottom boundary of the model is fixed with 
no displacement allowed in any direction. Along the lateral 
boundaries, displacement is allowed in vertical direction and 
restrained in horizontal direction. Slope face boundary and 
upper boundary were kept free with allowance of displace-
ment in both directions. For the estimation of factor of safety, 

strength reduction factor technique was adopted. 12,349 zones 
were used to discretize the slope. Convergence technique as 
suggested by Pain et al. (2014) was used to decide the number 
of zones. For this method, no of zones were increased for 
the numerical model until factor of safety becomes constant 
or results becomes independent of the number of the zones. 
Hoek–Brown model was considered as the yield criterion to 
estimate the yielded zone in slope. Statistical parameters of 
input intact rock properties are shown in Table 2.

75 samples from input parameter space are utilized to con-
struct the response surface. This response surface takes input 
values of UCS, mi, Ei and GSI to give FOS of slope as out-
put. LOOCV optimization procedure is carried out in Matlab 
(2016). Estimation of the accuracy of the response surface is 
checked using three quantitative indices namely Nash–Sut-
cliffe efficiency (NSE), percent bias (PBIAS) and the ratio 

Fig. 2  Location map of the Ganajur Main prospect



2993Probabilistic Characterization of Rock Mass from Limited Laboratory Tests and Field Data:…

1 3

of root-mean-square error to SD of observed data (RSR) 
(Moriasi et al. 2007; Pandit and Babu 2017) by generating 
25 off sample points via LH sampling. Response surface per-
formance was found to be very good for all three indices and 
it produces highly accurate approximation of FOS of slope.

After construction of response surface,  106 MC simu-
lations are performed with input parameter characterized 
using the original dataset of input rock properties and 
mean and SD of FOS of slope is computed. Failure of 
slope is defined as FOS value being less than 1 during 
MC realization. Lognormal distribution was observed to 
be the best fit to the FOS data obtained by MC simulations 
as shown in Fig. 5. Reliability index (R) is calculated as:

(15)
R =

ln

�
�FOS√
1+V2

FOS

�

�
ln
�
1 + V2

FOS

� ,

Fig. 3  Photographs of typical landscape in the Ganajur Main project area (Srk 2012): a typical landscape looking north; b on the southwest bor-
der of the tenement; c on the old workings of Karajgi Block 3; d on the exposure of auriferous banded sulphidic chert

Table 1  Summary of rock mass classification ratings for slope

Classification Range Average Description

Core recovery 27–100 63.5 –
RQD 10–80 52 Very poor to good
GSI 10–65 46 Disintegrated to blocky

Table 2  Statistical moments of the intact rock properties present at 
the site

Min. minimum, Max. maximum, SD standard deviation

Property Average Min. Max. SD

Unit weight (kN/m3) 27.20 22 30 1.33
Young’s modulus (GPa) 9.14 2.47 16.93 4.45
UCS (MPa) 56.5 12.62 151.2 35.01
Poisson’s ratio 0.2 0.15 0.33 0.068
Tensile strength (MPa) 9.6 3.89 15.21 3.38
Hoek–Brown parameter (mi) 15 12 18 1
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where μFOS is mean FOS and VFOS is coefficient of vari-
ation of FOS. Results of the reliability analysis are given 
in Table 3 which include mean and SD of FOS, reliability 
index, probability of failure and expected performance level. 
Expected performance level of slope determined using reli-
ability index falls under Above Average category even for 
high mean FOS according to the classification given by U.S. 
Army Corps of Engineers (1999) due to large variation in 
rock properties which led to high coefficient of variation of 
FOS.

4  Stability Analysis of the Slope Using 
Proposed Method

As mentioned in the previous sections, stability analysis 
of the slope from the proposed methodology involves four 
major steps. The first step, which is the construction of 

Fig. 4  Finite difference grid used for slope stability analysis

Fig. 5  Simulated data and best-fit probability distribution for factor of 
safety in traditional probability method
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response surface is already explained in Sect. 3.2. In fol-
lowing sections, steps two to four are described in detail 
for the case study to show the applicability and efficiency 
of the proposed method.

4.1  Global Sensitivity Analysis

In this section, global sensitivity analysis (GSA) is con-
ducted to identify input parameters (rock mass properties) 
which significantly contributes towards the variability in 
the output (FOS) as suggested in step 2 of Fig. 1. The sen-
sitivity indices of the four input parameters of rock mass 
namely, UCS, mi, Ei and GSI are computed as suggested 
in Sect. 2.2 (Table 4). Number of quasi-random samples 
k in this study was taken as  105. It can be observed that 
UCS and GSI contribute almost equally towards the vari-
ability of FOS, in both first order and total effect analysis. 
Therefore, only UCS and GSI are sensitive parameters and 
are considered for bootstrap analysis.

4.2  Estimation of Uncertainty in Distributions 
and Statistical Parameters of Rock Mass 
Properties

After identifying the most sensitive rock mass properties 
(UCS, GSI), estimation of uncertainty in the distribution and 
statistical parameters of these properties is carried out in this 
section (step 3 in Fig. 1). To estimate the probabilistic distri-
bution of GSI, the relation between RQD and joint condition 
factor of RMR (Bieniawski 1989) (JCond89) was used as given 

in equation below. This equation was provided by Hoek et al. 
(2013):

Original data set of the UCS, RQD and JCond89 obtained 
from laboratory and field investigation is mentioned in 
Table 5. All the three parameters were assumed independ-
ent. Since UCS and GSI (RQD and JCond89) are most sen-
sitive parameters which govern the stability of rock slope, 
bootstrap analysis is performed only on these two param-
eters. The bootstrap mean, SD and AIC values correspond-
ing to three well-accepted distributions for each bootstrap 
sample of UCS is computed. Similarly, for bootstrap RQD 

(16)GSI = 1.5JCond89 +
RQD

2
.

Table 3  Summary of the results obtained from traditional probabilis-
tic method analysis

Mean FOS 3.74
COV of FOS (%) 33
Reliability index 3.94
Probability of failure, Pf 5.38e−04
Expected performance level U.S. Army Corps of 

Engineers (1999)
Above average

Table 4  First order and total effects Sobol indices of rock mass 
parameters

Input parameter First-order sensitivity 
indices

Total effect indices

m
i

5.21e−4 5.45e−4
UCS 0.4693 0.5303
E
i

8.65e−5 3.02e−4
GSI 0.4692 0.5299

Table 5  Data set of UCS of intact rock and GSI of rockmass

S. no. UCS (MPa) RQD JCond89

1 21.22 10 7.5
2 20.81 34 22.5
3 12.62 59 22.5
4 34.8 63 17.5
5 30.74 75 22.5
6 82.33 37 7.5
7 31.16 60 17.5
8 13.82 80 17.5
9 43.65 64 17.5
10 30.14 75 17.5
11 17.46 76 17.5
12 58.38 16 0
13 29.1 44 22.5
14 53.26 58 22.5
15 70.03 80 17.5
16 82.01 25 7.5
17 92.92 17 0
18 84.99 21 7.5
19 103.04 60 17.5
20 43.36 77 17.5
21 84.43 66 17.5
22 54.73 60 17.5
23 28.2
24 136.94
25 75.48
26 151.17
27 50.91
28 85.17
29 34.8
30 32.75
31 119.82
32 37.29
33 37.66
34 34.24
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and JCond89 samples, bootstrap mean, SD and AIC values 
associated with their candidate distributions are evaluated. 
Furthermore, the estimates of mean, SD and COV of sample 
mean, SD and AIC values of original data set are computed. 
Empirical distribution of bootstrap mean and SD estimates 
are best fitted using kernel density smoothing (Bowman and 
Azzalini 1997) and are plotted. A value of Ns = 1000 was 
deemed sufficient for the analysis in this paper as demon-
strated in Fig. 6.

The candidate distributions of RQD were normal and 
lognormal distributions (Basarir et al. 2016; Madani et al. 
2018) while JCond89 was assumed to be normally distributed 
(Basarir et al. 2016). First, bootstrap mean, SD and AIC 
values were computed for RQD and JCond89. Subsequently, 
bootstrap mean, SD and AIC values of GSI was estimated 
by conducting  105 MC simulation in Eq. (16), for each boot-
strap of RQD and JCond89 after assigning them best-fit dis-
tribution and its parameters. The MC samples thus obtained 

for GSI were evaluated for mean, SD and AIC values associ-
ated with the candidate distributions of GSI.

For UCS, candidate distributions comprise normal, log-
normal and Weibull distributions, truncated at 0 MPa and 
152 MPa. For GSI, normal and lognormal distributions 
were considered, with truncation limits of 0 and 70. These 
distributions were commonly observed and adopted for 
UCS and GSI in previous studies (Jiang et al. 2016; Morelli 
2015). Figure 7 shows PDF after kernel density smooth-
ing of AIC values associated with respective distributions. 
Bootstrap mean and SD estimates of AIC are provided in 
Table 6. It can be observed that SD of AIC is high, which 
indicates large variation from the AIC estimated from fewer 
sample size (original data set). For UCS parameter, SD of 
AIC associated with normal and Weibull distributions are 
almost comparable, however, it is slightly higher for lognor-
mal distribution. For GSI parameter, the AIC mean value 
is higher for normal distribution as compared to lognormal 
distribution, however the SD of AIC for former is lower than 

Fig. 6  Statistics for UCS of intact rock with increasing bootstrap 
samples a mean, b standard deviation

Fig. 7  PDFs of AIC values for candidate distributions for a UCS and 
b GSI
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the latter. These variations in AIC values indicate the exist-
ence of uncertainty associated with type of best-fit PDF of 
a certain input parameter.

Figure 8 shows the probability density function (PDF) of 
bootstrap mean and SD of UCS and their statistical estimates 
are provided in Table 6. As evident from Tables 2 and 6, boot-
strap sampling provides variation in statistics of estimate of 
mean and SD of original UCS data. The mean values of boot-
strap samples match the statistics that have been estimated 

from original data set (small sample). However, the SD of 
statistics is quite high. Similar observations can be derived 
from Fig. 9 which gives PDF of mean and SD estimates of 
GSI data. These variations demonstrate existing uncertainty 
in mean and SD of original data sets and subsequently uncer-
tainty in probability distribution parameters assigned to them.

The best-fit distribution among the candidate distributions 
can be identified by choosing the PDF having the highest prob-
ability of low AIC value associated with that PDF. 1000 boot-
strap samples thus obtained are associated with 1000 best-fit 

Table 6  Sampling statistics of 
mean, standard deviation and 
AIC values for UCS and GSI

UCS GSI

Mean SD CV Mean SD CV

Mean value 56.54 6.03 0.11 47.19 2.98 0.06
Standard deviation 34.75 4.62 0.13 12.59 0.88 0.07
Normal (AIC) 336.13 8.55 0.025 7.82e4 1.54e3 0.02
Lognormal (AIC) 328.95 10.36 0.031 7.52e4 2.71e3 0.036
Weibull (AIC) 330.53 8.04 0.024

Fig. 8  PDF of a mean of UCS, b standard deviation of UCS
Fig. 9  PDF of a mean of GSI, b standard deviation of GSI
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distributions, choosing one among the candidate PDFs. It is 
not possible to have a single best-fit PDF for small sample size 
of parameters; hence different candidate PDFs were found to 
be best fits with different probabilities. The number of times 
a candidate PDF was chosen as best fit for UCS and GSI vari-
ables is given in Table 7. For UCS, lognormal and Weibull 
PDFs are found to be best fits with a probability of 67% and 
33%, respectively. Lognormal has high probability of being 
the best-fit PDF of GSI with a probability of 96%. AIC values 
associated with normal and lognormal for UCS parameters 
are very close, leading to inaccurate judgment regarding the 
best-fit PDF among them.

4.3  Step 4: Estimation of Reliability Index 
of the Rock Slope

In this section, estimation of the variability in the reliability 
index of the slope is carried out using the estimated uncer-
tainty in the statistical parameters and distribution of the 
sensitive rock mass properties (step 4 in Fig. 1). It includes 
the effect of considering the uncertainty in statistics of input 
parameters and type of its best-fit PDF on reliability index of 
rock slope. The augmented RBF-based response surface is uti-
lized for conducting MC simulation corresponding to statistics 
obtained from each bootstrap sample.

As mentioned in Sect. 4.1, only GSI and UCS are con-
sidered as input parameters, owing to their high sensitivity 
towards the FOS of the rock slope. The best-fit distribution is 
chosen among the candidate distributions of UCS and GSI for 
every bootstrap sample. Their best-fit distribution parameters 
corresponding to each bootstrap sample are also computed. 
The distributions of UCS and GSI along with other input 
parameter PDFs are input in augmented RBF based response 
surface.  106 MC simulations are conducted and output, i.e. 
FOS of the slope is obtained and its statistics are determined. 
Thus for 1000 bootstrap samples, 1000 statistics of FOS are 
obtained (Fig. 10). Finally, 1000 reliability indices of the slope 
are evaluated. They are plotted in Fig. 11 after kernel den-
sity smoothing of empirical distribution of reliability index. 
1000 reliability indices are also found to best fit by lognormal 
distribution.

Results indicated that reliability index of slope varies 
from 3.12 to 5.26, which corresponds to  105 order of mag-
nitude when viewed in terms of probability of failure. The 
mean and SD of reliability index are 3.83 and 0.29, respec-
tively. The mean of bootstrap estimates of reliability index 

Table 7  Number of times a 
candidate distribution selected 
as best-fit PDF in 1000 
bootstrap samples

UCS GSI

Normal 1 37
Lognormal 669 963
Weibull 330

Fig. 10  PDFs of statistical moments of FOS of slope obtained in 
bootstrap simulation a mean and b standard deviation

Fig. 11  PDF of reliability index of rock slope
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matches well with the value found from traditional reliability 
method. Thus, inclusion of uncertainties associated with dis-
tribution parameters and type of GSI and UCS, allows inter-
pretation of reliability index in terms of confidence intervals, 
instead of a fixed value. Table 8 shows three different reli-
ability index intervals for 90%, 95% and 99% confidence 
intervals. Expected performance level also ranges between 
“Above average–High” according to the classification given 
by U.S. Army Corps of Engineers (1999).

5  Discussion

Stability of a large rock slope is analysed for both the 
approaches, using the traditional reliability method and 
results are compared. Although both approaches are show-
ing that slope is stable, the stability or performance is 
evaluated in different terms and hence implication of the 
results obtained from these approaches is different. Mean 
FOS evaluated using both these methods is close to 3.5. 
However, as we express the stability or performance level 
of slope in terms of reliability index computed using first 
approach which characterizes the rock mass strength param-
eters using fewer available data, expected performance 
level of slope is “Above average”, which shows the effect 
of considering uncertainty in rock properties while analys-
ing the stability of slope. Although mean FOS is very high, 
performance level is above average due to high SD in the 
estimated FOS. When we analyse the slope stability using 
proposed methodology which accounts for the estimation 
uncertainty along with inherent variability associated with 
fewer samples using the bootstrap method, it was observed 
that expected performance level of slope is ranging between 
“Above Average–High”. It can be observed that by the pro-
posed approach, a better estimate of performance of the 
slope is made which can help in the more accurate determi-
nation of stabilization measures if required for the slope. It is 
more important to implement this technique specifically for 
the stability analysis of rock slopes due to their large scale 
and hence engineers remain more uncertain regarding rock 
properties data obtained from limited laboratory or in situ 
investigations. Although for this case study slope seems to 
be stable for both the methods, there could be a possibility 
that while the slope is stable according to one method and 
unstable according to other method.

From the practical point of view, it is well known in the 
field of rock mechanics that even to determine a single prop-
erty of rock mass in the field, different types of tests are 
required to be conducted at the site and results of one type 
of test cannot be relied upon. One such example is the deter-
mination of deformation modulus of rock mass in the field 
which needs to be estimated using different types of field 
tests, i.e. plate load test, dilatometer test, radial jack test, 
etc., to get a better idea regarding rock mass deformability. 
Hence, conducting different types of tests at the site and 
that too in large number is almost impossible due to high 
costs involved. Further, most of the times, these tests are 
conducted inside the drifts which may give variability in 
rock mass properties inside a small area as compared to large 
slope dimensions. These practical issues make the reliable 
estimate of the rock mass properties at the site difficult and 
this difficulty increases for small projects where budget con-
straints are high. Estimation of statistical parameters (mean, 
SD) of rock properties from these limited tests and that too 
inside a small area of drift will not give reliable estimates of 
the distribution type and parameters of rock mass properties 
which may finally lead to incorrect estimation of reliabil-
ity of rock slope. To overcome these problems, the method 
proposed here uses two most easily and commonly available 
parameters of rock mass, i.e. UCS and GSI and gives much 
more reliable estimate of slope stability which considers 
estimation uncertainty along with inherent variability in the 
parameters of rock mass properties distributions, is compu-
tationally efficient and practical too.

Proposed methodology in the current article is mostly 
applicable to the rock slopes which are expected to show 
a circular failure. Circular failure is expected in the rock 
slopes which are heavily jointed or weathered and possibil-
ity of structurally controlled failures, i.e. planar, wedge or 
toppling failures do not exist. However, this study can be 
extended to the rock slopes having the possibility of struc-
turally controlled failures by carrying out bootstrap on the 
strength and orientation parameters of discontinuities in a 
similar manner. Moreover, the method successfully accounts 
for inherent variability and some types of the epistemic 
uncertainty such as estimation uncertainty and propagation 
uncertainty arising due to limited number of MC simula-
tions. Epistemic uncertainty arising due to numerical errors 
involved in deterministic method of solving (FEM/FDM 
methods) is not considered in the proposed method and can 
be taken up in further studies.

6  Summary and Conclusion

Due to natural formation of the rocks, variability exists in 
their properties making determination of the precise values 
of rock properties impossible. This problem becomes worse 

Table 8  Reliability index 
interval corresponding to 
different confidence intervals

Confidence inter-
val (%)

Reliabil-
ity index 
interval

5–95 3.39–4.34
2.5–97.5 3.32–4.44
0.5–99.5 3.19–4.87
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when the available data of rock properties are not sufficient 
enough to use traditional deterministic or probabilistic sta-
bility analysis methods as observed mostly in small projects 
due to budget constraints or in the initial stages of large 
projects. This paper presents an approach for the evaluation 
of the stability of rock slopes of large dimensions efficiently 
by addressing three major issues: (a) variability in the rock 
properties; (b) availability of limited data of rock properties 
as explained in the previous section; (c) computational effort 
required in stability analysis of large slopes. This approach is 
based on four important steps: (a) response surface construc-
tion; (b) global sensitivity analysis; (c) bootstrap technique; 
(d) estimation of reliability index of rock structure. Major 
advantage of this is that approach requires estimation of GSI 
along with UCS which is now widely used to derive engi-
neering design parameters such as the Hoek–Brown strength 
parameters and deformation moduli of jointed rock masses. 
This approach is demonstrated for a real rock slope of large 
dimensions required to be excavated at a gold mine site. It is 
evident from the analysis that uncertainty in defining input 
parameter distribution type and its parameters can have sig-
nificant influence on the reliability index and hence must be 
included in the analysis. It was observed from the analysis 
that expected performance level of slope was varying from 
above average–high with the reliability index varying in the 
range of 3.19–4.87 for the confidence interval of 0.5–99.5%. 
Minimum value of reliability index is 3.19 which come in 
the range of above–average performance level of slope; 
however, this can be improved by using some stabilization 
techniques like bench flattening commonly used for mining 
slopes. Various other stabilization measures like rock bolt-
ing can also be used for the rock slopes which come under 
civil engineering practices. However, for now it seems that 
the possibility of slope failure is very small, and this small 
uncertainty can be dealt with using the observational con-
struction method.

Appendix

Monte Carlo method to determine first order and total effect 
Sobol indices (Saltelli 2002).

1. A quasi-random number was generated in form of matrix 
of size (k, 2d), where k is called base sample and d is the 
dimension of the input vector. k in this study was taken 
as  105. Quasi-random numbers were generated in the 
Matlab 2016. Further, two matrices A and B are defined 
having half of the sample.
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2. Another matrix Ci is defined which contains all elements 
of B, except the ith column, which is taken from A.

3. Compute the output from of A, B and Ci matrices to 
obtain column matrix of outputs YA, YB and YCi

.
4. Now, the first-order sensitivity index Si and total effects 

STi are calculated via Eqs. (20) and (21):

where y(j)
A

 , y(j)
B

 and y(j)
Ci

 are the jth element of column vec-
tors YA, YB and YCi

 , and
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