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Abstract
The understanding of fractures in hard rock is important for topics such as geomechanics, rock mechanics and groundwater 
flow and solute transport. One key aspect is the roughness of the fracture, often described as the joint roughness coefficient, 
JRC. JRC is often subjectively interpreted by one geologist comparing a fracture trace with different type traces. It has been 
shown that several geologists are needed to get reliable interpretations of JRC. There are numerous attempts in the literature 
to develop objective methods to estimate JRC from digital traces. Some methods are not applicable to fractures, which give 
arbitrary results while other methods are sensitive to the resolution of the digitalisation and hence need a new relationship 
for each resolution. Another way of describing the roughness is by the two parameters fractal dimension and magnitude 
distribution of the asperities. These parameters can be objectively inferred using algorithms and act as input for a model to 
estimate JRC. Using several evaluation methods, the uncertainty can be decreased and, hence, more robust results achieved. 
A multilinear model is developed, JRC = − 4.3 + 54.6σδh(1mm)  + 4.3H, that estimates JRC, of the classic ten type curves by 
Barton and Choubey, with standard deviation ± 1 unit. Despite the simplicity of the model it explains 96.5% of the variance 
in JRC. The developed model is benchmarked against an ensemble of geologists, using nine synthetic fracture traces. The 
median difference of JRC is 0.2 units and the model shows 40% smaller spread compared to the geologists.
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1  Introduction

Fractures and their associated geometry typically govern the 
behaviour of rock masses. The geometry of the two surfaces 
defining the fracture is often referred to as the roughness 
of the fracture. The roughness, together with strength and 
deformability of the surrounding rock, control the mechani-
cal properties of the fracture by the behaviour of the con-
tacts, whilst groundwater flow and transport of solutes are 
controlled by the voids between the contacts. Hence, when 
characterising rock mass behaviour a useful starting point is 
a description of the fracture roughness (Brown 1981).

Barton (1973) initially suggested that fracture roughness 
could be quantified using the joint roughness coefficient 
expressed as:

where σn is the normal stress, τ is the peak shear strength for 
the normal stress σn, Φb is the basic friction angle, and σc is 
the rock compressive strength.

The values for the parameters in Eq. (1) were determined 
from laboratory direct shear tests that were carried out with 
a constant normal stress. In 1977, Barton and Choubey intro-
duced the ten type-profiles as a practical means for visually 
estimating JRC. However, Beer et al. (2002) found that it 
is challenging to visually estimate JRC to obtain consistent 
results. The study showed that about 50 individual judge-
ments were needed to get a stable mean and variance of 
the interpreted JRC, which is not practically feasible. Since 
the 1980s there have been several attempts to quantify JRC 

(1)JRC =
tan−1

(

�∕�n
)

− Φb

log10
(

�c∕�n
)

and address the deficiencies described by Beer et al. (2002). 
Those attempts were reviewed by Grasselli (2006) who 
introduced a quantitative three-dimensional surface parame-
ter to replace JRC. However, the method by Grasselli (2006) 
presumes the fracture surface to be fully exposed, which is 
rarely the case in engineering applications.

Bandis et al. (1981) suggested that the JRC methodol-
ogy which was initially based on millimetre-scale laboratory 
tests could be scaled by measuring the inclination of asperi-
ties sampled with step-sizes approximately 2% of the length 
of each specimen. This implies that it is possible to deter-
mine a JRC value from a 100-mm sample and scale it to the 
size of the engineering problem, say tenth of metre. Bandis 
et al. (1981) concluded, based on their model results, that 
JRC reduces significantly with increasing fracture length. 
Whether the methodology proposed by Bandis et al. (1981) 
is appropriate for engineering-scale problems is challenging 
to validate.

Mandelbrot (1985) indicated that fractures should con-
form to self-affine surfaces and Russ (1994) proclaimed 
that the circumference of the intersection between a fractal 
surface and a plane is self-similar if, and only if, the cutting 
plane is parallel to the mean fractal surface. By showing 
that the divider method does not work properly on fracture 
traces, Den Outer et al. (1995) confirmed that fracture traces 
cannot be self-similar. More recent researchers (Renard et al. 
2006; Candela et al. 2009, 2012; Brodsky et al. 2011) have 
shown that fracture geometry can be described as mono-
fractal self-affine surfaces over several orders of magni-
tude. This implies that the appearance of fractures are scale 
dependent; see e.g. Fig. 1.

Self-affine fractals need two parameters to be fully con-
strained; the fractal dimension, which steers the persistence 
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Fig. 1   Two traces with the same fractal parameters, H = 0.800 and 
σδh(0.1 mm) = 0.025 mm. Due to using linear scaling the 1000 mm 
long, 10 times down-scaled, lower trace appears to be smoother than 

the 10 times up-scaled 10  mm upper trace. This despite the upper 
trace being a small portion of the lower trace
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of correlation between vertices of digitalised data, and the 
magnitude parameter to scale the values at the vertices. The 
fractal dimension can be expressed as the Hurst exponent, H. 
Its relationship to the dimension of a trace, D1D, and dimen-
sion of a surface, D2D, can be described as, e.g. Russ (1994):

By substituting H in Eq. (2) it is shown that the difference 
in fractal dimension between a fracture surface and any of its 
traces is exactly 1. This does, however, not mean nor demand 
that fractures need to have the same fractal dimension in 
different directions, only that the fractal dimension of the 
surface in the direction of the trace is one unit larger. Hence, 
fracture traces can be used to determine the dimension of a 
fracture surface in the direction of the trace.

The magnitude parameter can be described in different 
ways. For example Brown (1987), Malinverno (1990) and 
Johansson and Stille (2014) use the constant κ0.5 in Eq. (3); 
Odling (1994) and Hong-fa et  al. (2002) use σδh(Δx)2; 
whilst Renard et al. (2006), Candela et al. (2009) and Stigs-
son (2015) use σδh(Δx), i.e. the standard deviation of height 
differences of points Δx apart.

Despite the knowledge that fractures are self-affine and 
hence need two parameters to be constrained, there are 
numerous examples (from Turk et al. 1987; Li and Huang 
2015; via e.g.; Lee et al. 1990; Wakabayashi and Fukushige 
1992; Xie and Wang 1999; Jiang et al. 2006; Bae et al. 2011, 
etc.), where only the fractal dimension of fracture traces 
have been evaluated using methods only applicable to 
strictly self-similar lines, such as the divider method, com-
pass walking, or h-l method. These erroneously evaluated 
dimensions have then been used to develop relations to infer 
JRC. Results from such studies are therefore highly question-
able. Other researchers have instead only concentrated on 
different asperity measures, e.g. standard deviation of the 
first derivative of the profile, Z2, or roughness profile index, 
RP (e.g. Tse and Cruden 1979; Yang et al. 2001; Tatone 
and Grasselli 2010). Due to the nature of self-affine fractals, 
these methods become sensitive to the sampling resolution 
and new relationships have to be derived for each new reso-
lution used. Another issue is that there is an indication that 
the conversion from Z2 to JRC may give unrealistic results 
for traces with JRC values below 3–6, shown in Sect. 8 in 
the Online Resource 1. An early exception is Odling (1994) 
who examined the relationship between JRC and H and the 
relationship between JRC and the structure function, i.e. 
the variance of the correlation function. However, he never 
combined the evaluations to infer JRC. Another exception 
is Hong-fa et al. (2002) who also used the variance of the 
correlation function to estimate both the fractal dimension 

(2)
H = 2 − D1D

H = 3 − D2D

(3)��h(Δx) =
√

� ⋅ ΔxH

and asperity distribution simultaneously. Unfortunately, they 
only used the results to create random replicas of the ten 
type traces and compared how well these replicas reflected 
different relationships to other established measures such as 
the resolution-sensitive relationship between JRC and Z2 and 
the relationship between JRC and the erroneously evaluated 
fractal dimension, D, using the divider method (please refer 
to Sects. 6 and 8 in the Online Resource 1, attached to the 
study, for issues regarding the usage of these two methods).

Despite the advances in the research field, the subjective 
methodology originally proposed by Barton and Choubey 
(1977) is still widely used in rock engineering practice. In 
this study fractures are treated as mono-fractal self-affine 
surfaces. A combination of four different evaluation meth-
ods, applicable to fracture traces, are used to infer the fractal 
dimension and asperity measure of the ten type traces in 
Barton and Choubey (1977) together with the seven traces in 
Bakhtar and Barton (1984). The results from this inference 
are used to develop a novel conceptual model that objec-
tively estimates JRC as accurately as a large ensemble of 
geologists, from mapped fracture traces only.

The paper is organized as follows: the four methods to 
infer the fractal parameters, applicable to mono-fractal self-
affine traces, are briefly presented together with one method 
of generating synthetic fracture traces in the methods sec-
tion. Thereafter a section dealing with uncertainties and 
biases when evaluating fracture traces follows before the 
traces in Barton and Choubey (1977) and Bakhtar and Bar-
ton (1984) are analysed. In the conceptual model section 
three multilinear models are developed and one model is 
chosen as the most appropriate to infer JRC from fracture 
traces. Thereafter the performance of the model is shown 
before the discussion about the work and how the model can 
be further developed. The study ends with some conclusions 
of the work carried out.

2 � Methods

There are various methods to determine the Hurst exponent, 
H, and the asperity measure, σδh(ΔL), of mono-fractal self-
affine fracture traces. The methods have different biases and 
uncertainties and hence may result in different interpreta-
tions of H and σδh(ΔL) depending on resolution, trace length 
and the value of H itself (Malinverno 1990; Gallant et al. 
1994; Russ 1994; Candela et al. 2009; and Sect. 5 in Online 
Resource 1).

Using several evaluation methods, and evaluating each 
method’s bias and uncertainty, it is possible to make more 
accurate and robust inferences of the fractal parameters. 
Hence, not one single method, but four, are used for the 
determination of the fractal parameters.
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Fast Fourier transform, FFT, is a quick way to translate 
time series between the time domain and the frequency 
domain (Cooley and Tukey 1965). Using the same algo-
rithm, there is an equivalent transform between the spatial 
domain, the trace, and the “length frequency” domain, i.e. 
the power spectrum. The slope and the intercept of the power 
spectrum are used to infer H and, σδh(1p).

To make a self-affine trace look similar at different mag-
nifications, the ordinate needs to be scaled by λH if the 
abscissa is scaled by λ (Candela et al. 2009). This relation-
ship is employed by the standard deviation of the correla-
tion function method, RMS-COR, to infer H and σδh(1p) 
from the slope and intercept of height differences at different 
distances.

The Korcak plot of zero sets, Zero set/Korcak, makes 
use of the intersections between a self-affine trace and the 
abscissa conforming to a Cantor dust. The complementary 
cumulative distribution function of the lengths between 
these intersections is used to infer H.

The box counting method uses the relationship between 
the number of boxes visited by the trace and the number of 
divisions of the parent box. This relation is used to infer H.

The above-mentioned four methods have different 
advantages and disadvantages, listed in Table 1. They are 
described in, e.g. Russ (1994) for FFT and Zero set/Korcak, 
Renard et al. (2006) and Candela et al. (2009) for RMS-COR 
and Malinverno (1990) for box counting. As a service to the 
interested reader, in depth information is given in Sect. 5 in 
Online Resource 1 attached to this study, together with the 
computer codes used.

There are several methods to generate random fractal 
lines and surfaces, for example random midpoint displace-
ment method, conditionalised random midpoint displace-
ment method, Mandelbrot–Weierstrass functions, or IFT of 
power spectrum, described in, e.g. Penttinen and Virtamo 
(2000), Russ (1994) and Saupe (1988). Based on the find-
ings in Saupe (1988), Gallant et al. (1994) and Russ (1994), 
the inverse fast Fourier transform, IFT, of power spectrum 
seems to be the most appropriate method to generate self-
affine traces. Hence this method is employed to generate 

synthetic fracture traces throughout this study. The method 
is elaborated in Sect. 4 in Online Resource 1.

3 � Uncertainty Studies of Synthetic Traces

The mean and variance of the inferred fractal parameters 
may depend on the generated H itself and on the number of 
vertices used during the evaluation. The Hurst exponent will, 
however, not depend on the magnification of the asperities, 
whilst the asperity measure, σδh(1p), will only be linearly 
affected by the scaling. To evaluate the bias of each method 
due to H and number of vertices, a set of synthetic traces are 
generated and analysed.

3.1 � Number of Realisations Needed to Get Stable 
Measures

The number of traces needed to get stable mean and vari-
ance of the fractal parameters are studied using two differ-
ent Hurst exponents, H = 0.975 and H = 0.600, both with 
σδh(1p) = 0.20. The Hurst exponents are chosen to reflect 
one high value and one low value, whilst σδh(1p) is arbitrary 
since it is not supposed to impact the number of realisations. 
The full study is provided in Sect. 9 in the Online Resource 
1 where it is shown that the two setups show similar results. 
Both the arithmetic mean and variance, represented by the 
standard deviation, have stabilised after evaluating 128–256 
traces for all methods except the Zero set/Korcak method 
that needs 512 traces to be stable; see Fig. 2. To have some 
margin to the minimum number of required traces, 1024 
realisations and evaluations are carried out in the analyses.

3.2 � Evaluation of Hurst Exponent, H

The effect that the generated H will have on the inferred H 
is analysed by comparing equally long traces with differ-
ent generated values of H. The size of the effect will differ 
due to the length of the evaluated trace and hence differ-
ent lengths of traces are extracted as well (from traces with 

Table 1   Summary of the four evaluation models used

Method H σδh(1p) Advantages Disadvantages

FFT X X Fast
Good at spotting missing information and 

true resolution

Needs equally spaced vertices that conform to 2n data points
Complex calculations

RMS-COR X X Easy to implement
Intuitive

Affected by finite length, which underestimates H
Needs equally spaced vertices

Zero set/Korcak X – Data points can be arbitrarily distributed
Easy to implement

Severely affected by finite length, which underestimates H

Box count X – Data points can be arbitrarily distributed
Visually intuitive

Affected by resolution of data
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65,536 traces down to 64 vertices). The results from the 
analysis are presented in Sect. 10 in the Online Resource 1 
and only a summary of the findings follow below.

As expected, evaluating H using FFT gives a mean that is 
exactly on the 1:1 line since it is the inverse of the generation 
method. For the other three methods the slope of the evalu-
ated H vs generated H is less than 1:1, resulting in a bias in 
the mean, dependent on the Hurst exponent. The different 
evaluation methods have different variances, but the variance 
of each method is almost not dependent on the generated 
Hurst exponent; see Fig. 3a.

The number of vertices analysed can be altered in two 
ways. Either all adjacent vertices are used of a shorter 
sub-trace, or the full length of the trace is used but skip-
ping fractions of in-between vertices. As the number of 
vertices decreases, the bias in both the mean and variance 

will increase. Whether shortening the trace or skipping in-
between vertices, the difference in the bias of the mean is 
negligible, cf., Fig. 3b, c. However, there is a difference in 
variance. The variance, expressed as standard deviation, will 
be about half if the full trace, skipping in-between vertices, 
is used compared to using all adjacent vertices on a shorter 
trace, cf., Fig. 3b, c.

3.3 � Evaluation of Asperity Measure, σδh(ΔL)

When measuring a fracture trace there will always be a 
trade-off between high resolution of a small section or 
low resolution of a long trace. Measuring a full fracture 
trace with high resolution will always give the correct 
σδh(ΔL) for ΔL equal to the resolution or larger. How-
ever, in the case that only a fraction of the fracture trace 

Fig. 2   The number of traces 
needed to get stable arithmetic 
mean and standard deviation 
using Zero set/Korcak evalu-
ation
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Fig. 3   The evaluated arithmetic mean of the Hurst exponent, as mark-
ers, and standard deviation, as whiskers. a Evaluated H as a function 
of generated H from traces with 1024 vertices. b Evaluated H as a 

function of the number of vertices used by shortening the trace length 
for generated H = 0.975. c Evaluated H as a function of the number of 
vertices used by skipping in-between vertices for generated H = 0.975
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is measured, the value of σδh(1p) will be underestimated 
compared to the full trace value due to the de-trending of 
the short evaluated trace.

Evaluating the trace using all adjacent vertices of 
a shorter sub-trace, both the bias in the mean and the 
variance around the mean will increase as the trace gets 
shorter; see Fig. 4a. The bias and variance will be larger 
the larger H of the trace. Decreasing the number of ver-
tices by skipping in-between vertices will scale σδh(ΔL) 
as Eq. (3), shown as the theoretical line in Fig. 4b. As 
the number of vertices decreases, the bias of the mean 
increases together with an increase in the variance. 
The variance, expressed as standard deviation, is how-
ever small, less than 2% and hence not seen in Fig. 4b. 
The slope of the inferred values in Fig. 4b is only 0.91, 
compared to the theoretical value 0.975, indicating that 
the IFT of the power spectrum method is not capable of 
generating correct traces as H approaches 1. Estimating 
σδh(ΔL) for ΔL smaller than the distance between the 
measured points is delicate. Due to the need of extrapo-
lation of a power function with an uncertain value of the 
exponent, H, the estimated σδh(ΔL) will be highly uncer-
tain as the trace gets shorter; see Fig. 4c.

4 � Evaluation of Type Curves

The ten type curves in Barton and Choubey (1977) 
together with the seven traces in Bakhtar and Barton 
(1984) are chosen as the basis for developing a model to 
infer JRC from the fractal parameters of a fracture trace.

4.1 � Data

The ten type curves in Barton and Choubey (1977) have been 
widely used for visual interpretation of fracture roughness. 
Each curve is the result of drawing the most representative 
profile out of three measurements using a profile gauge. The 
rods of the gauge were 1 mm wide and hence 1 mm is the 
maximum possible resolution. Jang et al. (2014) developed 
a method to digitise the ten profiles with 0.1 mm resolution 
using a computer algorithm. Using this algorithm, the length 
of the traces varies between 96 and 101 mm. As a comple-
ment to the high-resolution algorithm-based digitalisation 
in Jang et al. (2014), the traces were manually digitised by 
us for this study. The digitalisation procedure is described 
in Sect. 11 in Online Resource 1 and the manually digitised 
vertices are provided in Online Resource 2. To get some idea 
of the uncertainty during manual digitalisation, the traces 
were digitised twice, leaving a few days in between, first 
from left to right and then from right to left. Figure 5 shows 
a comparison between the three digitalisations of an excerpt 
of curve number 7, i.e. JRC = 12.8.

Digitising the ten curves using higher resolution than 
the profile gauge used by Barton and Choubey (1977), i.e. 
ΔL < 1 mm, does not provide any new fractal information 
but interpolation and noise. Using all 0.1 mm vertices in 
Jang et al. (2014) will result in a too steep slope of the lin-
ear regression and hence a too high estimation of H. This 
is due to the relatively straight lines between the 1.0 mm 
equidistant vertices, shown in Fig. 5, and hence too low 
σδh(ΔL) for ΔL < 1 mm. The lack of presence of small-
scale undulation is clearly seen as a drop in the power 
spectrum for the high frequencies between logarithmic 
frequency 2 and 2.5 in Fig. 6. The evaluations of the ten 
type curves in Barton and Choubey (1977) are hence made 
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σδh(ΔL), using generated H = 0.975. a The effect of using full resolu-
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using 1 mm equidistance both for the algorithm-based dig-
italisation and the manual digitalisation.

Before analysing the traces they are rectified using 
Deming regression or de-trend together with vertical 
adjustment to avoid artificial high power biases of low 
frequencies. Another issue is to find the correct start ver-
tex, i.e. the one that best reflects the position of each rod of 
the profile gauge. The start vertex is found by maximising 
σδh(1 mm) starting at each of the ten first vertices.

As a complement to the ten short, ~ 100 mm, stand-
ard type traces in Barton and Choubey (1977), the seven 
long, ~ 1000 mm, traces in Bakhtar and Barton (1984) 
were manually digitised, using the same procedures as for 
the ten ~ 100 mm traces. There is no indication in Bakhtar 
and Barton (1984) of the resolution, but evaluating the 
seven profiles it seems that the maximum possible resolu-
tion from the digitalisation is around 10 mm. Hence, these 
seven traces are evaluated using ΔL ≥ 10 mm.

4.2 � Evaluation of the Ten Curves in Barton 
and Choubey

The digitised JRC curves are between ~ 96 and ~ 101 mm 
long in the horizontal direction, meaning that the largest 
possible number of vertices to use in a single evaluation is 
64, i.e. 26, vertices, using 1 mm resolution. Evaluating such 
few data, the uncertainties in the results are large and the 
different methods have large deviations from the hypotheti-
cal values; see Fig. 3b, c. However, the knowledge about the 
bias, gained from the synthetic study, can be used to com-
pensate the evaluated values to produce better inferences.

The difference in evaluated fractal parameters, H and 
σδh (1p), between the algorithm-based digitalisation of 
traces and the manually digitised ones are very small for all 
methods except the inference of H using the FFT method 
where some differences are noted; see Fig. 7. The difference 
seen may depend on the manual digitalisation resulting in 
less power for long waves or the algorithm-based method 
missing power for the short waves. The negligible differ-
ence between the two manual digitalisations implies that the 
variance is low between different manual digitalisations. The 
conclusion is, hence, that manual digitalisation will usually 
perform equally well as algorithm-based ones; see Fig. 7.

The evaluated σδh (1 mm) values follow a nearly linear 
increasing trend from low to high JRC, for both the FFT 
method and the RMS-COR-method. The RMS-COR method 
has a slightly steeper slope and hence slightly higher σδh 
(1 mm) for high JRC values, cf. Fig. 7e, f.

Evaluating the Hurst exponent for the ten type curves in 
Barton and Choubey (1977) shows a general trend, though 
somewhat sinusoidal, of larger H, i.e. lower fractal dimen-
sion as JRC increases; see Fig. 7a–d. This suggestion might 
seem counter-intuitive, but the higher the fractal dimension, 
the slower the increase of amplitude. That is, high fractal 
dimension will give a lower amplitude difference at large 
scale than a low fractal dimension if equal amplitude differ-
ence at small scale. These findings are also in accordance 

Fig. 5   Close-up of difference 
between the algorithm-based 
digitalisation, presented in Jang 
et al. (2014), and the manual 
digitalisation, by us, of type 
curve 7, JRC = 12.8, in Barton 
and Choubey (1977). Observe 
that the length axis is exagger-
ated 10 times and the height 
axis 50 times
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i.e. there is only interpolation and noise measured
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with earlier findings (Odling 1994; Lee and Bruhn 1996; 
Candela et al. 2009) where it is concluded that fractures 
subjected to shear movement have higher fractal dimension 
and hence lower H than pure tensile fractures.

The four different evaluation methods have similar shapes 
of the development of H as JRC increases, though different 
spread and absolute values. This is expected as the differ-
ent methods have different difficulties to infer H as H gets 
higher; see Fig. 3a, and the trace gets shorter; see Fig. 3b. 

Using this knowledge the estimated values can be corrected 
accordingly.

Further, recalling that the generation of fractal lines using 
inverse FFT method is not capable of generating the cor-
rect lines as H approaches 1, see Fig. 4b, the conclusion is 
that the FFT method slightly overestimates H as the true H 
approaches 1. By fitting a curve to the plot of the estimated 
Hurst exponent, Hest, as a function of the generated Hurst 
exponent, Hgen, the relationship can be described as

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

Ev
al

ua
te

d 
H

Back calculated JRC according to Barton and Choubey 1977

Evaluation Method: FFT

Jang et al 2014 Left to right Right to left

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

Ev
al

ua
te

d 
H

Back calculated JRC according to Barton and Choubey 1977

Evaluation Method: RMS-COR

Jang et al 2014 Left to right Right to left

(b)

(c) (d)

(e) (f)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

Ev
al

ua
te

d 
H

Back calculated JRC according to Barton and Choubey 1977

Evaluation Method: Zero set/Korcak

Jang et al 2014 Left to right Right to left
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

Ev
al

ua
te

d 
H

Back calculated JRC according to Barton and Choubey 1977

Evaluation Method: Box Count

Jang et al 2014 Left to right Right to left

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

Ev
al

ua
te

d 
σδ

h(
1m

m
)

Back calculated JRC according to Barton and Choubey 1977

Evaluation Method: FFT

Jang et al 2014 Left to right Right to left
0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

Ev
al

ua
te

d 
σδ

h(
1m

m
)

Back calculated JRC according to Barton and Choubey 1977

Evaluation Method: RMS-COR

Jang et al 2014 Left to right Right to left

Fig. 7   Evaluated Hurst exponent and σδh(1 mm) from the ten type traces in Barton and Choubey (1977) using the four different evaluation meth-
ods and the three different digitalisations



1049A Novel Conceptual Approach to Objectively Determine JRC Using Fractal Dimension and Asperity…

1 3

Using the information of difference between generated 
and evaluated H from Fig. 3 together with Eq. (4), infer-
ences of H are calculated and shown in Fig. 8. Some of the 
corrections have to be extrapolated, shown as open markers, 
and hence the uncertainty is larger. The filled markers are 
interpolated and hence have higher confidence.

Compensating for the evaluation method and length bias 
for each evaluated Hurst exponent makes the spread shrink 
between the different methods. An inverse-variance weight-
ing is performed to merge the results from the three digitali-
sations of the four evaluation methods into a single mean 
and standard deviation for each of the ten type curves, as 
shown in Fig. 9. Only for type curve 3, JRC = 5.8, there is 
a statistically significant (p < 0.05) difference in the mean 
value between the four methods. For the other nine type 
curves there is no significant difference.

There is a good agreement between the results from this 
study, using several evaluation methods, and the results from 
Odling (1994) using only one method; see Table 2. For three 

(4)
Hest = Hgen for Hgen ⩽ 0.700

Hest = 0.616 ⋅ ln
(

Hgen

)

+ 0.920 for Hgen > 0.700

traces Odling (1994) did not report any H due to ambiguous 
interpretations of the evaluation.

There is no obvious choice of shape of a best fit curve 
between H and JRC; see Fig. 9. A sinusoidal curve or 
polynomial curve of order three or higher would all do. 
However, it is important that H never exceeds 1 since that 
would mean that the line has a dimension below 1, i.e. 
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it is a line with voids which does not have any physical 
meaning.

4.3 � Evaluation of the Seven Curves in Bakhtar 
and Barton

The seven ~ 1-m-long type curves in Bakhtar and Barton 
(1984) are evaluated using the same technique as described 
in Sect. 4.2 and Online Resource 1 with the exception that no 
algorithm-based digitalisation is available. The lack of algo-
rithm-based digitalisation should be of minor importance as 
the manual and algorithm-based digitalisations seem to give 
reasonably similar results; see Fig. 7.

Unfortunately there is no indication of the resolution of 
the seven traces in Bakhtar and Barton (1984). Evaluating 
the traces it seems that the resolution is about 10 mm, i.e. ten 
times coarser than the traces in Barton and Choubey (1977). 
The results from the evaluation of the seven traces in Bakhtar 

and Barton (1984) are shown in Fig. 10 together with the 
results from Sect. 4.2. There are two H values, JRC = 4.2 and 
6.0 of the seven 1 m traces, that stand out (higher values) 
compared to the ten 100 mm traces. For both of these traces 
the Zero set/Korcak evaluation gives H values that are much 
higher than expected compared to the other three evalua-
tion methods which result in an anomalous value, H > 1.200, 
after compensating for trace length and evaluation method 
bias. Excluding these anomalous results the evaluation pro-
vides values of H in the range 0.650–0.750, which better 
fits the other traces. To compare the asperity measure σδh 
(10 mm) from the seven traces with the σδh (1 mm) from the 
ten type curves, the data need to be extrapolated according to

where the inferred H is used in the exponent. The uncer-
tainty in H may have a large impact on the estimated value 
of σδh (1 mm) which can be seen for JRC = 9.2 and 10.7 in 
Fig. 10b. The figure also shows that most of the extrapo-
lated σδh (1 mm) values are about a factor of two lower than 
the σδh (1 mm) values evaluated using traces in Barton and 
Choubey (1977). If this difference is an artefact of extrapola-
tion or that larger fractures behaving differently when esti-
mating JRC is an open question.

5 � Conceptual Model

As discussed above, there is a lot of uncertainties in the 
inferred H and σδh(ΔL) values due to the low resolution of 
the type traces. Hence, there is no reason to develop a fancy 
model to calculate JRC from H and σδh (1 mm) that fits all 
the data points perfectly. Instead a basic multi-linear model 

(5)��h(1mm) =
��h (10mm)

(10mm∕1mm)H

Table 2   Inferred fractal parameters using multiple methods (this 
study) and using a variant of RMS-COR (Odling 1994)

a Recalculated from Table 1 in Odling (1994)

JRC This study Odling (1994)

H σδh(1 mm) H σδh(1 mm)a

0.4 0.52 (± 0.07) 0.06 (± 0.01) 0.50 0.03
2.8 0.30 (± 0.06) 0.09 (± 0.01) 0.46 0.15
5.8 0.52 (± 0.07) 0.14 (± 0.01) – 0.14
6.7 0.37 (± 0.06) 0.19 (± 0.02) – 0.24
9.5 0.75 (± 0.07) 0.19 (± 0.01) 0.7 0.20
10.8 0.99 (± 0.06) 0.20 (± 0.01) 0.83 0.20
12.8 0.87 (± 0.06) 0.24 (± 0.01) 0.80 0.24
14.5 1.04 (± 0.06) 0.29 (± 0.01) 0.85 0.28
16.7 0.77 (± 0.07) 0.29 (± 0.01) 0.75 0.30
18.7 0.64 (± 0.07) 0.38 (± 0.02) – 0.38
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is developed and its performance is evaluated against the 
used data. Three multiple linear regression analyses are run 
using the data set established in Sect. 4; see Table 3.

Using all 17 data from both Barton and Choubey (1977) 
and Bakhtar and Barton (1984) gives a model where the 
slope for σδh (1 mm) is highly significant, p = 2·10− 6, and 
the slope for H is weakly significant, p = 0.064. The inter-
cept, however, is not significant, p = 0.357. Despite that two 
of the seven values of H stand out and the σδh (1 mm) val-
ues, extrapolated from σδh (10 mm), are severely affected by 
uncertainty in H, the result is surprisingly good; the model 
estimates JRC within ± 3 units with 95% confidence. Ana-
lysing the errors, one cannot reject that they are independent 
and normally distributed, i.e. p values above are valid.

Due to the large uncertainties in the evaluated values 
from the seven traces in Bakhtar and Barton (1984), a mul-
tiple linear regression using only the ten data from Barton 
and Choubey (1977) is performed. This data set results in 
a model where all coefficients are significant to highly sig-
nificant, 6·10− 6 < p < 0.040; see Table 3. The F-statistics 
shows that the null hypothesis of an intercept-only model 
performing as well as the model at hand can be rejected 
at level p = 3·10− 6. Neither the hypothesis of normality 
Jarque–Bera test (Jarque and Bera 1980), p = 0.861, nor 
the hypothesis of homoscedasticity Breusch–Pagan test 
(Breusch and Pagan 1979), p = 0.604, or Koenker–Bas-
sett test (Koenker and Basset 1982), p = 0.561, can be 
rejected at level p < 0.05, hence the p values are valid. 

Furthermore, the model has an adjusted R2 value of 0.965, 
i.e. it can explain 96.5% of the variance in JRC. All statis-
tical tests, hence, show that this linear model fit the used 
data very well despite its simplicity. However, this model, 
developed from the ten type traces in Barton and Choubey 
(1977), largely under-estimates the JRC traces with values 
5.5, 7.4 and 8.5 in Bakhtar and Barton (1984); see Table 3. 
For the other four traces it makes a reasonable estimation 
despite the difference in length and resolution.

For completeness the seven traces in Bakhtar and Bar-
ton (1984) are used to run a multiple linear regression. 
Both the intercept and coefficient for σδh(1 mm) are sig-
nificant, p < 0.05, but not the coefficient for H, p = 0.130. 
Furthermore, the model estimates a negative correlation 
between H and JRC which is not anticipated (Odling 1994; 
Lee and Bruhn 1996; Candela et al. 2009).

Consequently, using only the ten original traces from 
Barton and Choubey (1977) will be the most appropri-
ate conceptual approach to determine JRC using fractal 
dimension and asperity distribution of mapped fracture 
traces. Hence, the model to objectively determine JRC can 
be described as:

where JRC is the joint roughness coefficient, σδh(1 mm) is 
the standard deviation of asperity difference of points 1 mm 
apart, H is the Hurst exponent.

Equation (6) requires the standard deviation of height 
differences to be calculated for the distance 1 mm, i.e. 

(6)JRC = − 4.3 + 54.6 ⋅ ��h(1mm) + 4.3 ⋅ H

Table 3   Inferred data as input 
to the three models developed 
and their errors (residuals) to 
underlying data

Bold numbers reflect the residuals of the data point used developing the chosen model
Paranthesis reflect the residuals of the data points disregarded developing the chosen model

Data Models Errors

JRC σδh1mm H All 17 10 B&C 7 B&B

0.4 0.06 0.523 All 17 traces 2.9 0.7 –
2.8 0.09 0.298 All 17 β p 0.8 − 0.7 –
5.8 0.14 0.523 Intercept − 1.8 0.357 1.1 0.0 –
6.7 0.19 0.372 σδh (1 mm) 42.5 2·10− 6 1.5 1.1 –
9.5 0.19 0.754 H 4.9 0.064 0.3 − 0.4 –
10.8 0.20 0.989 0.5 − 0.2 –
12.8 0.24 0.866 10 Barton and Choubey traces − 0.3 − 0.5 –
14.5 0.29 1.038 β p 1.1 1.5 –
16.7 0.29 0.767 Intercept − 4.3 0.006 − 2.5 − 1.9 –
18.7 0.38 0.636 σδh (1 mm) 54.6 6·10− 6 − 1.2 0.5 –
4.2 0.08 1.042 H 4.3 0.040 2.6 (0.5) 0.6
5.5 0.05 0.637 − 2.1 (− 4.4) 1.5
6.0 0.07 0.873 7 Bakhtar and Barton traces − 0.7 (− 2.9) − 0.3
7.4 0.05 0.702 β p − 3.4 (− 5.7) − 0.7
8.5 0.10 0.716 Intercept 10.7 0.033 − 2.6 (− 4.3) − 0.6
9.2 0.22 0.836 σδh (1 mm) 29.0 0.027 2.6 (2.3) 1.3
10.7 0.18 0.826 H − 8.0 0.130 − 0.8 (− 1.7) − 1.4
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σδh(1 mm). In the case the data resolution is not 1 mm, 
σδh(1 mm) can be calculated using Eq. (5) for any resolu-
tion. However, if the resolution is much coarser than 1 mm 
it is wise to perform a sensitivity analysis to evaluate the 
effects seen in Fig. 4c.

6 � Performance of the Model

The established model can properly reproduce the data 
underlying the development of it, which is an absolute min-
imum request. However, how well the model can predict 
other data is of great interest. Lacking a collection of frac-
tures to be used for shear or tilt tests, Stigsson (2018) used 
a simpler approach to test the performance of the model; 
the community of geologists were simply asked to interpret 
JRC of nine 100-mm-long synthetic fracture traces and the 
model was used to infer JRC of the very same traces. It is 
recognised that the approach does not show how well the 
model can predict JRC, but how well it can estimate the 
subjectively interpreted JRC by an ensemble of geologists.

Eleven geologists answered the call and returned their 
interpretation of the traces. According to Beer et al. (2002), 
eleven geologists are too few interpreters to get stable sta-
tistics and hence the comparison is done using median 
and quartiles rather than mean and standard deviations; 
see Fig. 11. The results from the case study show that the 

difference in median JRC between the model and the geolo-
gists varies between − 1.3 and + 1.0 units. The absolute 
difference between the model and the geologists is usually 
(seven of the nine traces) less than 0.9 units and the median 
difference is 0.2 units. The median inter-quartile range, IQR, 
for the model is 1.2 units and 2.0 units for the ensemble of 
geologists; i.e. the model has about 40% lower spread than 
the ensemble of geologists. For six of the nine traces the 
model has lower IQR than the ensemble of geologists; for 
two traces the model has 10–20% larger IQR than the ensem-
ble of geologists; and for one trace the IQR is about 47% 
larger for the model compared to the ensemble of geologists. 
The conclusion from the case study is, hence, that there is 
not much difference between the inferred median of JRC by 
the model and the visually interpreted JRC by the ensemble 
of geologists, but that the uncertainty in the inferred values 
are usually substantially lower for the model compared to 
the ensemble of geologists.

7 � Discussion

The data from Barton and Choubey (1977) underlying the 
development of the model have two major drawbacks. First, 
each trace is only one single subjectively chosen repre-
sentative trace of the fracture surface, and hence there is 
no possibility to estimate the uncertainty in the measured 
parameters. Second, the resolution is low, resulting in large 
uncertainty in the evaluated fractal parameters. The latter 
problem is partly overcome using multiple evaluation meth-
ods to decrease the uncertainty and hence get more reliable 
inferences of the parameters.

Despite the many sources of uncertainty, the multiple 
linear regression analysis showed that all three coefficients 
of the model, Eq. (6), were statistically significant using 
data from the classic ten type traces in Barton and Choubey 
(1977). It is recognised that the model is simple, using only 
linear relationships and no cross-interaction, but still it can 
reproduce the back-calculated JRC values within ± 2 units 
with 95% confidence and it can explain 96.5% of the vari-
ance in JRC.

Benchmarking the inference of JRC by the developed 
model against the visual interpretation of JRC by an ensem-
ble of geologists showed surprisingly good agreement; the 
median difference is only 0.2 units. The model also showed 
40% lower uncertainty in the inferred JRC compared to 
the ensemble of eleven geologists. This may, however, be 
a result of too few geologists interpreting JRC. Beer et al. 
(2002) suggested that at least 50 geologists should be con-
sulted to get stable statistics.

The coefficient of H is 4.3 which means that H can only 
affect the inferred JRC by less than this amount due to the 
restriction 0 < H < 1. In reality the impact on JRC will most 
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certainly be around 2 units since fracture traces are not sup-
posed to be anti-correlated, i.e. H is restricted to be between 
0.5 and 1. This might be one of the reasons why there are 
many studies only concentrating on the asperity measure 
inferring JRC. However, neglecting the Hurst exponent will 
fail the possibility to capture the small-scale and the large-
scale properties of the fracture surfaces simultaneously.

There is an indication that the length of the trace might 
be important when evaluating JRC. For example, given 
equal JRC the seven long traces presented in Bakhtar and 
Barton (1984) have a circa two times lower σδh(1 mm) 
than the ten type traces in Barton and Choubey (1977); see 
Fig. 10b. However, including trace lengths (not presented 
in this study) and results from the seven more uncertain 
traces in Bakhtar and Barton (1984), the model to objec-
tively infer JRC becomes less good than the model pre-
sented in Eq. (6).

As the underlying data are uncertain, due to low resolu-
tion and only being a representative trace of the surface, the 
model could be developed further. This could be done either 
by performing shear tests on numerous real-fractures where 
the surfaces have been measured using high-resolution scan-
ners or performing numerical shear tests on synthetic frac-
tures generated using Monte Carlo realisations. An advan-
tage of the synthetic approach is that the modeller can decide 
the fractal parameters and size of the fracture to be tested 
whilst real fractures will have the fractal parameters and 
size as measured. A synthetic study would, though, benefit 
from a limited number of tilt or shear tests on real fractures 
to confirm the synthetic results. Another benefit using syn-
thetic traces is that not only the JRC can be evaluated but 
also the peak and residual shear strength using different sizes 
of the synthetic fractures. The JRC and shear strength could 
be evaluated using numerical models based on for example 
PFC (Itasca 2014a), UDEC/3DEC (Itasca 2013, 2014b) or 
semi-analytical models (Casagrande et al. 2018).

8 � Conclusions

In this work, we have shown that measuring fracture profiles 
using low resolution will render large uncertainties in the 
evaluated H and σδh(ΔL). A more accurate inference of H 
and σδh(ΔL) can be achieved by combining several differ-
ent evaluation methods in parallel, compensating for each 
method’s biases.

Using the ten type traces in Barton and Choubey (1977), 
a multi-linear model has been developed that estimates JRC 
objectively. All coefficients of the model are significant at 
level p < 0.05. Despite being simple, linear and without 
interaction, the model can reproduce the back-calculated 
JRC values in Barton and Choubey (1977) within ± 2 units 

with 95% confidence, and it explains 96.5% of the variance 
in JRC. The model was benchmarked against an ensemble of 
geologists and showed that the median difference was only 
0.2 units and the median uncertainty in the inferred value 
about 40% smaller for the developed model. The presented 
approach can be further refined by numerical modelling of 
synthetic fractures or using semi-analytical models.
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