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Abstract

Hydraulic fracturing has been proven to be the most efficient way to improve the permeability of coal seams. In this work, the
hydraulic fracture propagation in an underground coal mine was numerically investigated. A new numerical approach was
developed based on the equivalent continuum methodology to model the hydro-mechanical behavior of multiple fractures in
three dimensions. It was solved using a hybrid combination of the embedded element method (EEM) and the finite volume
method (FVM) using an iterative coupling schema. The FVM was employed to calculate the pressure field, while the EEM
was used to track the displacement discontinuity caused by fractures. A fracture constitutive model was implemented to
describe the aperture variation, shear slippage, and shear dilation for both contact and open fractures, as well as for contact
and open criteria. To verify the developed model, two benchmark examples were presented. Then, the developed model was
used to numerically investigate hydraulic fracture propagation in Datong underground coal mine in Songzao in Chongqing.
According to the numerical study, it was found that (1) a fracture network created by a hydraulic fracturing operation in a coal
mine is more complex than the ideal cross-cutting-shape, H-shape, T-shape, and Z-shape patterns; (2) the orientation of the
minimum principal stress controlled the main propagation direction; (3) the complexity of the fracture pattern is controlled
by the geological structure, the in situ stress and the injection rate.
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List of Symbols m Nodal mass
A Connection area of the two neighbor elements P Fluid pressure
b Fracture width q Flow rate
B Volumetric force vector 0 Source term
C Cohesion S Fracture spacing
D Hook tensor expressed in matrix form b 1 Normal and the tangential traction
E Young’s modulus thos tsor 1o Cohesive strengths
f Failure function T Internal force vector calculated using the inte-
F Force vector gral of stresses over element volume
G Shear modulus u Displacement vector
k¢ Fracture permeability v Velocity vector
ki s Permeability tensor Vv Volume
k, Normal stiffness w Fracture aperture
kg Shear stiffness a Damping coefficient
L Fracture length Y Correction factor resulting from fracture
roughness
d;; Kronecker tensor
B4 Zhaolong Ge u Fluid dynamic viscosity
gezhaolong@163.com Pun Rock density
! State Key Laboratory of Coal Mine Disaster Dynamics c Cauchy stress tensor
and Control, Chongqing University, Chongqing, China v Poisson ratio

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-018-1684-x&domain=pdf

L. Zhou et al.

2872

7 Dilation angle

¢ Frictional angle

Ae Strain increment tensor

1 Introduction

A gas outburst is one of the most serious disasters that
can occur in underground coal mines in China. Therefore,
extraction of coal bed methane (CBM) before proceeding
with mining is essential. Since coal is characterized as a low
permeable medium, enhanced gas extraction technologies
should be used, such as water-jet cutting (Lu et al. 2010),
deep-hole blasting (Liu et al. 2011) and hydraulic fractur-
ing (Liu et al. 2015). Among these technologies, hydraulic
fracturing has been proven to be the most efficient way to
improve the permeability of coal seams.

Hydraulic fracturing in coal seams is quite complex. In
moderate to deep coal seams, the horizontal stress is gener-
ally lower in magnitude than the vertical stress. However, the
strength of the coal bedding and weak planes between the
coal seam and its adjacent rock layers are smaller than the
entire intact coal formation. Furthermore, the tectonic stress
in a soft formation is typically lower than in a stiffer forma-
tion. Therefore, several theoretical studies (Daneshy 1978;
Zhang and Jeffrey 2006; Jeffrey and Zhang 2008; Chen
et al. 2015) have concluded that a fracture in a coal seam
can propagate in both horizontal and vertical directions.
However, the vertical direction is often limited by the thick-
ness of the coal seam, resulting in a T-shaped, Z-shaped,
H-shaped fracture and cross-cutting pattern. This conclusion
has been confirmed in other experiments (Anderson 1981;
Teufel and Clark 1984; Abass et al. 1990; Jiang et al. 2016;
Huang and Liu 2017; Tan et al. 2017; Wu et al. 2018).

Traditionally, to design and investigate hydraulic
fracture treatments on an engineering scale, numerical
simulations are required. Recently, valuable studies have
been carried out by many authors that model multiple
fracture interactions during fluid injection and produc-
tion. Some of them have been based on the discontinuum
methodology, in which fractures and connectivity among
multiple intersecting fractures are explicitly described
by their geometry, position, and orientation. Dershowitz
et al. (2010) developed a discrete fracture network model
(DFN), which is capable of considering fluid flow in
a complex fracture network. However, the mechanical
interaction between fractures is neglected in this model.
Various methods have been applied that consider stress
interferences from neighboring fractures. Meyer and
Bazan (2011) calculated the stress distribution using a
semi-analytical solution with superposition of pressur-
ized planar fractures. The results were validated only in
the case when the fractures were parallel to the direction
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of the principal stresses. Kresse et al. (2013) employed
a 2D displacement discontinuity solution with a 3D cor-
rection factor to investigate the shear displacement of
open fractures and the resulting stress interference and
dilation. In addition, McClure et al. (2015) considered
the shear displacement influence of both open and con-
tact fractures. Although the DFN model provides insight
into complex fluid flow in discrete and connected frac-
tures, applications are limited to pseudo 2D, as the 2D
displacement discontinuity solution with the 3D correc-
tion factor is only valid for homogenous and isotropic
rock formations under a plane strain state. The finite
element method (FEM) is another way to model the
hydro-mechanical behavior of multiple fractures (Guo
et al. 2015; Fu et al. 2011). In FEM analysis, fractures
are represented by interfaces between adjacent elements;
therefore, re-meshing is required to track the temporal
development of fracture surfaces. This is time consum-
ing and may cause errors when interpolating variables
from the old to the new mesh. To avoid the problems of
re-meshing, the extended finite element method (XFEM)
was introduced (Réthoré et al. 2007; Watanabe et al.
2012). In XFEM, fractures can cross through or embed
in the calculation elements. The discontinuum displace-
ment field caused by fractures can be mathematically
described using additional degrees of freedom. Although
XFEM is able to describe each fracture and does not
rely on re-meshing, applications in full 3D are still a
challenge due to the significantly complex integration
of volume-related variables, especially when multiple
fractures intersect in one calculation element. Wan et al.
(2017) used a particle flow code based on the distinct
element method (DEM) to simulate hydraulic fracture
propagation in a coal seam.

Although the numerical models based on the discon-
tinuum methodology have given the important contribu-
tions for understanding the mechanism of multiple frac-
ture interaction and propagation, they are mostly limited
in 2D applications due to the high computational cost
of 3D. A fully 3D numerical simulation of the hydrau-
lic fracturing process is of great importance and would
provide improved knowledge of fracture growth mecha-
nisms and aid in developing and improving diagnostic
and mapping technology on the engineering scale. There-
fore, some studies have concentrated on the continuum
methodology. On engineering scales, the characterization
of all discontinuities, including faults, bedding planes,
and joints, is difficult and not necessary. In the contin-
uum methodology (Rutqvist et al. 2002; Tang et al. 2002;
Li et al. 2005; Hou et al. 2013), fractures are assumed
to be distributed homogenously in one calculation ele-
ment. Mechanical and hydraulic influences on fractures
are considered as stress-dependent anisotropy of related
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parameters (e.g., Young’s modulus, shear modulus, rock
damage, and permeability), while displacement discon-
tinuity is described using plastic strain calculated utiliz-
ing plasticity theory. The main problem with the con-
tinuum models is that, although plastic deformation is
irreversible, the processes of fracture opening, closure,
and slippage are reversible. To solve this problem, Nassir
and Settar (2013) developed a pseudo continuum meth-
odology (combining both continuum and discontinuum
theory). In addition, Li et al. (2016) extended it with
additional consideration of thermal effects. In the pseudo
continuum model, fracture constitutive models were used
to describe the discontinuity, instead of plastic constitu-
tive models. With these methods, the mechanical behav-
ior of fractures was characterized accurately. Fracture
constitutive models developed by Bandis et al. (1983)
were adopted for contact fractures. In these models, a
constant normal stiffness was assumed when fractures
are open. Both Nassir et al. (2013) and Li et al. (2016)
simulated a KGD fracture to verify the aperture variation
of an open fracture. The results deviated slightly from
the analytical solution. The reason is that the aperture
variation of open fractures is not a function of fracture
stiffness but is related to elastic parameters of the rock
matrix (Peirce and Siebrits 2001, 2002).

In this work, a new numerical approach is developed
based on the equivalent continuum methodology to model
the hydro-mechanical behavior of multiple fractures in three
dimensions. The governing equations are solved using a
hybrid combination of the embedded element method (EEM)
and the cell-center based finite volume method (FVM) in an
iterative coupling schema. The FVM is employed to calcu-
late the pressure field, while the EEM is used to track the
displacement discontinuity caused by fractures. A fracture
constitutive model is implemented to describe the aperture
variation, shear slippage, and shear dilation for both contact
and open fractures, as well as contact and open criteria. To
verify the developed model, two benchmark examples are
presented. Finally, the developed model is used to numeri-
cally investigate hydraulic fracture propagation in an under-
ground coal mine.

2 Governing Equations

In general, hydraulic fracturing involves the following
physical processes: (1) deformation of the rock matrix;
(2) fluid flow in multiple fractures; (3) fracture deforma-
tion including fracture opening, closure, shear slippage,
and dilation; and (4) fracture propagation. In this section,
the governing equations used to develop the model are
discussed in detail.

2.1 Geomechanical Model

To describe the mechanical behavior of rock formations, the
linear elasticity theory was adopted, which utilizes the fol-
lowing equilibrium equation, the geometrical equation, and
the constitutive equation (Eq. 3):

V6+pm<B—i—:>=0, (1
Ae = %[V(Au) +VT(Auw), 2)
Ae = DAo, 3)

where ¢ is the Cauchy stress tensor in vector form (MPa);
p., is the rock density (kg/m?); B is the body force vector per
unit volume (m/s?); v is the velocity vector (m/s); Ae is the
strain increment tensor in vector form (—); u is the displace-
ment vector (m); D is the Hook tensor expressed in matrix
form; E is the Young’s modulus (MPa); v is the Poisson ratio
(-); and G is the shear modulus (MPa):

[ 1/E —v/E—0v/E 0 0 0
—v/E 1)E —v/E 0 0 0
D= —v/E —v/E 1/E 0 0 0
0 0 0 1/2G 0 0
0 0 0 0 1/2G6 0

| 0o 0 0 0 0 1/2G]

When rock elements contain a set of fractures, the EEM
(Oliver 1995, 1996) can be employed to describe the dis-
continuous behavior caused by the fractures. In the embed-
ded element method, deformation of a fracture element is
decomposed into deformation of an intact element and frac-
ture sets (Eq. 4, Fig. 1). The strain on the intact element was
estimated using Eq. (3). Meanwhile, a fracture constitutive
model was needed to calculate the strain increment induced
by the fractures.

Ae = Ae + Agg, 4)
where ¢, m, and f are the abbreviations for total, matrix, and
fracture.

- +

Fractured element Intact element Embedded fracture sets

Fig. 1 Equivalent pseudo-continuum fracture element
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Fig.2 Fractures in a real and a model case under different conditions

2.2 Constitutive Models for Rock Elements
with a Single Fracture

Zhou et al. (2014, 2016) and Ren et al. (2019) developed a
constitutive model for rock elements with a single fracture.
When fluid pressure in a fracture is smaller than the nor-
mal stress perpendicular to the fracture plane, the fracture is
under contact (Fig. 2a). In comparison with the rock matrix,
fractures have greater deformability, as the contact area and
the strength of fractures are smaller. Goodman et al. (1968)
developed an elastic constitutive model for contact fractures,
introducing normal stiffness and shear stiffness to describe
the amount of elastic normal and shear displacement with
respect to a stress change on the fracture plane:

Awes Y\ [1/k, O Aoy
o = U)o
where w is the fracture aperture (m); i is the fracture shear
displacement in the direction of the maximum local shear
stress (m); k, is the normal stiffness (m/MPa); k is the shear
stiffness (m/MPa); oy, . is the local effective normal stress
on the fracture plane, defined as oy, . =0y, + Py; oy, is the
local total normal stress on the fracture plane (MPa); P; is
the fluid pressure in the fracture (MPa); 7y is the maximum
local shear stress on the fracture plane (MPa); and index elas
is the abbreviation of elastic.

Experimental results (Bandis et al. 1983) have suggested
that the stress—aperture curve of a fracture can be captured
using a hyperbolic function:

W=w ACfy eff

SWii T (6)
b+ Ofneff

where w,; is the initial aperture in a zero-stress state (m);

and a and b are the fitting parameters.

Taking the derivative of the above equation, the normal
stiffness was obtained as a power function of the effective
normal stress:
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2
k = do—fn,eff - _ (b + Ufn,eff) (7)
" dw ab '

Since the fracture surface is rough, fractures still maintain
a certain frictional strength under the contact condition. The
Coulomb slip model can be used to describe the shear failure
behavior of fractures:

[ = abs(zy) = (C = o5, 4 tan @), ®)

where f is the failure function [MPa]; @ is the frictional
angle (°); C is the cohesion (MPa); and abs () is the operator
of absolute value.

When the maximum shear stress on a fracture plane
exceeds the frictional strength, shear failure occurs. Then,
the shear stress decreases and maintains at the level of the
shear strength. Therefore, the plastic shear displacement can
be calculated based on plasticity theory:

1
A“?sas = ”Tfsuf/ks’ ©))
where the index plas is the abbreviation of plastic;
Il =7 50

fs I 7,20

The plastic shear displacement induced by shear failure
can lead to dilation in the normal direction:

Awg, = Au?slas tan ¢. (10)

where ¢ is the dilation angle (°); and wy;, is the aperture
induced by the shear dilation (m).

The total fracture displacement under the contact condi-
tion is then a superposition of the elastic and the plastic part:

{ Aw! } _ [l/kn 0 ]{ Aoy } +<f>{f/ks .tanqs}
Aug 0 1/k Az lzsllf /& S
(1m)

_J0f<o0

where (f) = { 17>0
For uniformly distributed fractures, the strain induced

by fracture displacement can be computed according to the
equivalent continuum assumption:

Agg, | AWIS | | 1/k,S O Aoy
Aeg [ | Aug/S f | O kS Az,

flkS - tan ¢
+ m{ i /7K. } (12)

where S is the fracture spacing (m).

Fluid pressure and normal stress increase during fluid
injection. Due to the different mechanical behavior of frac-
tures and the rock matrix, the increment of fluid pressure is
faster than those under normal stress, until fluid pressure is
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equal to normal stress. Then fractures are propped open and
shear stress releases instantly (Fig. 2b). After the fracture
is open, the variation in fluid pressure must be equal to that
under normal stress, and shear stress must be equal to zero.
According to Zhou’s study (Zhou et al. 2016), fracture strain
can be calculated analogous to Hook’s law. However, the
stiffness matrix is negative, because the compression stress
is defined as a negative value in the calculation:

Agg,
Agg,

where n, m, and [ are the local coordinate axes (Fig. 2).

_|-VEWEWE O
- 0 0 0 -1/2G

{ Aoy, or — AP; Aoy, Aoy Az},

13)

2.3 Constitutive Models for Rock Elements
with Multiple Fractures

Fracture interaction must be considered when a rock element
contains multiple fractures. Several equivalent continuum
expressions have been derived for two- and three-dimen-
sional characterizations of multiple fracture sets. Gerrard
(1982a, b) studied the equivalent elastic modulus of a rock
mass consisting of orthogonal fracture sets. Furthermore,
Fossum (1985) derived the elastic modulus that considered
arbitrary fracture orientations. Their studies, with modifi-
cations, have been adopted for the present work. Fracture
stress (normal and maximum shear stress) and strain (normal
and maximum shear strain) components can be transformed
from the coordinate stress and strain tensor (Eq. 14). Since
the coordinate stress and strain tensor have six independent
components, a maximum of three fracture set states can be
described in one rock element with mathematical consist-
ency (Eq. 15):

{ Ac; = TAc

Ae; = TAe ’ 14)

AGf = { Aafn(l) Aan(Z) AUfn@) ATfs(l) ATfs(Z) ATfs(3)}
Asf = { A£fn(l) A5fn(2) A'gfn(3) Agfs(l) A'gfs(Z) A5f5(3)}

Ac = {AO'XX Aoy, Ao, At Az, ATZX}
Ae={ Ae, Ae,, Ae, A, Ae, Ac,, |

where 1, 2, and 3 are the indexes of the three intersecting
fracture sets; T is the transformation matrix; and /;; = cos(i,j)
is the cosine value of the angle between vector i and j.

Substituting Eq. (14) into Eq. (3), the constitutive model
for multiple fractures is obtained:

Ag; = -TDT ' Ao, = -D,Ac;, (16)
where Dj is the elastic matrix for the fracture sets, and is
expressed as follows:

dll d12 d13 0 d15 d16
d21 d22 d23 d24 0 d26
d31 d32 d33 d34 d35 0
0 0 0dy 0 0
0 0 0 0ds 0
| 0 0 0 0 0 d |

The diagonal values of the D; matrix describe the influ-
ence of stress on its related strain, while the non-diagonal
values characterize the influences of other stress compo-
nents. Since the orientation of the three fracture sets are
arbitrary and probably not perpendicular to each other, a
variation in shear stress on one fracture plane has contribu-
tions to the aperture variations of the other fractures. There-
fore, d,s, dg, dyy, dyg, d3y, and dy5 in the D, matrix are not
equal to zero.

2.4 Fracture Flow Model

Numerous studies investigating the flow behavior of rock
fractures have been conducted in past decades using dif-
ferent types of rocks, including granite, basalt, marble, and
sandstone. In theoretical analyses and numerical modeling,
normally laminar flow has been assumed in a single fracture,
and two fracture surfaces have been approximated using two
parallel smooth planes. According to the Navier—Stokes

2 2 2
l,,]x lnly lnlz zlnlxlnly 2ln1xlnlz 21n1ylnlz (15)
2 2 2
lnzx lnzy lnZZ 2L, 1L,y 2L, 1, 2L, 1, .
2 2 2
T= ln3x ln3y ln3z 2liz3xll13y 21n3xln3z 21n3yln3z
T SN R S S SR S A i1 +1 1 [
SIXTnx sy my §12 mz S| X npy sy mx sy ngz S1Z ny six ngz §12 mx
L S S S A S S )
S)X MyX TSy Moy 8,7 MpZ SHX Myy Sy MyX TS,y nyZ $22 Nyy SHX myZ 8§22 NyX
_ T S O S SO S S SO S _ [ 1 _
| s3x n3x Ts3y myy US32 myz s3x nzy §3Y N3X TS3y N3Z §32 N3y S3X M3z 8§32 n3x |
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equation, the average flow rate through a plane void can be
calculated. It has been found that flow transmissivity is pro-
portional to the cube of the aperture (cubic flow equation).
In this work, a modified cubic flow equation developed by
Witherspoon et al. (1980) was used. This equation considers
an additional correction factor y that accounts for the devia-
tion from cubic flow due to fracture roughness:

bw? 1 de
g=-—-1"1 (17)
12uy dL

where ¢ is the flow rate (m?/s); b is the fracture width (m); u
is the fluid dynamic viscosity (Pa s); L is the fracture length
(m); and y is the correction factor resulting from fracture
roughness (-).

In comparison with the Darcy’s law, the permeability of
a single fracture is a function containing the square of the
aperture:

k=22 (1)

where k; is the fracture permeability (m?).

In an equivalent continuum model, fracture permeability
is expressed as a tensor. Nassir and Settar (2013) developed
a permeability model of multiple fractures that considers the
contribution of each fracture set.

1wl
kyp = ; 51_(51.7 - nim;), (19)

where k;; - is the permeability tensor (m?); g, is the Kro-
necker tensor; n is the unit normal of fracture sets; and N is
the number of fracture sets; i,j € (x,y, 2).

In addition to the momentum equation, the mass conser-
vation equation is required to solve the pressure and velocity
field. Since the variation in fracture volume has significantly
greater influence on the pressure change than the fluid com-
pressibility, the fluid was assumed to be incompressible in
this work.
oV
—+0,+Vg=0, (20)

ot
where V; is the fracture volume (m?); and Q, is the source
term (m>/s).

By substituting Egs. (17) and (19) into Eq. (20), the fol-
lowing pressure conduction equation was obtained:
oV

—L 40, =Vk

AVP;, 21
o £ 2D

ijif

where A is the connection area of the two neighbor elements
(m?).
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2.5 Fracture Propagation

The element in the numerical modeling was categorized into
three groups, fracture element, intact rock element, fracture
tip element. Fracture element contains fracture. Intact rock
element has no connection to the fracture element. Tip ele-
ment is between the fracture element and the intact rock
element. Propagation criterion was used in the tip element
to determine whether the tip element was fractured. If the tip
element was fractured, it was changed to the fracture element
and its adjacent intact rock element was changed to the new
tip element. As a result, the fracture propagated. To describe
the fracture propagation, a linear cohesive zone model was
used. The quadratic nominal stress law was adopted to com-
bine both the shear and the tension failure modes. Damages
initiate when a quadratic interaction function involving nom-
inal and shear stress ratios reaches the value of one (Eq. 22,
Camcho and Ortiz 1996):

2 2 2
ot L) L) = @

Ino Iso Lo
where 7, ¢, and ¢, represent the actual values of the normal
and the tangential tractions; ¢, f,, and t,; are the cohesive
strengths; and <> is the Macaulay bracket.

Fractures in a hydraulic fracture network can be catego-
rized into two groups based on the propagation orientation.
One is with a fixed direction, such as a bedding plane and
interface. The other is with an arbitrary orientation, such as a
hydraulic fracture. The orientation of the arbitrary propagat-
ing fracture was assumed to be perpendicular to the direction
of the maximum principal stress.

3 Numerical Formulation
and Implementation

A solution strategy is of great importance to solve the com-
plex hydro-mechanical (HM) coupled equation system.
Choosing an appropriate schema can be valuable. At pre-
sent, the commonly used solution schemas are fully coupled,
iteratively coupled, and sequentially coupled (Cai et al. 2016;
JHa and Juanes 2007; Kim et al. 2012). Each of them has
their own advantages and disadvantages, depending on what
kind of problems are to be solved. A fully coupled solution
schema provides high accuracy, but low running speed. In
addition, the convergence of the solution is sensitive to the
fully coupled coefficient matrix constructed using different
physical processes. A sequential coupled solution possesses
high running speed, but the accuracy is significantly reduced.
This reduction in accuracy occurs particularly in problems
with strong coupling effects, such as when solving HM prob-
lems of rock fractures using a sequential coupled schema,
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where variations in the fracture volume induced by imposed
pressure may differ from variations in fluid volume in the
system (mass conservation is not kept). Second, a strong
change in the fracture volume may cause negative pressure
in the flow calculation. For HM problems of rock fractures
on a reservoir scale, an iteratively coupled schema is strongly
recommended (Kim et al. 2011; Asadi et al. 2014). An itera-
tively coupled schema was adopted for this work because
of its unconditional convergence, similar in accuracy to that
of fully coupled solution schemas. In addition, this type of
schema has a relatively high running speed.

Figure 3 shows the flow chart of the solving procedure.
The solution begins with model initiation. Then, the pressure
conduction equation (Eq. 21) is solved using the FVM in an
implicit formulation.

n n

kiAi kiAi
Y P+ 1) = Y P+ D) = 0

AVi(t+ 1)
& AL, & AL, ’

At
(23)

where 7 and ¢+ 1 indicate the current and next time step,
respectively; Py, and Py are the fluid pressure in a center
element and its neighbor elements, respectively; and # is the
number of the neighbor elements.

According to the continuum theory, an increment in the
fracture volume is equal to an increment in the rock volume
induced by a normal strain:

AV; = (Aegy) + Mgy + Aegys) ) Vi (24)

Model Initiation

yes no

Constitutive
model for open
fracture

Flow calculation in
—>| fractures (FVM):

Constitutive
model for
contact fractures

A Cerror(t+1)
Pﬂz+1)9 Ei+1)
L)
no
Mechanical
. Err=Aag,,
calculation (FDM): error(tt]) Err <tol
€1+1),00+1)

\Lyes
t=t+ /At

End

Fig.3 Flow chart of the solving procedure

where V, is the volume of a rock element (m3).

To solve Eq. (23) numerically, the variation in the fracture
volume is treated specially. The fracture constitutive model
was used to replace the fracture normal strain in Eq. (24)
using fluid pressure. However, the fracture state must first
be determined as to whether it is under contact or in an open
condition. Determination of the fracture state is based on the
relationship between fluid pressure and normal stress acting
on the fracture planes. When the fluid pressure is smaller than
the normal stress, the fracture is in a contact condition. By
combining Eqgs. (11) and (16), the following relationships
(Eq. 25) are obtained, in which a change in normal stress and
fluid pressure are implicitly expressed, while a change in shear
stress is explicitly expressed from the previous step for a sim-
ple computation. The calculation accuracy of such processing
can be improved using sub-iterations.

(=K, SDy) = 8;) Ayt + 1)

= —G; Aot + 1)

= —k,SDy; At (1 + 1)

= =G At + D) (25)

APt + 1) + k,SAe gy, (1)

1, S
Aty (1) + kSA€L (1)

When the fracture is open, a similar expression is
obtained according to Eq. (16):

APyt + 1) = =664, + 1) = =G Acg; (1 + 1) 6)
Aty (1) = =6 At (t + 1) = =Gy Az (t+ 1)
Equations (25) and (26) can be rewritten together:

AP; + (f)AcP™(1) = ~GAe,(1 + 1), @7

where AP; = {APf(t + 1) APyt + 1) APyt + 1) Ay (1)
Aty (1) Aty (D)}

Substituting Eq. (27) into Eq. (16), a relationship between
fluid pressure and fracture strain is obtained, which can be
further used in Eqgs. (23) and (24) to solve for the pressure
field at step 1+ 1.

Agi(t+1)=D,G™! <APf(t + 1)+ (f)AcElas(z)). (28)

After the flow calculation, the mechanical part is con-
ducted. The Lagrangian formulation is adopted to solve
mechanical problems (Bonet and Burton 1998). In this for-
mulation, first-order derivatives of space and time, such as
in Egs. (1) and (2), are approximated using linear finite dif-
ference expressions. The motion of a continuum element is
replaced by a discrete equivalent one in which the motion of
grid points is brought into focus (Eq. 28).

Av, .
(i)
m(t')( ) =F +Fyp = (T(i) +B; + Fext(i)) + Fai) = Funpars

A,
(29)
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where i is the id of grid points; m is the nodal mass (kg);
v is the velocity vector of grid points; f,, is the mechanical
time (s); F, is the action force vector (N); F; = —aF, is the
damping force vector (N); F .., is the unbalance force vec-
tor (N); a is the damping coefficient (-); T is the internal
force vector calculated using the integral of stresses over
element volume (N); B is the volumetric force vector (N);
and F,,, is the external force vector (N).

The total forces acting at a grid point consist of four
components. They are an external force, an internal force
calculated by stresses, a body force, and a damping force.
According to Eq. (27), a change in fluid pressure causes a
change in stresses, which further affects the loading force at
a grid point. The stress increment estimated in the flow cal-
culation is then brought into Eq. (29) to explicitly calculate
the grid point velocity, increment of displacement, and the
strain and stress based on Eqs. (2) and (3) in this mechani-
cal time step. It should be noted that the mechanical time is
a virtual physical time that is used for mechanical damping
from a dynamic state to a quasi—static state. The mechanical
calculation terminates when the maximum unbalance force
from all the grid points meets a given error tolerance. More
solution details can be found in the commercial software
FLAC3D (2008) manual.

The stress increment estimated using the flow calculation
can differ from that calculated using mechanical calculation.
The error can be reduced using sub-iterations that add the
error stress into Eq. (27).

Aer(t+ D(k+ 1) = DG~ (AP + 1) + (H)AeY ()
(30)
+AGeerr(t + l)(k))?

where A6, = AG¢necn) — AGpyqro); and k is the sub-iter-
ation steps from flow time 7 to time 7+ 1.

4 Verifications

4.1 Mechanical Interaction Between Two
Orthogonally Intersecting Fractures

In this verification, the mechanical interaction of two orthog-
onally intersecting fractures is modeled. The two fractures
were 20 m long and set at the middle of a 100 C 100 m block
(Fig. 4a). An isotropic stress state of 10 MPa was initial-
ized in the block. Meanwhile, the boundaries of the block
remained fixed. A constant fluid pressure of 15 MPa was
imposed on the surfaces of the two fractures. Other param-
eters are listed in Table 1.

Since the fluid pressure was greater than the initial stress
perpendicular to the fractures, the fractures were forced to
open. At the same time, the opening of the fractures caused
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deformation of the neighboring rock formation. There exists
no analytical solution for this example, so the commercial
software FLAC3D was employed for comparison. However,
this modeling concept is different. In FLAC3D, a discontin-
uum model is generated in which the fractures are simulated
using two separated surfaces (Fig. 4b). Then, a fixed stress
equal to the fluid pressure is applied on the surfaces. In the
pseudo continuum model developed in this study, there is
no explicit representation of fractures. Fractures are embed-
ded in the elements (Fig. 4c). In addition, fluid pressure is
directly used for the calculation instead of boundary stress.

Figure 5 shows a comparison of the x-displacement con-
tour calculated by FLAC3D and the developed model. Both
present a similar butterfly distribution. According to the
distribution, it is obvious that the maximum value is not
at the cross point, indicating that there were interactions
between intersecting fractures. The maximum values of the
displacement have slight differences according to the legend.
The reason is that the maximum value obtained in FLAC3D
was located at the grid points on the fracture surface, while
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Fig.4 a Geometrical model, boundary, and initial conditions; b mesh
used in the commercial software FLAC3D; ¢ mesh used in the devel-
oped model for verification example 1

Table 1 Calculation parameters in verification example 1

Parameter Symbol Value Unit
Young’s modulus E 60 GPa
Poisson ratio v 0.25 -
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Table 2 Calculation parameters for verification example 2

Parameter Symbol Value Unit
Young’s modulus E 17 GPa
Poisson ratio v 0.2 -

Tensile strength o, 1.25 MPa
Fluid viscosity u 0.0001 PaS

in the developed model it appeared at the grid points of the
elements containing fractures. Since there were no fracture
grid points with displacement values inside the fracture ele-
ments, the displacement of the fracture surfaces could not
be explicitly displayed (Fig. 4b). However, when comparing
the aperture distribution along fracture 1, both results were
comparable (Fig. 6). Therefore, it can be concluded that the
model was validated to simulate the mechanical interactions
of intersecting fractures.

4.2 Hydro-mechanical Coupled Transient Flow
in a Hydraulic Fracture

In this verification, the hydraulic fracturing under a plain
strain state was simulated. Figure 7 shows the geometrical
model and the boundary conditions. The bottom and the left
sides of the model were fixed in the normal direction, while
normal stresses of 5 MPa and 3.7 MPa were applied on the
right and the top sides, respectively. Fluid was injected into
the middle of the left side at a rate of 0.0005 m%/s. Other
parameters are listed in Table 2.

Since the minimum horizontal stress is in the y-direction,
the fracture will propagate in the x-direction. According to
the propagation criterion, the fluid pressure in the fracture
must be greater than the normal stress acting on the fracture,
indicating that the fracture is in an open condition. For this
problem, Bunger et al. (2005) provided a semi-analytical
solution. Figure 8a, b illustrates the temporal development of
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@ ,,_ the fracture propagation and the aperture distribution along

the fracture propagation path at =10 s, respectively. Both

10 : : s the numerical and the semi-analytical solutions were com-

£ S ﬁim;fizz:ytc'al /(((V parable. The reason for the slight difference lies in the fact

s 8 that the numerical results of the fracture propagation were

E,’ /V calculated step by step, so the values are discrete. In sum-

S 6 mary, it can be concluded that the developed model was able

% . /V to simulate the hydro-mechanical coupled transient flow and
né'_' propagation in an open fracture.

° 2 ‘ ° ? " 5 Numerical Investigation of Complex
®) o7 Time (s) Hydraulic Fracture Propagation
o L - in an Underground Coal Mine
R 05 )i::;:;?\ The Datong underground coal mine is located in S