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Abstract
The rock core test is the most direct and reliable way to measure fundamental physical, hydraulic, and mechanical proper-
ties for underground reservoir characterization. A 10-cm diameter and 3.6-m-long granodiorite core was retrieved from a 
4.2-km-deep geothermal well at the Pohang Enhanced Geothermal System (EGS) site in Korea. Numerous natural fractures 
were detected in the core and induced core disks were observed. We optimized the sample preparation with this limited core 
for various tests based on the scanned X-ray CT images that visualized all the fractures in the core. We measured the basic 
mechanical—the deformation and strength properties of intact rock—and thermal properties of intact samples. In particular, 
fracture deformation and strength properties were directly measured by conducting direct shear tests on pre-existing natural 
fractures. The seismic velocity and normal fracture stiffness were compared with the wireline logging and injection test meas-
urements, respectively. The discrepancies between the in situ data and laboratory experiment are due to the stress depend-
ency of properties. The measurements presented in this paper provide essential inputs for the EGS reservoir modelling and a 
dataset of properties for the fractured granite reservoir at a great depth from which few samples have been retrieved thus far.

Keywords  Characterization of a fractured reservoir · Deep granite core · Natural fractures · Direct shear test

1  Introduction

In deep geological engineering applications, such as the 
production of shale gas, geo-sequestration of CO2, deep 
borehole disposal, and exploitation of deep geothermal 
energy, an essential first step is in determining the thermal, 
hydraulic, mechanical, and chemical properties of the res-
ervoir. For instance, the fracture normal closure and shear 
dilation are critical components in an enhanced geothermal 

system (EGS), which requires irreversible dilations of rock 
fractures by hydraulic stimulation to induce shear slip (Jung 
2013). The feasibility of a successful EGS will be affected 
significantly by the range of variations in the geometry and 
mechanical properties of rock fractures. Furthermore, the 
compressive and tensile strength of the rocks are important 
inputs for evaluating the wellbore stability at great depths 
and for designing the hydraulic fracturing processes.

To provide a continuous record of the reservoir proper-
ties, well logs are extensively utilized for a reasonable time 
and cost. While well logging provides the frequency and 
orientations of intersecting fractures, it cannot estimate the 
mechanical properties of the fractures. Empirical equations 
may relate physical properties obtained from well loggings 
to strength parameters (e.g., Chang et al. 2006), but the 
estimated variations are too great to be used to analyze the 
wellbore stability. Rock cuttings can be used to determine 
the rock properties (Santarelli et al. 1998), but the small 
size and irregular shape of the cuttings forbid various rock 
mechanical tests in representative scale. Testing rock cores is 
the most direct way to determine the reservoir properties, but 
retrieving the cores from reservoirs at great depths is time 
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consuming and financially costly (Rider 2002). Therefore, 
many geomechanical studies of the deep reservoir engineer-
ing and provision of hydraulic stimulation are being con-
ducted with indirect or inferred geological data (e.g., Gen-
ter and Traineau 1992). The input parameters of reservoir 
geomechanical analysis and modelling were obtained by 
extrapolation from data on shallower formation (e.g., Val-
ley and Evans 2007), empirical general data of a specific 
rock type (e.g., Shen 2008), data of other sites with similar 
reservoir conditions (e.g., Rutqvist et al. 2013), or indirect 
measurements derived from borehole loggings (Blöcher 
et al. 2010).

There are a few cases where the coring was performed 
at a great depth of crystalline rock formation to character-
ize each property. The Kola Superdeep Borehole in Russia 
(KSDB-3) is the deepest borehole in the world that has a 
final depth of 12,262 m. The direct measurement of physi-
cal and mechanical properties for the core samples recov-
ered from the KSDB-3 borehole at a depth of 9904 m was 
reported (Trčková et  al. 2002). The German Continen-
tal Drilling Program (KTB-HB) conducted coring below 
4150 m and continued down to 9080 m at irregular intervals 
with a total recovery of 83.6 m (Berckhemer et al. 1997). In 
addition to being used to characterize the petrophysical and 
mechanical properties of the formation (Berckhemer et al. 
1997; Chang and Haimson 2000), the cores were used to 
determine the stress state of the crust by core-based methods 
(Li and Schmitt 1998; Emmermann and Lauterjung 1997). 
For the Basel Deep Heat Mining project in Switzerland, a 
10-m-long granite core was extracted near the bottom of the 
Basel-1 well at a depth of 4911 m (Valley and Evans 2015) 
to characterize the geomechanical and hydraulic proper-
ties of the target reservoir (Häring et al. 2008). Due to the 

lack of eligible cores, the strength test was performed on 
a single sample (34 mm in diameter and 70 mm in length) 
using multi-stage confined compression tests (Valley and 
Evans 2015). Although there are four very deep wells at the 
Soultz EGS project in France, the core was extracted from 
the exploration well, EPS-1, between 1400 and 2300 m in 
the granite basement (Géraud et al. 2010).

To the authors’ knowledge, comprehensive data on 
the mechanical and thermal properties of rock cores and 
rock fracture tests at depths beyond 4 km are sparse. Thus, 
more experiments must be performed to characterize deep 
reservoirs.

The purpose of this paper is to present the characteri-
zation of granodiorite cores and fractures retrieved from a 
depth of 4.2 km in the Pohang geothermal reservoir of South 
Korea. Comprehensive mechanical and thermal properties 
of deep rock cores are presented with the results of rock 
fracture tests for use as a well-archived dataset of fractured 
crystalline reservoir properties.

2 � Geological Setting

2.1 � Site Description

Pohang is located in the southeastern part of Korea and was 
selected as the pilot EGS project site due to the high geo-
thermal gradient (Lee et al. 2010; Kim and Lee 2007). Five 
exploration wells were drilled beginning in 2003 to investi-
gate the geological, geomechanical, and thermal conditions 
in the area (Fig. 1). Hydrofracturing and borehole obser-
vations were performed in exploration borehole EXP-1 to 
obtain in situ stress measurements (Kim et al. 2017). Rock 

Fig. 1   Location of Pohang EGS 
site and completed wells, which 
are five exploration wells within 
5 km of the EGS site and two 
EGS wells with depths of 4217 
and 4348 m (Park et al. 2018)
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core samples were recovered at a depth of 1.1 km from bore-
hole BH-1 and at a depth of 2.4 km from borehole BH-4 to 
perform the mechanical and thermal tests (Lee et al. 2015).

The geological structure of the Heunghae Basin, which 
underlies the Pohang EGS site, was deduced from geological 
and geophysical surveys and the drilling results of five wells 
(Fig. 2). The Heunghae Basin is covered with quaternary 
alluvium deposits that are underlain by thick tertiary sedi-
ments and sequential Cretaceous sediments. The granodior-
ite basement rock is present at depths below 2.2 km.

Two EGS wells, identified as PX-1 and PX-2, were drilled 
to depths of 4217 and 4348 m, respectively. Directional drill-
ing of the PX-1 well was performed to ensure a suitable dis-
tance between the two wells in the reservoir. Five hydraulic 

stimulation treatments were performed for PX-1 and PX-2 
to map the artificial reservoir creation and to improve the 
hydraulic transmissivity (Park et al. 2018; Hoffman et al. 
2018). Currently, the EGS project is suspended due to the 
earthquake (ML 5.4) on November 15, 2017 and investi-
gation is under way on the casual linkage of the previous 
hydraulic stimulations and earthquake (KMA 2018; Grigoli 
et al. 2018).

2.2 � Rock Core Description

An impregnated core bit was used for coring at depths start-
ing at 4219 m in the PX-2 well. The granodiorite core was 
recovered from the PX-2 well, which was 3.6 m long and 

Fig. 2   Geological column 
deduced from cores and well 
logs of four exploration wells 
and the PX-1 well at the Pohang 
EGS site (modified from Lee 
et al. 2015). The PX-2 well is 
located 600 m from the PX-1
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100 mm in diameter (Fig. 3). Retrieved cores contained 
numerous visible fractures, including pre-existing ones that 
were scattered over the core interval and induced core-dis-
king fractures at the core bottom. Thirty-five fractures were 
identified, resulting in a fracture frequency of 9.7 fractures 
per meter. By counting core samples longer than 100 mm, 
the rock quality designation (RQD) of this core was deter-
mined to be 50.8% (Ulusay and Hudson 2007).

All the core samples were scanned by X-ray computed 
tomography (CT) to detect the natural and induced fractures 
not visible to the naked eye. A scanned image shows all of 
the fractures in a core sample (Fig. 4). Fracture mapping by 
X-ray CT scanning was used to optimize the arrangements of 
the core samples for various tests. Based on the core condi-
tions, the core was divided into 11 sections, designated as 
S-I through S-XI (Fig. 3). The core-diskings were observed 
at the bottom section of the recovered cores. The shapes 
and thicknesses of the cored disks were measured from CT-
scanned images (Fig. 4c). Furthermore, the disks were either 
flat or slightly saddle shaped with thicknesses ranging from 
6.9 to 18.8 mm at a mean value of 12.3 mm.

Core plugs that are 25 mm in diameters were extracted 
from core section S-IV at 30° intervals (Fig. 3) for uniaxial 
compressive tests with acoustic emission (AE) monitoring to 
estimate the magnitudes of the stresses by the Kaiser effect 
(Lavrov 2003). Integrated in situ stress estimations in the 
Pohang geothermal reservoir were made using the results 
of the AE tests and core-disking analysis performed during 
characterization (Kim 2017).

The mineral composition of the core samples was ana-
lyzed by an X-ray diffractometer (XRD) and showed that 
the granodiorite core was composed mainly of 43.1% albite, 
28.6% quartz, 13.7% microcline, and 10.1% muscovite. The 
microscopic distribution of the detected minerals was identi-
fied in the images from a polarization microscope (Fig. 5).

3 � Characterization of Deep Rock Core 
and Fractures

A total of 20 mechanical (Tables 1, 2) and thermal (Table 3) 
parameters were determined. Although the available length 
of the core was limited due to numerous fractures, we 
were able to optimize the usage of the core to obtain vari-
ous parameters in both intact rock and fractures due to CT 
imaging. The CT image led to the successful procurement 
of rock cores without unexpected breakage during sample 
preparation.

3.1 � Mechanical Tests on Rock Core

Compressive tests were conducted in a servo-controlled 
uniaxial and triaxial apparatus on cylindrical samples 

to characterize the deformation and strength properties 
of intact rock. From the polarized microscope images 
(Fig. 5), the largest rock grain was about 1.2 mm. In addi-
tion, the diameter of the sample was 25 mm, which is 20 
times greater than the grain size recommended by a stand-
ard method (Ulusay and Hudson 2007). Seven uniaxial 
compressive tests were conducted to obtain the complete 
stress–strain curves from which the uniaxial compressive 
strength (UCS), elastic modulus, and Poisson’s ratio were 
derived. For seven tests, the measured mean value of UCS 
was 106.7 MPa with a standard deviation of 22.3 MPa. The 
measured mean values of elastic modulus and Poisson’s 
ratio were 33.5 GPa and 0.21, respectively, for four tests.

Five triaxial compression tests were conducted to 
determine the cohesion and internal friction angle of 
the intact rock at confining stresses of 3, 5, 7, 10, and 
15 MPa. According to the Mohr–Coulomb failure envelope 
obtained from all of the triaxial and uniaxial compression 
tests (Fig. 6), the estimated cohesion and internal friction 
angle of the rock were 15.2 MPa and 60.2°, respectively.

Two disc-shaped samples with diameters of 38 mm 
were taken from core section S-VII to determine the ten-
sile strength using the Brazilian test. The Brazilian tensile 
strength of the rock was measured to be 9.2 MPa.

The P- and S-wave velocities were measured to be 4336 
and 2676 m/s, respectively. The dynamic elastic modulus 
derived by the P- and S-wave velocities was 44.9 GPa, 
which was 34.0% larger than the static elastic modulus, as 
is often observed (Fjaer et al. 2008).

Wireline logging was performed in the PX-2 well and 
the properties under in situ conditions were indirectly 
derived using logging data. The porosity measured by 
wireline logging at the coring depth was 5.2%, which is 
11 times greater than that from the laboratory tests, as 
the wireline logging results include the void volume of 
fractures.

The P- and S-wave velocities by wireline logging at the 
coring depth were 5920 and 3290 m/s, which are 36.4% and 
22.7% higher values, respectively, than the ones obtained 
from the laboratory tests. The overburden stress at great 
depths can cause increased velocity of the seismic waves 
(Paillet and Cheng 1991). According to Troy Granite tests, 
which determine the relationship between stress and the 
velocity of seismic waves (Ellis 1987), P- and S-wave veloci-
ties increased drastically by 40% and 20%, respectively, 
compared with the velocities measured in the stress-free 
condition as the stress increased up to 40 MPa. When the 
stress was larger than 40 MPa, wave velocity change was 
minimal. It is known that the wave velocities decreased as 
the temperature increased, but the changes were minor for 
temperature increases up to 200 °C (Spencer and Nur 1976; 
Kern 1978). Thus, the discrepancy between the wave veloci-
ties obtained by well logging and by rock core measurements 
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Fig. 3   Photo of rock core samples obtained from the PX-2 well (3.6 m long and 100 mm in diameter) and detailed division of core samples for 
various tests
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in this study was more likely due to the stress rather than the 
temperature.

3.2 � Normal and Shear Behaviors of Natural 
Fractures

Fracture profiles are represented by the 3D coordinate data 
of the fracture surfaces, which allowed us to calculate the 
joint roughness coefficient (JRC) (Li and Zhang 2015; Diaz 
et al. 2017). For the seven fracture samples, the calculated 
JRC ranged from 8.7 to 16.0 at a mean value of 13.1. Inter-
estingly, the anisotropy of the JRC ranges from 1.2 to 1.5 
depending on the direction of the roughness measurement 
(Diaz et al. 2017).

Schmidt hammer tests were performed on five fracture 
samples that contained a sufficient natural fracture area. 
The rebound numbers were obtained by striking samples 
downward with a hammer. The lower half average of the 
test dataset was treated as the representative value (Ulusay 
2015). The mean rebound number obtained for the weath-
ered fracture was 50.8, which corresponds to the joint wall 
compressive strength (JCS) of 169.2 MPa.

Multi-stage direct shear tests were performed on 
selected natural fractures to simulate the shear behavior 
as well as to derive the fracture strength and deformability 

properties (Muralha et  al. 2014). Although recovered 
cores had numerous fractures (Fig. 3), fractured samples 
that were suitable for the direct shear test were limited, 
because the sizes of the blocks must be large enough to 
be representative of the cores and to mold the samples. 
Three fractured samples, referred to as S1, S2, and S3, 
were finally selected for the direct shear tests (Fig. 7a). 
Samples S1 and S3 included a highly dipped, natural frac-
ture. Meanwhile, S2 had a sub-horizontal natural fracture. 
The sample blocks were molded to fit the shear box using 
Diastone, which has an elastic modulus of 8 GPa and UCS 
of 30 MPa (Lee and Song 2006).

Three-stage shear tests were conducted at servo-con-
trolled constant normal stress conditions so that the displace-
ment and stress could be recorded (Fig. 8). Samples S1 and 
S3 were broken during the second and third stages, respec-
tively, and the associated data were discarded. In general, 
there was no clear peak shear strength observed during the 
experiment due to smooth fracture surfaces.

The coefficient of friction was 0.53, corresponding to a 
friction angle of the fracture of 26.6° as determined by fit-
ting the normal stress-shear strength correlation. The coef-
ficient of friction seems to be lower than the value typically 
used in practice (Byerlee 1978) because of smooth fracture 
surfaces and infilling material.

Fig. 4   a Photograph of the rock 
core of section S-IX showing 
core-diskings in the upper part, 
b scanned image by X-ray CT 
technique, and c coordinates of 
fractures by X-ray CT technique
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Fracture normal stiffness was calculated during the appli-
cation of normal stress by removing the portion of the nor-
mal deformation by Diastone and rock block. At stress levels 
of 1.6–4.8, 4.8–8.0, and 6.5–13.0 MPa, the fracture normal 
stiffness values were 7.9, 14.0, and 23.4 GPa/m, respectively, 

which show an increase of normal stiffness with increas-
ing applied normal stress. The normal stiffness obtained by 
direct measurement in the current study was compared with 
the one inferred from the hydraulic stimulation conducted 
in the Pohang PX-2 well in early 2016 (Park et al. 2018). 
The relationship between the equivalent aperture change 
of the single major fracture and the bottom hole pressure 
derived the normal stiffness of the reservoir system as rang-
ing from 30.0 to 1695 GPa/m depending on the pressure 
level. This indicated reversible hydraulic jacking (Park et al. 
2018). When high injection pressure was applied, which 
corresponded to low effective normal stress conditions, the 
normal stiffness derived from the field injection test was 
compatible with that determined by the fracture test in the 
current study. Yoo et al. (2018) employed the prescribed 
characterization results as the input parameters of the hydro-
mechanical modelling of PX-2 hydraulic stimulation based 
on hydraulic jacking mechanism and the modelling suc-
cessfully regenerated the field pressure-flow histories. The 
coherence of field monitoring, numerical modelling, and 
laboratory tests supports the notion that hydraulic jacking 
dominated during the hydraulic stimulation in the Pohang 
PX-2 well.

The dilation angle decreased as the normal stress 
increased in this study, which is consistent with other obser-
vations (Barton and Choubey 1977). For S3 (not shown 
here); however, an abnormally sharp increase of the dila-
tion angle was detected during the second stage, which could 
have been caused by the partial failure of the rock block 
before the third stage.

The dilation angle obtained for normal stresses up to 
8 MPa fit reasonably well with the empirical equation sug-
gested by Barton and Choubey (1977) (Fig. 9). To evaluate 
the dilational behavior of rock fractures at a depth greater 
than 4 km, normal stresses of about 100 MPa had to be 
applied. Such tests will reveal the extent of the dilation angle 
that was reduced at the target depth of hydraulic stimulation 
for EGS. However, we were not able to apply such a high 
normal stress due to the limited capacity of the equipment. 

Fig. 5   Polarization microscopic images with mineral descriptions for 
a crossed nicol at ×12.5 and b crossed nicol at ×50 (Qz quartz, Pl 
plagioclase, Mc microcline, Ms muscovite, Chl chlorite, Cal calcite)

Table 1   Physical and 
mechanical properties derived 
from laboratory tests

Property Mean value Standard deviation No. of tests

Density (kg/m3) 2630 5 11
Porosity (%) 0.48 0.07 11
P-wave velocity (m/s) 4340 210 11
S-wave velocity (m/s) 2680 100 11
Elastic modulus (GPa) 33.5 6.8 4
Poisson’s ratio 0.21 0.05 4
Uniaxial compressive strength (MPa) 106.7 22.3 7
Tensile strength (MPa) 9.2 0.4 2
Cohesion (MPa) 15.2 - 12
Internal friction angle (°) 60.2 - 12
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Note that most of the available dilation data in the literature 
were obtained with normal stress levels less than 15 MPa. 
Therefore, more experiments are critically needed at higher 
levels of normal stress to predict more realistic dilational 
behavior at greater depths.

3.3 � Thermal Tests on Rock Core

Thermal conductivity, specific heat capacity, and thermal 
expansion coefficient were measured for the recovered rock 
cores to characterize their thermal properties for use in 
evaluating the performance of the geothermal reservoir. The 
thermal expansion coefficients of the cylindrical samples 

that had diameters of 20 mm were measured by a dilatometer 
(ASTM D4535-13e2 2013a). The expansion of samples was 
monitored as the temperature increased from 50 to 400 °C 
at a rate of 11 °C/min and the thermal expansion coefficient 
was derived from the recorded displacement–temperature 
curve. In addition, the mean thermal expansion coefficient 
of the three samples is 1.7 × 10−5/K.

The specific heat was measured by the laser flash method 
(Zajas and Heiselberg 2013) and the differential scanning 
calorimeter (DSC) (ASTM E1269-11 2018). For the laser 
flash method, the specific heat was 0.799 kJ/kgK based 
on five disc-shaped samples with diameters of 25 mm and 
thicknesses of 3 mm. The tests were repeated three times 

Table 2   Mechanical properties of fractures derived from laboratory tests

Property Mean value Standard 
deviation

No. of tests Method

Joint wall compressive strength (MPa) 169.2 87.2 5 Schmidt hammer test (Barton and Choubey 1977; 
Aydin and Basu 2005)

Joint roughness coefficient 13.1 2.8 7 X-ray computed tomography (Li and Zhang 2015)
Friction angle of fracture (°) 26.6 0.5 2 Direct shear test (Ulusay 2015)
Normal stiffness of fracture (GPa/m) 7.9 – 1 1.6–4.8 MPa of normal stress

14.0 – 1 4.8–8.0 MPa of normal stress
23.4 – 1 6.5–13.0 MPa of normal stress

Shear stiffness of fracture (GPa/m) 3.2 1.7 3
Dilation angle (°) 5.3 2.4 3

Table 3   Thermal properties derived from laboratory tests

Property Mean value Standard 
deviation

No. of tests Method

Specific heat (kJ/kgK) 0.799 0.016 5 Laser flash method (ASTM E1461-13 2013b)
0.804 0.044 5 Differential scanning calorimeter (ASTM E1269-11 2018)

Thermal conductivity (W/mK) 3.02 0.10 5 Laser flash method (ASTM E1461-13 2013b)
2.98 0.30 3 Divided-bar method (Beardsmore and Cull 2001)

Thermal expansion coefficient (µm/m) 16.9 1.3 3 Dilatometer (ASTM D4535-13e2 2013a)

Fig. 6   Mohr diagram consisting 
of Mohr stress circles for tri-
axial and uniaxial compression 
tests and the derived Mohr–
Coulomb failure envelope
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Fig. 7   a Specimens molded 
for direct shear tests (the arrow 
represents the shearing direction 
during a direct shear test) and 
b molded sample placed in the 
shear box
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for each at room temperature. For the DSC method, the 
tests were performed on the disk-shaped samples that had 
diameters of 2 mm. Because the specimen was very small, 
special attention was paid to preparing more representative 
samples by choosing those that had mineral compositions 
similar to the ones in the entire rock core. The mean specific 
heat obtained for the five samples was 0.804 kJ/kgK at room 
temperature. The results of the DSC tests on small size disks 
were close to the results from the laser flash method used for 
the large samples.

The thermal conductivity was obtained by the laser flash 
method (ASTM  E1461-13 2013b) and the divided-bar 
method (Beardsmore and Cull 2001). From the laser flash 
method, the mean thermal conductivity was calculated as 
3.02 W/mK based on the thermal diffusivity and specific 
heat measurements. For the divided-bar method, disk-shaped 
samples with diameters of 54 mm were mounted between 
the lower and upper platens with heat sources at constant 

temperatures of 10 °C and 40 °C, respectively. The tests 
lasted as long as 2000 s to guarantee that steady state was 
achieved during the test. The measured mean thermal con-
ductivity for the three samples was 2.98 W/mK. In addition, 
the thermal conductivity was calculated indirectly from the 
mineralogical compositions determined by XRD analysis 
using the data compilation of Clauser and Huenges (1995). 
The arithmetic, geometric, and harmonic means of the min-
eral thermal conductivities were 3.54, 3.19, and 2.93 W/mK, 
respectively. The harmonic mean thermal conductivity of the 
minerals was the closest to the value obtained from direct 
measurements.

Birch and Clark (1940) reported a decreasing tendency 
for thermal conductivity when temperature increased. In 
the case of granite, the thermal conductivity at 0 °C was 
between 1.1 and 1.3 times the conductivity at 150 °C. There-
fore, the thermal conductivity measured at room temperature 
is likely to slightly underestimate the thermal conductivity 
at a depth of 4.2 km where the temperature is 140 °C (Yoo 
et al. 2018).

4 � Summary

Mechanical and thermal characterizations of rock and rock 
fractures are essential for borehole stability analyses as well 
as understanding the flow and transmissivity development 
when hydraulic stimulation is performed in a fractured res-
ervoir. These properties are indispensable inputs for other 
deep geological applications such as deep borehole dis-
posal of nuclear waste and geo-sequestration of CO2. We 
report on a set of mechanical and thermal properties for the 
granodiorite rock core and fractures retrieved from a depth 
of 4.2 km in the Pohang reservoir. The physical properties 
we measured included density, porosity, and P- and S-wave 
velocities. Uniaxial and triaxial compressive tests were con-
ducted to determine the deformation and strength parameters 
of intact rock that include elastic modulus, Poisson’s ratio, 
UCS, tensile strength, cohesion, and internal friction angle. 
Fracture properties, including JCS, JRC, basic friction angle, 
residual friction angle, normal stiffness, shear stiffness, and 
dilation angle, were determined for natural fractures in the 
core. Thermal properties, including thermal conductivity, 
heat capacity, and thermal expansion coefficient, were deter-
mined from measurements on the intact cores.

The determined mechanical and thermal properties of 
rock core and fractures were in the range typically expected 
in a granodiorite rock and a few notable observations were 
made:

•	 The stress-dependent normal stiffness of fractures 
matched reasonably well with observations made dur-
ing in situ hydraulic stimulation at the deep fractured 

Fig. 8   Direct shear test results for the S2 (normal and shear stress 
versus shear displacement). The three stages correspond to normal 
stress conditions at 1.6, 4.8, and 8.0 MPa
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reservoir, which demonstrates that the laboratory frac-
ture test can help the interpretation of the hydraulic 
jacking mechanism.

•	 The dilation angles of the fracture determined from 
the laboratory tests with normal stress up to 8 MPa are 
within the range expected by the existing empirical for-
mula. However, the experiment with much higher nor-
mal stress corresponding to deep reservoir is critically 
needed for more realistic evaluation of the dilational 
behavior of fractures.

•	 The friction coefficient of fracture was measured as 
0.53, which is lower than the one typically used in 
practice because of the smooth fracture surface and 
infilling material.

•	 P- and S-wave velocities detected from well logging 
were 36.4% and 22.4% larger, respectively, than the 
ones estimated by laboratory tests, which is explained 
by the stress dependency of wave velocities.
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