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Abstract
In this study, the cohesive element-based numerical manifold method with Voronoi grains is extended by incorporating a 
coupled hydro-mechanical (HM) model to investigate hydraulic fracturing of rock at micro-scale. The proposed hydraulic 
solving framework, which explicitly calculates the flow rate and fluid pressure of a compressible viscous fluid based on the 
cubic law and a linear fluid compressibility model, is first validated against analytical solutions for uncoupled transient and 
steady flow examples. Then the coupled HM procedure is further verified by two coupled examples, which respectively 
considers the elastic response of a pressurized fracture and hydraulic fracture (HF) propagation under different perforation 
inclinations and in situ stresses. Finally, the developed method is adopted to investigate the hydraulic fracture propaga-
tion in Augig granite possessing multi-fractures at micro-scale, based on which the effect of friction coefficient of natural 
fractures (NFs) on hydraulic fracture propagation is examined. The results show that the friction coefficient of the NFs has 
significant effects on the induced hydraulic fracture pattern. With increasing friction coefficient of the NFs, it becomes more 
difficult for the NFs to fail, which results in simpler HF patterns. This phenomenon is associated with the change in the type 
of interaction between HFs and NFs, i.e., from HFs being arrested by NFs to HFs crossing the NFs with offsets and then to 
HFs directly crossing NFs.

Keywords  Numerical manifold method · Coupled hydro-mechanical model · Micro-structure · Hydraulic fracturing · 
Cohesive element

List of Symbols
E	� Young’s modulus of the granite sample
�	� Poisson’s ratio
�	� Bulk density of the rock material
Mi	� Mathematical patch numbered i
Pi	� Physical patch numbered i
Ei	� Manifold element numbered i
GI	� Mode-I fracture energy
GII	� Mode-II fracture energy
�t	� Tensile stress of cohesive element
�	� Shear stress of cohesive element
c	� Shear cohesion of cohesive element
�n	� Compressive stress of cohesive element
Do	� Mode-I damage factor

Ds	� Mode-II damage factor
fs	� Shear strength of the rock material
ft	� Tensile strength of the rock material
Op	� Critical opening displacement
Or	� Residual opening displacement
Sp	� Critical sliding displacement
Sr	� Residual sliding displacement
w	� Relative normal displacement of the contact pair
s	� Relative tangential displacement of the contact pair
�	� Friction angle of the contact interface
V 	� Volume of node
a	� Equivalent hydraulic aperture
qij	� Flow rate from node i to j
�	� Dynamic viscosity of the fluid
�f	� Fluid density
g	� Acceleration of gravity
Si	� Saturation of the node i
Vf	� Volume of fluid inside the node i
Kf	� Bulk modulus of fluid
k	� Intrinsic hydraulic conductivity
Ni	� Natural fracture numbered i
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pfn	� Normal penalty parameters
pft	� Tangential penalty parameters
pn	� Normal contact penalty
pt	� Tangential contact penalty
�f	� Friction angle of fracture

1  Introduction

Hydraulic fracturing is a typical coupled hydro-mechanical 
(HM) process, which has been widely used in many indus-
tries, especially unconventional oil and gas exploitation. To 
enhance the permeability of the rock masses during uncon-
ventional oil/gas exploitation, hydraulic fracturing is usually 
applied to generate new fractures to form a complex fracture 
network as a result of the activation of pre-existing natu-
ral fractures (NFs). This coupled HM problem involves the 
deformation of rocks and fractures, fluid flow in fractures, 
fracture propagation, and the interaction between hydrau-
lically induced and natural fractures. At the microscopic 
scale, rock is made up of mineral grains and is character-
ized by different micro-structures and grain–grain interfaces. 
Therefore, to better understand the coupled mechanism of 
hydraulic fracturing, it is necessary to take the rock micro-
structures, as well as their interactions with the fracturing 
fluid into consideration. However, due to the complex nature 
of rock micro-structures and the hydraulic fracturing pro-
cess, realistically reflecting the micro-mechanism behind the 
coupled process of hydraulic fracturing is still challenging.

Terzaghi (1951) proposed the effective stress principle 
and the one-dimensional theory of consolidation to describe 
the coupled HM behavior of a porous medium (mainly soil) 
at early times. Based on Terzaghi’s study, Biot and Willis 
(1957) introduced a theory of poroelasticity that used the 
theory of elasticity and Darcy’s law for the description of 
solid behavior and interstitial fluid flow, respectively. Later, 
to account for more complicated conditions, such as pre-
existing discontinuities and fracturing, Biot’s theory was 
extended, and several improved analytical coupled HM 
methods were proposed (Bai et al. 1995; Detournay and 
Cheng 1988; Rudnicki 1985). With the extensive applica-
tion of hydraulic fracturing in the petroleum industry, several 
analytical models of hydraulic fracturing, such as PKN (Nor-
dgren 1972; Perkins and Kern 1961) and KGD (Geertsma 
and de Klerck 1969; Khristianovic and Zheltov 1955), have 
also been proposed based on different assumptions regard-
ing the fracture geometry and the fluid pressure distribution 
inside the fractures. However, to realistically account for 
the complex model geometry and boundary conditions in 
hydraulic fracturing, the capabilities of existing analytical 
methods are not adequate.

Numerical methods, which conveniently deal with 
hydro-mechanical coupling under complex conditions, can 

be classified as (1) continuum-based methods, (2) discon-
tinuum-based methods and (3) hybrid methods. The finite 
element method (FEM) (Goodman 1976; Hu et al. 2014; Li 
et al. 2017; Weng et al. 2017) is a representative continuum-
based methods that usually models coupled HM problems 
by treating a discontinuous rock mass as an equivalent-con-
tinuum medium. However, during the fracture propagation 
process, remeshing is required to make the fracture coincide 
with the finite element mesh, which demands an excessively 
high computational overhead. To overcome this deficiency 
of the FEM, the extended finite element method (XFEM) 
(Belytschko and Black 1999; Zhou and Cheng 2017) sim-
ulates fracture propagation by introducing an appropriate 
enrichment function. However, it is very difficult to define 
this function, in particular, for the branch-fracturing or 
multi-fracture problems. In addition to FEM-based methods, 
the displacement discontinuity method (DDM) (Cheng et al. 
2017; Xie et al. 2016) is also widely used in hydraulic frac-
turing simulation but deficient in dealing with contact prob-
lems of closed fractures. Besides the conventional contin-
uum methods described above, phase-field (Xia et al. 2017), 
peridynamics (Ren et al. 2016; Wang et al. 2018; Zhou et al. 
2018) and meshfree method (Rabczuk and Belytschko 2004; 
Zhuang et al. 2012) were also recently introduced to tackle 
with the hydraulic fracturing problems. However, for contin-
uum-based methods, considering the rock micro-structure, 
as well as its interaction during hydraulic fracturing model-
ling is still difficult.

Discontinuum-based methods such as discrete element 
methods (DEMs), which treat the rock mass as an assembly 
of separate blocks or particles, can easily deal with hydraulic 
fracturing in discontinuous rock masses at micro-scale by 
introducing a contact model between blocks or particles, 
as well as a coupled HM model. Among DEMs, the parti-
cle flow code (PFC) (Zhou et al. 2016, 2017), which rep-
resents a rock mass by bonded circular (2D) or spherical 
(3D) particles, is one of the most widely used methods for 
simulating hydraulic fracturing. However, circular or spheri-
cal particles cannot represent realistic rock micro-structures 
and will significantly reduce the interlocking effect of real 
rock grains. In addition, calibrating the micro-parameters 
required by PFC is challenging (Zhang and Wong 2018). 
Another circular particle-based flow-coupled DEM code 
was developed by Shimizu et al. (2011) to study the influ-
ence of the fluid viscosity and the particle size distribution 
on hydraulic fracturing in hard rock, and it was later used 
to investigate the effect of brittleness on the complexity of 
hydraulic fracture (Shimizu et al. 2018). Developed from 
PFC, the lattice model, which uses a lattice representation 
of the rock matrix with quasi-randomly distributed nodes 
connected by springs, is coupled with fluid flow to model 
hydraulic fracture containment in layered reservoirs (Dam-
janac and Cundall 2016; Xing et al. 2018). Different from 
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PFC, the distinct element code (UDEC/3DEC) (Chen et al. 
2018; Damjanac and Cundall 2016; Zhao et al. 2015) adopts 
polygonal or polyhedral blocks bonded by virtual joints to 
simulate hydraulic fracturing. In addition to explicit DEMs 
summarized above, several coupled HM models were also 
proposed based on the implicit DEM discontinuous defor-
mation analysis (DDA) (Jiao et al. 2015b; Ning and Zhao 
2013; Shi and Goodman 1985) to represent the hydraulic 
fracturing process (Choo et al. 2016; Jiao et al. 2015a; Jing 
et al. 2001; Morgan and Aral 2015).

Due to the complex continuum–discontinuum character-
istics of rock, several hybrid methods such as the finite–dis-
crete element method (FDEM) (Lisjak et al. 2013; Mahabadi 
et al. 2012; Yan and Jiao 2018) and the numerical manifold 
method (NMM) (Li et al. 2018; Ma et al. 2009; Ning et al. 
2017; Wu et al. 2017; Zhang et al. 2010; Zhao et al. 2014; 
Zheng and Xu 2014) were proposed to study the mechanical 
behavior and fracture propagation in rock. By incorporating 
coupled HM model into the FDEM, two fully coupled imple-
mentations respectively named Y-flow (Yan et al. 2015) 
and Irazu (Lisjak et al. 2017) were developed to investigate 
hydraulic fracturing in porous rock masses. However, the 
solid elements of the two implementations were both limited 
to triangular finite elements, which are incapable of realisti-
cally modelling the rock micro-structure. The NMM (Ma 
et al. 2010), which combines the continuum-based method 
FEM and discontinuum-based method DDA in a uniform 
framework, has been successfully applied to solve rock frac-
ture related problems. By coupling the linear elastic fracture 
mechanics with a fluid flow model, the NMM has been suc-
cessfully extended for modelling hydraulic fracture related 
problems at macro-scale (Hu et al. 2017a, b; Wu and Wong 
2014; Yang et al. 2018).

As a composite material composed of grains, the mechan-
ical and failure behavior and hydraulic fracturing behavior 
of rock are profoundly affected by its micro-structure. To 
more realistically and efficiently model the rock mechanical 
behavior at micro-scale, the Voronoi tessellation technique 
and zero thickness cohesive elements were incorporated into 
NMM (Co-NMM) by Wu et al. (2017) to construct random 
polygonal rock micro-grains and capture the interactions 
between the grains, respectively. Although Co-NMM can 
represent the rock micro-structure well and be used to inves-
tigate the micro-mechanisms underlying the macroscopic 
response and fracture processes in rock, without coupling 
the fluid flow model, it is incapable of solving coupled HM 
problems.

In view of the issues presented above, this study pro-
poses a fully coupled HM formulation based on Co-NMM 
to model hydraulic fracturing under the influence of the rock 
micro-structure. A comprehensive validation of the coupled 
HM procedure against analytical solutions as well as experi-
mental results is presented, including coupled and uncoupled 

examples. The proposed hydraulic solving framework is first 
verified using uncoupled examples, which analyse transient 
and steady flows through fractures with constant and uni-
form apertures. In addition, two coupled examples, which 
respectively consider the elastic responses of a pressurized 
fracture and hydraulic fracture propagation under different 
perforation inclinations and in situ stresses, are then adopted 
to validate the coupled HM approach. Finally, the coupled 
HM procedure is further applied to model hydraulic frac-
turing in Augig granite (AG) possessing multi-fractures, 
based on which the effect of the friction coefficient of natural 
fractures (NFs) on hydraulic fracture propagation is exam-
ined and discussed. The results illustrate that the developed 
method can well model the hydraulic fracture propagation 
processes at micro-scale, which involves correctly modelling 
the fluid flow in fractures, fracture propagation, and interac-
tions among the rock micro-structure, fracturing fluid as well 
as hydraulic induced and natural fractures.

2 � Fundamental Principles of Co‑NMM

This section presents the procedures used by Co-NMM to 
realistically model rock mechanical behavior at micro-scale. 
In Co-NMM, using the Voronoi tessellation technique, the 
rock specimen is first discretized into several independent 
loops (grains), which define the shapes and boundaries of 
the rock grains as well as the contacts between them. Each 
grain consists of several manifold elements, which control 
the mechanical behavior of the rock grain itself. Then, based 
on the formed Voronoi grains, zero thickness cohesive ele-
ments with a stress–displacement constitutive model are 
embedded between adjacent grains to capture the interaction 
between the grains before failure. To more efficiently capture 
the contact behavior between the rock grains after failure, 
a grain based contact algorithm is adopted, which allows a 
smooth transition from the cohesive element to the contact 
model during fracturing process. In the following sections, 
the basic background of Co-NMM is presented, and the gen-
eration of the rock micro-structure is then introduced along 
with the contact mechanics.

2.1 � Finite Cover System

The core and most innovative characteristic of Co-NMM 
inherited from the original NMM is the two cover (mesh) 
system, which includes the mathematical cover (MC) and 
physical cover (PC). The mathematical cover, which is a 
set of user-defined overlapping unions of arbitrarily shaped 
mathematical patches, must be large enough to cover the 
entire physical domain. The physical cover consists of all 
of the physical patches that are obtained by intersecting the 
mathematical patches with the physical components of the 
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problem domain. Here, the physical components of the prob-
lem domain include the problem domain boundaries, block 
boundaries, material interfaces, holes and discontinuities. 
Each mathematical patch is divided into at least one physi-
cal patch, the common regions of which form the manifold 
elements (MEs) in Co-NMM.

The basic construction procedures of the finite covering 
system described above are illustrated in Fig. 1. The problem 
domain is completely covered by the mathematical cover, 
which consists of two mathematical patches (the circular 
patch M1 and the rectangular patch M2), and the physical 
components of the problem domain contain a physical 

boundary Γu and a discontinuity ΓD. Then, by intersecting 
the mathematical patches with the physical components 
for example, intersecting the mathematical patch M1 with 
the physical boundary Γu and the discontinuity ΓD forms 
the physical patches P1-1 and P1-2, while intersecting the 
mathematical patch M2 with the physical boundary Γu forms 
physical patch P2-1. Finally, by overlapping these formed 
physical patches, the MEs are generated; for example, ele-
ments E3 and E4 are formed from the common area of P1-1 
and P2-1 and that of P1-2 and P2-1, respectively, and elements 
E1, E2 and E5 are respectively formed from the remaining 
independent areas of the physical patches as shown in Fig. 1.

Based on the independent definition of the local approxi-
mation functions ui

h(r) on each physical patch Pi, the global 
displacement function for each ME can be obtained by con-
necting the local approximation functions together as:

where r denotes the position vector, n is the number of phys-
ical patches, and wi(r) is the weight function of Pi, which 
should satisfy:

Due to the adoption of a regular triangular mesh and a 
linear displacement approximation, which respectively form 
the mathematical cover and displacement functions of the 
manifold elements in this study, the weighting functions are 
equal to the shape functions of the three-node triangular 
finite element.

By taking the two cover system, the displacement jump 
across the discontinuity can be simply captured without fur-
ther enrichments; for example, the jump across interface ΓD 
between elements E3 and E4 in Fig. 1 can be calculated as 
follows.

First, the displacements of E3 and E4 can be expressed 
respectively as:

Then, the displacement jump across interface ΓD between 
elements E3 and E4 can be obtained as:

(1)uh (r) =

n∑
i=1

wi(r)u
h
i
(r),

(2)

wi(r) ≥ 0 ∀r ∈ Pi

wi(r) = 0 ∀r ∉ Pi�
r∈Pi

wi(r) = 1

⎫
⎪⎪⎬⎪⎪⎭

.

(3)

{
uh
E3
(r) = wP1-1

(r)uh
P1-1

(r) + wP2-1
(r)uh

P2-1
(r)

uh
E4
(r) = wP1-2

(r)uh
P1-2

(r) + wP2-1
(r)uh

P2-1
(r)

.

(4)
uΓD

(r) = uh
E3
(r) − uh

E4
(r) = wP1−1

(r)uh
P1−1

(r) − wP1-2
(r)uh

P1-2
(r).

Mathematical patches Physical Components

Physical patches

Manifold elements

Physical boundary Γu

Discontinuity ΓD

M1 M2

P2-1

E1

E2

E5

E3

E4

Problem domain

M1 M2

P1-1

P1-2

(P1-1)

(P1-2)
(P2-1)

(P2-1,P2-1)

(P2-1,P2-1)

Fig. 1   Illustration of the finite cover system
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To obtain the governing equations for a linear elastic 
problem with discontinuities, the Galerkin formulation 
(Lin 2003) is employed by Co-NMM. Let u ∈ V be the dis-
placement trial function, and δu ∈ V0 be any set of admis-
sible test functions. The weak form of the discrete problem 
is to find uh in the finite-dimensional subspace Vh ⊂ V  , 
∀𝛿uh ∈ Vh

0
⊂ V0 , such that

where σ and ε are the stress and strain tensors, respectively; 
Ωh is the problem domain subjected to the body force b; λ 
is the real penalty value; ū and t̄ are the displacement and 
traction conditions on the corresponding boundaries Γh

u
 and 

Γh
t
 , respectively; ρ is the material density; ω is the opening or 

sliding displacement of the cohesive element; cf is the force 
exerted by cohesive element on the unbroken grain boundary 
Γh
c
 , which is computed based on a bilinear stress–displace-

ment constitutive model introduced in Sect. 2.3; and p is 
the contact force on the broken grain boundary Γh

b
 , which is 

computed based on a grain-based contact model introduced 
in Sect. 2.4.

2.2 � Rock Micro‑structure Model Generation

In Co-NMM, the Voronoi tessellation technique (Malan 
and Napier 1995), which divides a domain into regions 
based on the distances to points in a specific subset of 
the domain, is first used as a pre-processor to build the 
rock micro-grains by random polygons. The detailed 
grain-based model generation procedures are illustrated 
in Fig. 2. The formed random polygonal blocks in Fig. 2a 

(5)
∫
Ωh

𝜎
(
uh
)
⋅ 𝜀
(
𝛿uh

)
dΩ + ∫

Ωh

𝜌üh ⋅ 𝛿uhdΩ + 𝜆∫
Γh
u

(
uh − ū

)
⋅ 𝛿uhdΓ

= ∫
Γh
b

𝛿uh ⋅ pdΓ + ∫
Γh
t

t̄ ⋅ 𝛿uhdΓ + ∫
Ωh

b ⋅ 𝛿uhdΩ + ∫
Γh
c

cf
(
uh
)
⋅ 𝜔

(
𝛿uh

)
dΓ,

are treated as the physical components and intersected 
with the mathematical cover in Fig. 2b to generate the 
manifold elements and eventually the corresponding grain-
based model in Fig. 2c. Then, to more realistically and 
efficiently capture the interaction between the rock grains, 
as well as further simulate the rock fracturing process, 
zero-thickness cohesive elements are embedded between 

two adjacent grains as shown in Fig. 3. With the grain-
based model and the corresponding zero-thickness cohe-
sive elements, modelling of the rock failure process that 
involves the transition from a continuum to a discontinuum 
through deformation, fracturing and movement can easily 
be achieved by considering the rock micro-structure.

Grain 1

Grain 2

(a) (b) (c)

Fig. 2   Grains generation procedures. a Voronoi random polygonal blocks; b corresponding mathematical cover; c generated grain-based model

Grain 1

Grain 2
Cohesive element

Grain 1

Grain 2

Fig. 3   Zero thickness cohesive element embedded in grain bounda-
ries
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2.3 � Cohesive Fracture Model

In Co-NMM, a bilinear stress–displacement constitutive 
model is adopted for the zero-thickness cohesive elements, 
which divides the grain interactions into two types: ten-
sile (mode-I) and shear (mode-II) behaviors. As shown in 
Fig. 4a, b, the tensile and shear behaviors both include two 
stages (hardening and softening stages), which are governed 
by the tensile strength ft and mode-I fracture energy GI (the 
area of the purple region in Fig. 4a) and the shear strength 
fs and mode-II fracture energy GII (the area of the yellow 
region in Fig. 4b), respectively. In the hardening stages, the 
tensile and shear stresses of the cohesive element both vary 
linearly with the opening and sliding displacements, respec-
tively, until the strength (ft for tensile and fs for shear) is 
reached. The cohesive element will then fall into the soften-
ing stage, where the tensile and shear stresses are controlled 
by a damage-based softening criterion, which is expressed 
as follows:

where σt and τ are the tensile and shear stresses of the cohe-
sive element, respectively; c is the shear cohesion; σn is the 
compressive stress; φ is the friction angle; and Do and Ds 
are the mode-I and mode-II damage factors, respectively, 
and defined as follows:

(6)

{
�t =

(
1 − Do

)
⋅ ft

� =
(
1 − Ds

)
⋅ c + �n ⋅ tan�

,

(7)

⎧⎪⎪⎨⎪⎪⎩

Do = 0 o < op

Do =
o − op

or − op
op ≤ o ≤ or

Do = 1 o > or

,

⎧
⎪⎪⎨⎪⎪⎩

Ds = 0 s < sp

Ds =
s − sp

sr − sp
sp ≤ s ≤ sr

Ds = 1 s > sr

,

where op is the critical opening corresponding to ft; or is the 
residual opening displacement; sp is the critical sliding cor-
responding to fs and sr is the residual sliding displacement.

The mode-I failure of the cohesive element occurs, when 
Do equals 1, and the mode-II failure takes place when Ds is 
equal to 1. In addition to the mode-I and mode-II failures of 
the cohesive element, a mixed-mode failure criterion shown 
in Fig. 4c is adopted to determine the mixed failure of the 
cohesive element, which couples the opening and sliding 
displacements as follows:

Once Eq. (8) is satisfied, a mixed-mode failure is pre-
dicted. Regardless of which failure type is predicted in the 
current step, the corresponding cohesive elements will be 
eliminated in the next calculation step.

2.4 � Contact Detection and Grain Interaction After 
Failure

After the failure of cohesive elements, the interaction 
between grains is captured by the grain-based contact model 
instead of the corrupted cohesive elements. The basic con-
tact elements are the grains as shown in Fig. 2c, which are 
taken as the closed domains encompassed by corner ver-
tices on the boundary and detected by a contact detection 
algorithm at each time step to search possible contact pairs 
between them. There are three types of contacts between 
grains including angle–angle, angle–edge and edge–edge, 
as shown in Fig. 5. An edge–edge contact can also be trans-
formed into two angle–edge contacts with angle V1 to edge 
V3V4 and angle V3 to edge V1V2. After the determination of 
the contact type, by the relative normal displacement, w, 
of the contact pair and Coulomb friction law, the contact 
status of a contact pair can be judged, based on which the 

(8)

(
o − op

or − op

)2

+

(
s − sp

sr − sp

)2

≥ 1 op < o < or and sp < s < sr.

(a) (b) (c)

Fig. 4   Constitutive model of cohesive element; a mode-I tensile behavior; b mode-II shear behavior c mixed-mode failure criterion modified 
from (Lisjak et al. 2017) (color image online)
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interactive normal and tangential forces Fn and Fs, respec-
tively, can be obtained by a force–displacement model as 
follows:

For the “open” state (w > 0), the normal and tangential 
forces Fn and Fs are:

and for the “locked” state (w ≤ 0, Fs ≤ Fn·tanφ), Fn and Fs 
are:

and for the ‘‘sliding’’ state (w ≤ 0, Fs > Fn · tanφ), Fn and 
Fs are:

where s is the relative tangential displacement of the contact 
pair; kn and ks are the normal and tangential contact spring 
stiffness, respectively; φ is the friction angle of the contact 
interface.

3 � Coupled Hydro‑mechanical Formulation 
of Co‑NMM

In this section, an explicit hydraulic solving framework 
that iteratively calculates the flow rate and fluid pressure in 
each time step is proposed based on the cubic law and linear 
compressibility model. Then, by converting the fluid pres-
sure obtained from the hydraulic solver into nodal forces of 
the manifold elements, the mechanical solver (Co-NMM) is 
used to calculate the deformation and fracturing process of 
the rock, based on which the geometrical characteristics of 
the flow network is updated. Finally, by alternating between 
the hydraulic and mechanical solvers described above in 

(9)Fn = Fs = 0,

(10)

{
Fn = knw

Fs = kss
,

(11)

{
Fn = knw

Fs = Fn ⋅ tan�
,

each time step, a two-way coupled hydro-mechanical method 
can be obtained. The implementation process of the hydrau-
lic solving framework and the coupled HM approach are 
described below.

3.1 � Hydraulic Solving Framework

The flow network, which consists of interconnected failed 
cohesive elements that link with hydraulic boundaries, is 
the only path for fluid flow as well as the hydraulic solving. 
Therefore, to calculate the flow rate and fluid pressure, a 
flow network searching algorithm is first proposed to ini-
tialize and update the flow network in the coupled HM pro-
cess, which considers all of the failed cohesive elements, 
pre-existing natural fractures and hydraulic boundaries and 
builds the relationship between them. Before executing the 
searching algorithm, an initial fracture set that consists of 
all kinds of fractures (i.e., hydraulically induced and pre-
existing natural fractures) and a flow network that consists of 
the hydraulic boundaries are established. The flow network 
searching is then conducted as follows: for each fracture in 
the fracture set, it is determined whether it connects to the 
flow network or not. If the fracture connects to the flow net-
work, it will be eliminated from the fracture set and added 
into the flow network. By repeating this process until no 
fractures in the fracture set connect with the flow network, 
the flow network search in the first step is finished, and the 
formed flow network is then used for the flow rate and fluid 
pressure calculation in the next time step. In the next time 
step, during the mechanical analysis, the predicted failed 
cohesive elements are temporarily added to the fracture set. 
Based on the newly formed fracture set and the flow net-
work formed in the previous time step, the flow network 
searching conducted in the first time step is repeated to 
update the fracture set and flow network for the next time 
step calculation. By repeating the above process until the 
end of the simulation, the fluid flow can be coupled to the 
fracture propagation. Figure 6 shows an example illustrat-
ing the flow network searching procedures in a time step, in 

V1

V2

V3V4

V1

V2

V3V4

V1 V2

V3V4

(a) (b) (c)

Fig. 5   Three types of grain-based contacts; a angle–angle; b angle–edge c edge–edge
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which the black lines represent the fracture set generated in 
the previous time steps; the red lines represent the fractures 
generated in the current time step; and the blue lines rep-
resent the flow network formed in the previous time step. 
Before the searching, a fracture set consisting of fractures 
from the previous fracture set and newly generated fractures 
(f1-8 shown in Fig. 6a) is first established. Then, with the first 
determination process, fractures f3 and f5 are added into the 
flow network as shown in Fig. 6b, and fractures f1 and f2 are 
subsequently captured by the second determination process 
as shown in Fig. 6c. Finally, as shown in Fig. 6d, fracture 
f4 is also added into the flow network by the third judging 
process, and fractures f6-8 remain in the fracture set because 
they are still isolated from the flow network.

To calculate the fluid pressure of the flow network obtained 
by the searching algorithm, the flow network is first repre-
sented by a series of virtual nodes, which correspond to the 
intersections of fractures in the flow network and act as fluid 
containers with a uniform pressure. These nodes are connected 
together by flow channels that are generated from intercon-
nected failed cohesive elements and pre-existing fractures. As 
shown in Fig. 7a, b, the selected part of the flow network is 
represented by nodes 1–9, which are connected together by 
flow channels fc1−8. A particular flow channel is the only path 
for fluid flow between adjacent nodes. For example, flow chan-
nel fc1 is the only path for fluid flow between nodes 1 and 2 
as shown in Fig. 7c. The nodes act as fluid containers, which 
therefore have volumes. The volume of each node is assumed 

to be equal to half the total volume of all of the flow channels 
connected to the node, which can be expressed as follows:

where n indexing over all flow channels connecting to the 
node; V is the volume of node; Vn is the volume of the flow 
channel and calculated as:

where an and Ln are the equivalent hydraulic aperture and 
length of the flow channel, respectively, as detailed below. 
As shown in Fig. 7d, the volume of node 7 is equal to half 
the total volume of flow channels fc6 and fc8.

Due to the assumption of laminar viscous flow, the flow 
rate between adjacent nodes can be obtained by the cubic law 
which is based on the parallel plate model. However, the two 
walls of the flow channel are not parallel in most cases, and the 
hydraulic aperture may vary along the flow channel as shown 
in Fig. 8. To satisfy the parallel plate model, the hydraulic 
aperture of the flow channel must be adjusted to an equivalent 
aperture in advance as follows (Jing et al. 2001):

(12)V=
∑
n

Vn

2
,

(13)Vn = an ⋅ Ln,
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where ai and aj are the hydraulic apertures at the two ends of 
the flow channel; am is a mean hydraulic aperture; r = aj/ai; 
a is an equivalent hydraulic aperture. Then by this rectifica-
tion, a non-parallel flow channel can be treated as a parallel 
flow channel with an equivalent aperture.

Based on the assumptions described above, the flow rate 
from node i to j can be calculated by the cubic law as:

where µ is the dynamic viscosity of the fluid, L is the length 
of the flow channel connecting nodes i and j; and Δpij = 
pj − pi + ρfg(yj– yi) is the pressure differential between 
nodes i and j, where pi and pj are the fluid pressures inside 
nodes i and j, respectively; ρf is the fluid density; g is the 

(15)qij = −
a3Δpij

12�L
,
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acceleration of gravity; and yj and yi are the elevations at the 
two ends of the flow channel, respectively.

As shown in Eq. (15), under the effect of gravity, fluid 
flow can occur between two nodes that are not fully sat-
urated. In this case, the permeability of the flow channel 
should actually decrease as the saturation decreases; how-
ever, this is not considered by Eq. (15). To solve this incon-
sistency for Eq. (15), a dimensionless coefficient fs, which 
depends on the saturation of the node from which inflow 
occurs, is incorporated into Eq. (15) to account for the effect 
of saturation on the permeability of the flow channel as fol-
lows (Itasca 2005):

where Si is the saturation of node I; Vf is the volume of fluid 
inside node i; and Vi is the volume of node i. It should be 
noted that if the calculated value of Si is greater than 1, Si 
should be reassigned to be 1.

Then, by summing all of the flow rates in the flow chan-
nels connected to node i, the total inflow rate of node i can 
be expressed as:

with j indexing over all of the nodes adjacent to node i.

(16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

qij = −
a3Δpij

12�L
⋅ fs

fs= Si
2(3 − 2Si)

Si =
Vf

Vi

,

(17)Qi =
∑
j

qji,

Finally, based on the total inflow rate and the volume 
change of the node induced by the mechanical response, 
a linear compressibility model (Itasca 2005; Lisjak et al. 
2017) is adopted to calculate the fluid pressure acting on 
each node as follows:

where Pt and Pt−1 are the fluid pressures of the node at time 
steps t and t − 1, respectively; Kf is the bulk modulus of the 
fluid; Vt and Vt−1 are the volumes of the node at time steps t 
and t − 1, respectively; Qt and St are the total inflow rate and 
the saturation of the node at time step t, respectively; and Δt 
is the time step size.

To guarantee the computational convergence of the 
explicit hydraulic solving process, a threshold value for 
the time step size should be set as (Itasca 2005; Lisjak 
et al. 2017)

with i and j indexing over all of the nodes and the flow chan-
nels connected to each node, respectively. It should be noted 
that the temporal threshold should be updated in each time 
step due to the change in the geometrical characteristics of 
the flow network, such as the hydraulic aperture.

(18)Pt =

⎧⎪⎨⎪⎩

Pt-1 + Kf

QtΔt

V t
− Kf

V t − V t−1

(V t + V t−1)∕2
St = 1

0 0 ≤ St < 1

,

(19)Δt∗ = min
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3.2 � Coupled Hydro‑mechanical Approach

To extend the Co-NMM for coupled HM analysis, a fully 
coupled HM formulation is implemented by alternating 
between the implicit mechanical solver (Co-NMM) and 
the explicit hydraulic solver in each time step. As shown in 
Fig. 9, the rock micro-structure model is first established, 
which is represented by rock grains and cohesive elements. 
According to the rock micro-structure model and boundary 
conditions, the flow network is initially determined for the 
first time step and will be continuously updated by the flow 
network searching algorithm at the beginning of each time 
step based on the mechanical analysis results of the last step. 
With the searched flow network, the cubic law and linear 
fluid compressibility model are then successively adopted to 
calculate the flow rate and fluid pressure of the flow network 
at each time step. The calculated fluid pressure of the flow 
network is then taken as an external linearly distributed load 
acting on the boundaries of the grains (flow channels) and 
later further transformed into nodal forces of the manifold 
elements. With these nodal forces, the mechanical analysis 
is performed by the Co-NMM, based on which the nodal 
positions as well as the status of the cohesive elements 
and contacts between grains are updated at the end of each 
time step. The updated nodal positions and the newly failed 
cohesive elements are later used in the next step to update 
the flow network as well as the flow network geometrical 
characteristics for the hydraulic solving. By repeating the 
above coupled HM procedures between the mechanical and 
hydraulic solvers in each time step until the end of the simu-
lation, a fully coupled HM analysis by Co-NMM is achieved.

4 � Numerical Validation

This section presents four validation examples for the devel-
oped coupled HM scheme against analytical solutions and 
experiment results, including two coupled and two uncou-
pled examples. The proposed hydraulic solving framework 
is first verified with the two uncoupled examples, which 
analyse transient and steady flows through fractures with 
constant and uniform apertures. Then, two coupled exam-
ples, which respectively consider the elastic response of 
a pressurized fracture and hydraulic fracture propagation 
under different perforation inclinations and in situ stresses, 
are adopted to validate the coupled HM approach. The four 
validation examples are described below.

4.1 � Transient Flow in a Single Fracture

In this example, transient flow through a single fracture is 
studied. As shown in Fig. 10a, a fracture with a constant and 
uniform aperture of a = 3 × 10−5 m and a length of L = 1 m 
is horizontally embedded in the centre of the model. Points 
A–E are five measurement points that are evenly distributed 
along the fracture. The fracture is assumed to be originally 
dry and impermeable at the right boundary and then sud-
denly subjected to a constant fluid pressure, P0 = 9.5 MPa, 
at the left side. Based on the above assumptions, transient 
flow will occur from left to right in the fracture, which can 
be modelled by a 1-D heat conduction equation (Carslaw and 
Jaeger 1959) that is expressed as:

(20)P = P0 ⋅

{
1 +

4

�

∞∑
n=0

[
e−(2n+1)

2(T∕4)�2
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Fig. 10   Modelling transient 
flow in a single fracture a model 
geometry and boundary condi-
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et al. 2017); b the numerical 
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where ζ = (L − x)/L; and T is dimensionless time, which is 
computed as:

In the example, the bulk modulus Kf and dynamic vis-
cosity µ of the fluid are adopted as 2.2 GPa and 10−3 Pa s, 
respectively. To model the example, a numerical model con-
taining 6027 physical patches, 278 grains and 7885 manifold 
elements as shown in Fig. 10b is constructed, in which the 
fracture is discretized into 40 equal length flow channels. 
The evolution of the fluid pressure is recorded at each node 
along the fracture.

The simulated fluid pressure distributions along the frac-
ture at four time points and the temporal evolution of the 
fluid pressure at points A–E are respectively compared with 
the corresponding analytical results obtained by Eq. (20) as 
shown in Fig. 11. The numerical results agree well with the 
analytical solutions, which demonstrates that the proposed 
model can successfully model transient flow through a frac-
ture with a constant and uniform aperture.

4.2 � Fracture Seepage with a Free Surface

As shown in Fig. 12a, this example studies 2-D seepage 
through a homogeneous aquifer. The homogeneous aqui-
fer with dimensions of 4 m × 8 m has an impermeable bot-
tom boundary, and two constant hydraulic heads h1 = 4 m 
and h2 = 1 m are imposed on the left and right boundaries, 
respectively. According to Dupuit’s formula (Harr 1962), 
when the fluid flow reaches a steady state, the position of the 
free surface h(x) and the total discharge Q can be obtained 
by:

and

respectively, where L is the length of the model; and k is the 
intrinsic hydraulic conductivity.

To model this example, a numerical model containing 
25,966 physical patches, 2449 rock grains and 28,620 mani-
fold elements is established, as shown in Fig. 12b, which is 
discretized by two sets of parallel fractures with a constant 
and uniform aperture, a = 10−4 m; and constant fracture 
spacing, S = 0.5 m. The system of two sets of parallel frac-
tures is the flow network, which is further subdivided by the 
Voronoi polygonal mesh. The calculation parameters are as 
follows: Kf = 2.2 GPa, µ = 10−3 Pa s, ρf = 1000 kg/m3, and 

(21)T =
Kf(a

2∕12�)t

L2
.

(22)h(x) =

√
h2
1
−

h2
1
− h2

2

L
x,

(23)Q = k
h2
1
− h2

2

2L
,

g = 10 m/s2. The intrinsic hydraulic conductivity k can be 
computed by (Wu and Wong 2014):

which is equal to 1.666 × 10−6 m/s here.
According to Eq.  (23), the total discharge is 

1.562 × 10−6 m3/s. By summing all of the discharges of the 
nodes on the right boundary, the computed numerical total 
discharge is 1.641 × 10−6 m3/s, which agrees well with the 
analytical solution with only a 5.1% deviation.

To further illustrate the accuracy of the developed model, 
the numerically predicted steady-state position of the free 
surface is compared with that of the analytical solution 
obtained by Eq. (22) as shown in Fig. 13. The steady-state 

(24)k =
�fg
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free surface is the boundary between the saturated and unsat-
urated zones. Therefore, to obtain the numerical steady-state 
position of the free surface, the neighboring nodes at the 
boundary between the saturated and unsaturated zones are 
connected with straight line segments to form the continu-
ous free surface shown by the red line in Fig. 13. As shown 
in Fig. 13, the numerically predicted free surface generally 

agrees well with the analytical result despite the slight misfit 
caused by the relatively coarse grain size used in the model-
ling, which can be alleviated by adopting a finer grain model. 
The comparisons shown in Figs. 12 and 13 indicate that the 
steady flow through fractures with a constant and uniform 
aperture can be well captured by the proposed model.

4.3 � Fluid‑Pressurized Fracture Embedded 
in an Elastic Rock Matrix

In this example, the elastic response of a fluid-pressur-
ized fracture is presented. As shown in Fig. 14a, a fracture 
with a length of 21.6 m is horizontally embedded in the 
centre of a linear elastic rock mass with dimensions of 
46.08 m × 46.08 m and subjected to a uniform fluid pres-
sure, P = 20 MPa, along its two walls. In situ principal 
stresses σv = − 15 MPa and σh = − 30 MPa are imposed 
on the model in the vertical and horizontal directions, 
respectively. The Young’s modulus E and Poisson’s ratio 
ν of the rock mass are set to 40 GPa and 0.22, respectively. 
To prevent rock failure and keep the model in the elastic 
stage, high strength properties are assigned to the cohesive 
elements; for example, the normal and tangential penalty 

Fig. 12   Modelling seepage in a 
homogeneous aquifer; a model 
geometry and boundary condi-
tions; b the numerical model
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parameters are both ten times the Young’s modulus (Itasca 
2005). The analytical solution for the hydraulic aperture 
along the fracture can be expressed as follows (Parker 
1981):

where L is half the length of the fracture; x is the distance 
from the fracture centre and a(x) is the hydraulic aperture 
at x.

To model the example as shown in Fig. 14b, a numerical 
model containing 9291 physical patches, 680 grains and 

(25)a(x) =
4(�v + P)(1 − v2)

E

√
L2 − x2,

10,878 manifold elements is constructed. In the numerical 
model, the embedded fracture is discretized into 14 flow 
channels, based on which the fluid pressure is applied and 
the hydraulic aperture along the fracture is captured. As 
shown in Fig. 15, the numerical solution for the hydrau-
lic aperture distribution along the fracture is compared 
with the analytical solution given by Eq. (25), in which 
the numerical solution is presented by a series of points 
representing the hydraulic apertures at nodes along the 
fracture, and the analytical solution is shown by a dashed 
line. The comparison shows that the numerical solution 
is in good agreement with the analytical solution, which 
demonstrates that the proposed model can well capture 
the coupled HM elastic response of a fractured rock mass 
subjected to hydraulic pressure.

4.4 � Hydraulic Fracturing Through Oriented 
Perforations

Oriented perforation fracturing technology, which per-
forates wellbores to form the favorable fluid passageways 
between the wellbore and the reservoir, is widely used for 
hydraulic fracturing treatments. In this example, the effects 
of the perforation inclination and in situ stress on hydraulic 
fracture propagation with oriented perforations, which have 
been experimentally studied in detail by Chen et al. (2010), 
are numerically investigated to validate the proposed model 
in modelling the coupled HM failure process. As shown in 
Fig. 16a, a wellbore with a diameter of 20 mm is placed in 
the centre of the model and connected to two symmetrical 
perforations with lengths of 30 mm. The micro-mechanical 
parameters adopted in this section are calibrated based on 
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the macro-mechanical properties of a concrete sample from 
Chen et al. (2010) and reported in Table 1. An initial integra-
tion time step of 1 × 10−6 s is employed, which is continu-
ously adjusted according to the latest temporal threshold 

obtained by Eq. (19) in each time step. The fluid injection 
rate is kept at 0.35 MPa/ms until the wellbore pressure 
reaches 10 MPa. The other hydraulic parameters are also 
listed in Table 1.

To investigate the effect of the in situ stress on hydraulic 
fracture propagation with oriented perforations, four in situ 
stress states are considered, while the perforation inclination 
θ is set to be 45° clockwise from the direction of the maxi-
mum compressive in situ stress σv. The simulated hydrau-
lic fracture pattern and corresponding maximum principal 
stress (tension is positive) evolution process during fracture 
propagation for each in situ stresses condition are shown in 
Figs. 17, 18, 19, 20 and 21.

As shown in Fig. 17a, when the in situ stress is hydro-
static, the hydraulic fractures initiate from the tips of the 
perforation and propagate approximately in the direction of 
the perforation, which can be explained by the correspond-
ing maximum principal stress evolution contours shown in 
Fig. 18. As shown in Fig. 18a, before fracture initiation, 
tensile stress concentrations are located at the perforation 
tips. Then with the propagation of the hydraulic fracture, 
as shown in Fig.  18b–d, the fracture tips always move 
along with the regions of concentrated tension stresses that 
develop ahead of the fracture tips in the direction of the 
perforations in this case.

In the second case as shown in Fig. 17b, when the differ-
ence in the in situ stresses increases to 3 MPa, the hydraulic 
fractures also initiate from the tips of the perforations but, 
gradually deviate away from the direction of the perforation 
to the direction of the maximum compressive in situ stress 

(a) (b)

Fig. 16   Modelling hydraulic fracturing through oriented perforations; a model geometry and boundary conditions; b the numerical model

Table 1   Mechanical and hydraulic parameters for concrete samples

Parameters Value

Grains
 Bulk density, ρ (kg/m3) 2300
  Young’s modulus, E (GPa) 8.402
  Poisson’s ratio, ν 0.23
  Grain size (mean), (mm) 5

 Cohesive element
  Tensile strength, ft (MPa) 1.8
  Internal cohesion, c (MPa) 9.0
  Friction angle of intact material, φc (°) 35
  Mode I fracture energy, GI (J/m2) 11.9
  Mode II fracture energy, GII (J/m2) 47.6
  Normal penalty parameters, pfn (GPa) 84
  Tangential penalty parameters, pft (GPa) 8.5

 Hydraulic parameter
  Bulk modulus of fluid, Kf (GPa) 2.2
  Dynamic viscosity, µ (mPa s) 133
  Density of fluid, ρf (kg/m3) 1000

 Contact interaction parameter
  Normal contact penalty, pn (GPa) 84
  Tangential contact penalty, pt (GPa/m) 33.6
  Friction angle of fractures, φf (°) 35
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σv. The corresponding maximum principal stress evolution 
contours shown in Fig. 19 indicate that before fracture ini-
tiation, tensile stress concentration are located at the per-
foration tips as well as the upper left and lower right of the 
wellbore, and the tensile stresses at the perforation tips are 
much larger than those at the upper left and lower right of 
the wellbore (Fig. 19a). Then, as shown in Fig. 19b–d, as 
the fracture propagates, the fracture tips move along with 
the regions of concentrated tension stresses and gradually 
deviate towards the direction of the maximum compressive 
in situ stress σv. This phenomenon is caused by the gradual 
deviation of the direction of the maximum principal stress 
at the fracture tips towards the direction of σv.

Similar to case 2, in cases 3 and 4 respectively shown in 
Fig. 17c, d, the hydraulic fractures also initiate from the tips 
of the perforations. However, with increasing difference in 
the in situ stresses (from 3 MPa in case 2 to 5 MPa in case 
4), the propagation of the hydraulic fractures to the direc-
tion of the maximum compressive in situ stress σv becomes 
faster and faster. As shown in Figs. 20 and 21, the evolu-
tions of the maximum principal stress for cases 3 and 4 are 
similar to that described in case 2 (Fig. 19); however, with 
increasing difference in the in situ stresses, the time required 
for the direction of the maximum principal stresses at the 
fracture tips to deviate towards the direction of σv decreases. 
These results demonstrate that the larger the difference in 
the in situ stresses is, the faster the hydraulic fractures 

σh = -4MPa

σv = -4MPa

σh = -1MPa

σv = -4MPa

σh = -1MPa

σv = -5MPa

σh = -1MPa

σv = -6MPa

(a) (b)

(c) (d)

Fig. 17   Hydraulic fracture patterns for different in situ stresses; a case 1: σv = − 4 MPa and σh = − 4 MPa; b case 2: σv = − 4 MPa and σh = − 
1 MPa; c case 3: σv = − 5 MPa and σh = − 1 MPa d case 4: σv = − 6 MPa and σh = − 1 MPa
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reorient towards the direction of the maximum compres-
sive in situ stress σv, which is generally consistent with the 
experimental results obtained by Chen et al. (2010).

With four different perforation inclinations oriented 
15°, 30°, 45° and 60° clockwise from the direction of the 
maximum compressive in situ stress σv, the effect of the 
perforation inclination on hydraulic fracture propagation is 
studied. The in situ stresses σv and σh are set at − 5 MPa 
and − 1 MPa, respectively. The simulated hydraulic frac-
ture patterns for each perforation inclination condition are 
respectively presented in Fig. 22a–d. The results show that 
the hydraulic fractures all initiate from the tips of the per-
forations and gradually propagate from the direction of the 
perforation to the direction of the maximum compressive 

in situ stress σv, and each case has two reorientation radii 
corresponding to the two generated hydraulic fractures. The 
reorientation radius is defined as the distance between the 
centre of the wellbore and the fracture tip when the hydrau-
lic fracture has just conspicuously turned to the direction 
of the maximum compressive in situ stress σv (Chen et al. 
2010). By averaging the two reorientation radii in each case, 
the mean reorientation radii in each case are obtained as 
48.65 mm, 77.75 mm, 87.8 mm and 98.4 mm, respectively. 
The above results suggest that with increasing perforation 
inclination, the hydraulic fracture requires a longer reorien-
tation radius to turn to the direction of the maximum com-
pressive in situ stress σv, which is generally consistent with 
the experimental results obtained by Chen et al. (2010).

Fig. 18   Maximum principal stress evolution contours for in situ stresses σv = − 4 MPa and σh = − 4 MPa; a step 30,000; b step 60,000; c step 
102,000; d step 132,000 (color image online)
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Based on the two groups of comparisons presented above, 
good agreement between the numerical and experimental 
results is achieved, which demonstrates that the proposed 
model can satisfactorily capture the coupled HM failure 
process.

5 � Application to Micro‑scale Hydraulic 
Fracturing Modelling

The proposed coupled HM method is further applied to 
investigate the effect of the friction coefficient of natural 
fractures (NFs) on hydraulic fracture (HF) propagation in 
Augig granite (AG), which is a coarse-grained crystalline 

rock composed of mineral grains ranging from 2 to 6 mm 
(average of 4 mm). As shown in Fig. 23a, the model with 
the dimensions of 200 mm × 300 mm is subjected to in situ 
stresses σh = − 10 MPa and σv = − 2 MPa in the horizontal 
and vertical directions, respectively. An injection wellbore 
with a diameter of 20 mm is placed in the centre of the 
model. Four parallel NFs, which are denoted N1, N2, N3 and 
N4 from left to right, are embedded at an inclination angle 
of 60° in the model and, are centrosymmetrically distributed 
along the centre of the injection wellbore. The coordinates 
of the upper and lower tips of the NFs N1–N4 are shown in 
Fig. 23a. Based on the mean mineral grain size presented 
above, the numerical model in Fig. 23b is discretized into 
3570 grains with a mean size of 4 mm. The model contains 

Fig. 19   Maximum principal stress evolution contours for in situ stresses σv = − 4 MPa and σh = − 1 MPa; a step 27,000; b step 39,000; c step 
63,000; d step 75,000 (color image online)
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37,373 physical patches and 40,325 manifold elements. The 
mechanical micro-parameters used in this model are cali-
brated by Wu et al. (2018) based on the macro-mechanical 
properties of AG obtained from laboratory tests (Table 2). 
The NFs are modelled by interconnecting weaker cohesive 
elements, the strength parameters of which are ten times 
weaker than those of the cohesive elements in intact rock. 
An initial integration time step of 1 × 10−7 s is adopted. The 
injection rate is kept constant at 0.5 MPa/ms until the well-
bore pressure reaches 15 MPa. The other hydraulic param-
eters are listed in Table 2.

To investigate the effect of the friction coefficient of NFs 
on HF propagation, four friction coefficients (0.4, 0.6, 0.8 
and 1.0) are assigned to the NFs shown in Fig. 23. As shown 

in Figs. 24, 25, 26 and 27, for these four models with differ-
ent NF friction coefficients, four HF patterns with different 
scenarios of interaction between the HFs and NFs as well as 
different failure modes are captured. In Figs. 24, 25, 26 and 
27, the grey lines represent NFs, the green lines represent 
HFs with tensile failures, the red lines represent HFs with 
shear failures and the blue lines represent HFs with mixed 
failures.

As illustrated in these figures, for all four cases, before 
intersecting with the NFs, the HFs all initiate from the 
wall of the wellbore and propagate approximately in the 
direction of the maximum compressive in situ stress σh. 
These HFs consist of a series of inter-granular fractures 
induced by tensile and mixed failures. However, when 

Fig. 20   Maximum principal stress evolution contours for in situ stresses σv = − 5 MPa and σh = − 1 MPa; a step 24,000; b step 33,000; c step 
51,000; d step 72,000 (color image online)
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encountering the NFs, the HFs in case 1 (friction coef-
ficient 0.4) (Fig. 24) are respectively arrested by N2 and 
N3. Since the friction of the NFs is low in this case, both 
N2 and N3 fail in a shear dominated mode (with minor 
mixed-mode failure). As a result, with the fluid flow, the 
generated HFs initially tend to propagate along N2 and N3 
and then re-initiate at the lower tip of N2 and the upper tip 
of N3 due to the local tensile stress concentrations. As the 
injection continues, the HFs continue to propagate in the 
direction of the maximum compressive in situ stress σh due 
to a series of tensile failures induced by the fluid pressure. 
Upon further propagation, the tensile HFs are respectively 
arrested by N1 and N4. Due to the low friction of the NFs, 
the lower part of N1 and the upper part of N4 both fail in 

the shear mode. Finally, after propagating along N1 and N4, 
the HFs re-initiate respectively at the lower tip of N1 and 
the upper tip of N4 due to the local tensile stress concen-
trations. The above results reveal that the failure of NFs 
is dominated by the shear mode, which is attributed to the 
low friction coefficient of the NFs.

When the NF friction coefficient increases to 0.6 in case 
2, as shown in Fig. 25, the HFs are sequentially arrested by 
the four NFs, which is similar to the result of case 1. The 
lower part of N2 and the upper part of N3 both fail in the 
shear dominated mode (with minor mixed-mode failure), 
and the lower part of N1 and the upper part of N4 both fail 
in the shear mode. However, due to the increase in the 
friction of the NFs, N2 and N3 are not entirely activated. 

Fig. 21   Maximum principal stress evolution contours for in situ stresses σv = − 6 MPa and σh = − 1 MPa; a step 27,000; b step 36,000; c step 
48,000; d step 66,000 (color image online)
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In addition, a tensile micro-fracture branch is induced near 
the intersection point of N3 and the HF.

As the NF friction coefficient increases further to 0.8 
in case 3, as shown in Fig. 26, the first generated HFs 
cross N2 and N3 with small offsets. As the injection con-
tinues, two small segments of mixed failure develop at 
the intersections of the HFs and N2 and N3 respectively 
due to the relatively high friction of the NFs. The HFs 
continue to propagate in the direction of the maximum 
compressive in situ stress σh, and are later arrested by N1 
and N4. With further fluid injection, N1 and N4 both fail in 
the shear dominated mode, accompanying with three ten-
sile micro-fracture branches generated along N4 and one 
micro-fracture branch formed at N1 when the HFs propa-
gate along N1 and N4. Finally, the lower tip of N1 and the 

upper tip of N4 are both re-activated via the initiation of 
local tensile fractures.

As shown in Fig. 27, when the NF friction coefficient 
increases to 1.0, the developed HFs always propagate in the 
direction of the maximum compressive in situ stress σh and 
mainly consist of a series of tensile fractures (with very few 
mixed-mode fractures). The HFs cross N2, N3 and N4 with 
small offsets, and an HF crosses N1 without any offset. Since 
the friction of the NFs is high, unlike the previous three 
cases, no HF is arrested by an NF in this case. In particular, 
the generated HFs first cross N2 and N3 with small offsets in 
mixed failure modes. However, due to the high friction of 
the NFs, the two mixed failures are respectively confined to 
the intersections of the HFs and N2 and N3. With further fluid 
injection, the HFs continue to propagate in the direction of 
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the maximum compressive in situ stress σh until intersect-
ing with N1 and N4. Then, the HF directly crosses N1 with-
out inducing any failure, which simply divides N1 into two 
parts. Meanwhile, the HF crosses N4 with a small offset due 
to the mixed failure along N4. The results of case 4 clearly 
show that the type of interaction between the HFs and NFs 
is dominated by a small offset crossing or direct crossing, 
which indicates that it is difficult for the NFs with a high 
friction coefficient to fail.

The four cases presented above (Figs. 24, 25, 26, 27) elu-
cidate that most of the failures of the NFs are in the shear 
mode. With an increase in the friction coefficient of the 
NFs (from 0.4 to 1.0), it becomes more difficult for the NFs 
to fail, which results in simpler failure patterns due to the 
change in the interaction type between the HFs and NFs, 
i.e., from HFs being arrested by NFs to HFs crossing the 
NFs with an offset and then to HFs directly crossing the NFs.

6 � Conclusions

The key merit of this paper is the development of a fully 
coupled HM formulation based on Co-NMM for model-
ling hydraulic fracturing at micro-scale. The cubic law 
and a linear fluid compressibility model are employed by 

the hydraulic solver to explicitly calculate the flow rate 
and fluid pressure, respectively. By alternating between 
the implicit mechanical solver (Co-NMM) and the explicit 
hydraulic solver in each time step, the fully coupled 
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Fig. 23   Modelling micro-scale hydraulic fracturing in Augig granite; 
a model geometry and boundary conditions; b the numerical model

Table 2   Mechanical and hydraulic parameters for Augig granite

Parameters Value

Grains
 Bulk density, ρ (kg/m3) 2600
  Young’s modulus, E (GPa) 25.8
  Poisson’s ratio, ν 0.23
  Grain size (mean), (mm) 4

 Cohesive element
  Tensile strength, ft (MPa) 6.12
  Internal cohesion, c (MPa) 14.7
  Friction angle of intact material, φc (°) 30
  Mode I fracture energy, GI (J/m2) 87.2
  Mode II fracture energy, GII (J/m2) 348.8
  Normal penalty parameters, pfn (GPa) 650
  Tangential penalty parameters, pft (GPa) 66

 Natural fracture parameter
  Tensile strength, ft* (MPa) 0.612
  Internal cohesion, c* (MPa) 1.47
  Mode I fracture energy, GI

* (J/m2) 8.72
  Mode II fracture energy, GII

* (J/m2) 34.88
 Hydraulic parameter
  Bulk modulus of fluid, Kf (GPa) 2.2
  Dynamic viscosity, µ (Pa s) 0.001
  Density of fluid, ρf (kg/m3) 1000

 Contact interaction parameter
  Normal contact penalty, pn (GPa) 650
  Tangential contact penalty, pt (GPa) 260
  Friction angle of fractures, φf (°) 30

σh = -10MPa

σv = -2MPa

HF being
arrested by NF

N1

N2 N3

N4

Tensile failure Shear failure Mixed failure NF

Fig. 24   Case 1: hydraulic fracture patterns for NF friction coefficient 
of 0.4 (color image online)
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method is implemented. The capability of the developed 
method for modelling hydraulic fracturing is validated by 
a series of examples against analytical solutions as well as 
experiment results. Finally, the hydraulic fracture propaga-
tion processes are analysed at micro-scale in Augig gran-
ite to investigate the effect of the friction coefficient of 
the NFs on hydraulic fracture propagation. Based on the 
results from the validation and application examples, the 
following conclusions can be drawn:

•	 Based on the cubic law, the linear fluid compressibility 
model as well as the flow network searching algorithm, 
the hydraulic solver can satisfactorily capture the tran-
sient and steady flows in the continually updated frac-
ture network.

•	 By alternating between the implicit mechanical solver 
(Co-NMM) and the explicit hydraulic solver with the 
time step, the developed method can well predict the 
elastic response of fluid-pressurized fractures and the 
process of hydraulic fracture propagation.

•	 For hydraulic fracturing through oriented perfora-
tions, with an increase in the difference between the 
in  situ stresses, the hydraulic fracture will reorient 
itself towards the maximum compressive in situ stress 
direction more quickly. In addition, under a particular 
in situ stresses state, the greater the perforation inclina-
tion is, the longer the reorientation radius that is needed 
for the hydraulic fracture to turn to the direction of the 
maximum compressive in situ stress.

•	 For hydraulic fracturing of Augig granite (AG) pos-
sessing multi-fractures, with an increase in the friction 
coefficient of the NFs, it becomes more difficult for 
the NFs to fail, which results in simpler HF patterns. 
This phenomenon is associated with the change of the 
interaction type between HFs and NFs, i.e., from HFs 
being arrested by NFs to HFs crossing the NFs with an 
offset and then to HFs directly crossing the NFs.

The developed method has shown promise in modelling 
hydraulic fracturing at micro-scale. However, due to the 
complex characteristics of rock micro-structures and the 
interactions between rock micro-structures, the fracturing 
fluid as well as the HFs and NFs involved in modelling 
hydraulic fracturing at micro-scale, the cohesive fracture 
model of Co-NMM and coupled HM approach in this 
study should be further enhanced to target more realistic 
hydraulic fracturing modelling at micro-scale.
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