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Abstract

The fracture characterization of shale rocks requires understanding the scaling of the measured properties to enable the
extrapolation from small-scale laboratory tests to field applications. In this study, the fracture properties of Marcellus shale
were obtained through size effect tests. Fracture tests were conducted on three-point-bending specimens with increasing
size. The test results show that the nominal strength decreases with increasing specimen size and it can be fitted well by
Bazant’s size effect law. This demonstrates that shale fracture behavior deviates from classical linear elastic fracture mechan-
ics (LEFM), and it has quasi-brittle characteristics. This implies, in turn, that the fracture toughness (or fracture energy)
computed according to LEFM is size-dependent and, in general, cannot be considered a material property. Furthermore, the
size effect analysis allows one to accurately identify the quasi-brittle fracture properties, namely the initial fracture energy
and the effective fracture process zone length. A significant anisotropy was observed in the fracture properties determined
with three principal notch orientations.
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E* Effective elastic modulus

g g Dimensionless energy release rate and its
derivative

8o g6 Dimensionless energy release rate at o and its
derivative value

k Dimensionless stress intensity factor

& Dimensionless function

0, A parameter in size effect law

MAPE,  Notch-machining error

R? Coefficient of determination

RMSE  Root-mean-squared error

SD Standard deviation

SE Standard error

1 Introduction

In recent years, the study of different aspects of shale rocks
has surged as a result of the vital role that they play in
various energy-related applications including oil and gas
production, subsurface carbon dioxide sequestration, and
nuclear waste disposal. Understanding the fundamental
mechanical processes in shale formations, as well as their
interaction with the in-situ stress field, pore pressure, and
hydraulic loading, is essential to promote industrial inno-
vations such as the development of the hydraulic fractur-
ing techniques. In particular, of critical importance is the
experimental and computational study of crack initiation
and propagation as well as the identification of the fracture
properties required to apply fracture mechanics theories and
numerical simulation tools to field applications [see, e.g.,
Lietal. (2016,2017,2018b), Chau et al. (2016), Zeng et al.
(2018), Zia et al. (2018)].

Fracture characterization of shale is usually based on lin-
ear elastic fracture mechanics (LEFM). The LEFM mode 1
fracture toughness has been used widely for the characteriza-
tion of intact rock with respect to its resistance to crack prop-
agation. Schmidt (1977) investigated the fracture toughness
of Anvil Point oil shale using notched three-point-bending
specimens with varying notch orientations with respect to
the rock bedding. The measured fracture toughness values,
varying from 0.3 to 1.1 MPa\/rTl, were found to decrease
with an increase in kerogen content and were highest for
notches orthogonal to the bedding and lowest for notches
parallel to the bedding. Chong et al. (1987) proposed a semi-
circular bend (SCB) specimen subjected to three-point-bend-
ing loading for fracture toughness measurements of Colo-
rado oil shale. The obtained values for notches orthogonal
to the bedding were determined using a stress intensity fac-
tor method, a compliance method, and a J-integral based
method and were reported to vary from 0.88 to 1.0 MPa\/r_n .
In contrast to Schmidt’s observation (Schmidt 1977), it was
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found that the static fracture toughness of organic-rich oil
shale is higher than that of lean material.

By means of a similar test configuration, Sierra et al.
(2010) reported the fracture toughness of Woodford shale
to be in the range of 0.74-1.17 MPa4/m and to be related
to the clay content of the samples. Lee et al. (2015) per-
formed SCB tests on Marcellus shale core containing cal-
cite-filled natural fractures (veins). These tests showed that
the presence of calcite-filled veins has a significant effect
on the crack propagation path. For the specimens without
veins, the fracture toughness was reported to vary from
0.18 to 0.73 MPa\/E depending on the specimen bedding
plane orientations. Chandler et al. (2016) reported fracture
toughness measurements on Mancos shale using a modi-
fied short-rod methodology. The highest fracture toughness
value, 0.72 MPa4y/m was obtained for notches normal to
the bedding, and the lowest one, 0.21 MPa\/E for notches
aligned with the bedding. In addition to the conventional
fracture tests, micro-scale scratch tests (Hubler and Ulm
2016; Akono and Kabir 2016; Kabir et al. 2017) were also
utilized for the fracture characterization of various types of
shale rocks.

In addition to the aforementioned dependence on the
organic content of samples, several studies have shown that
the laboratory-determined fracture characteristics of shale
and shale-like rocks are influenced by the water content
(Lim et al. 1994; Chen et al. 2017; Yan et al. 2017) and the
loading rate (Kabir et al. 2017). Although important, these
aspects are beyond the scope of the study presented in this
paper in which only dry specimens and quasi-static loading
conditions were considered.

Despite the abundance of shale fracture experimental
data, only a few studies focused on the size and geometry
dependence of shale fracture properties measured in labora-
tory tests. Wang et al. (2017) measured the fracture tough-
ness of a shale outcrop in Chongqing, China, using SCB and
cracked chevron notched Brazilian disk (CCNBD) speci-
mens, and noticed that the obtained toughness values from
these two methods were different.

The measured toughness of various geomaterials was
observed to vary with the shape and size of the investigated
specimens (Ingraffea et al. 1984; Kataoka and Obara 2015;
Barpi et al. 2012; Bocca et al. 1989; Khan and Al-Shayea
2000; Wang and Hu 2017; Ayatollahi and Akbardoost 2014).
For instance, Kataoka and Obara (2015) observed that the
fracture toughness of Kimachi sandstone increased as the
radius of the SCB specimens increases from 12.5 to 150
mm, and converged to a constant value for a radius larger
than 70 mm.

Furthermore, it has been known for some time that labo-
ratory measurements of LEFM fracture toughness under-
estimate the in-situ toughness determined from field data
(Chong et al. 1989; Chong and Smith 1984).



Size Effect Analysis for the Characterization of Marcellus Shale Quasi-brittle Fracture... 3

The size and shape dependence of the LEFM fracture prop-
erties suggests that shale has a quasi-brittle fracture behavior
characterized by a non-negligible size of the fracture process
zone (FPZ) (Bazant 1984). The FPZ is a volume of material
ahead of the crack tip in which (1) the material experiences
damage and softening; (2) the stress field is nonuniform, and
the magnitude of the stresses decreases with increasing defor-
mation. This violates the LEFM assumption that the energy
dissipation associated with fracture occurs in one mathemati-
cal point. Hence, nonlinear fracture mechanics approaches
must be adopted for the correct analysis of fracture phenom-
ena in quasi-brittle materials in general and shale rocks in
particular.

2 Fracture Mechanics and Size Effect
of Anisotropic Quasi-brittle Materials

This section reviews two fracture mechanics approaches,
namely the equivalent linear elastic fracture mechanics and the
cohesive crack model, which have been adopted extensively
in the literature for the analysis of quasi-brittle fracture and,
more specifically, for the interpretation of size effect tests on
quasi-brittle materials. The discussion is limited to the case
of orthotropic material symmetry, which includes the case of
shale.

2.1 Equivalent Linear Elastic Fracture Mechanics
According to Bao et al. (1992), the Mode I stress intensity fac-
tor, K;, of a specimen with crack length a subject to bending

(see Fig. 1) and made of a orthotropic material can be written
as follows:

K = oy VDk(a, p.w) = oyé(a, p.w)V7Da, (1)

where oy, is the nominal stress, k(a, p, w) and &(a, p, y) are
dimensionless functions, @ = a/D is the dimensionless crack
length, D = specimen depth, w = A!/4S/D, and S = speci-
menspan. A = E, /E,, p = O.S(ExEy)l/z/ny = (v

dimensionless elastic constants and £, Ey, Viys Voo

)1/2are

G,, are

Vi

J

-

Fig. 1 Geometry of the three-point-bending test setup, in which L, D,
and ¢ represent specimen length, depth, and thickness, respectively; S
is the span; a is the crack length

the elastic constants defined in the Cartesian coordinate sys-
tem depicted in Fig. 1. For a three-point-bending test, the
nominal stress can be defined as follows:

S P
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where P = applied load and # = specimen thickness.
Furthermore, under plane stress conditions, the energy
release rate, G, can be calculated as follows:

G K12 0']%,D 3)
- E - E* g(avp7 W)v

where

gla, p.y) = k(a, p,w)* = na&(a, y, p)* )
and

2E,E, 11/

Equation (3) represents Irwin’s relation for orthotropic
materials under plane stress and is similar to the one for
isotropic materials except that the effective elastic modulus,
E*, is used as opposed to the isotropic modulus of elastic-
ity. Equation (3) was first proposed by Sih et al. (1965) and
has been adopted widely in the literature [see, e.g., (Bao
et al. 1992; Bazant et al. 1996; Kim et al. 2013; Salviato
et al. 2016b)], but its validity is limited to mode I fracture
whose propagation is aligned with the axes of symmetry of
the material. Indeed, Eq. (3) can be shown to be a particular
case of the generalized formulation proposed by Laubie and
Ulm (2014a, b), which accounts for generic fracture modes
and fracture orientations.

On the basis of the equivalent LEFM, the peak load condi-
tion for “positive” specimen geometries (i.e., the ones char-
acterized by g’(a) > 0) can be written (BaZant 1984; BaZant
and Planas 1997) with reference to an equivalent crack length,
a=ay+c; (@ = ay+ c;/D), as:

2

GNMD
G(ag+¢/D) = o8+ ¢¢/D) = Gy, (6)

where oy, is the nominal stress at the peak load (nominal
strength), a; is the notch length of the notched specimen that
is equal to the initial crack length before fracture propagation
occurs, a, = a,/D is the dimensionless notch length (equal
to the initial value of the dimensionless crack length ), Gy,
and ¢; are the effective LEFM fracture energy and the effec-
tive FPZ length, respectively, both assumed to be material
properties. Note that the term notch is used interchange-
ably with the initial crack in this work consistently to the
available LEFM literature, because the notches are assumed
to be sharp (with zero radius of curvature at the tip). For
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orthotropic materials, G, and ¢; have, in general, different
values for different fracture orientations. The fracture energy
can be related to the fracture toughness, K., through Irwin’s
relation: Gy, = K12c /E*. In Eq. (6) and in what follows, the
direct dependence of g(-) on y and p is dropped for simplic-
ity of notation.

The concept of effective FPZ is introduced to account
for the non-negligible size of the actual FPZ, as illustrated
in Fig. 2. It is worth pointing out that the FPZ is assumed
to be fully developed at peak load, which means that the
stress profile varies from zero at the notch tip to the tensile
strength at the tip of the FPZ (see Fig. 2). In addition, (1)
the length of fully developed FPZ length, £pp,, is assumed
to be a material property and, as such, size-independent;
(2) ¢4 is assumed to be proportional to £gpy, and the ratio
¢t/ Crpy = 0.51s often reported in the literature (BaZant and
Planas 1997).

By approximating g(a, + c;/D) with only the linear term
of its Taylor series expansion at &, one obtains

@)
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where g, = g(a) and g, = g’ () are size-independent only
in the case of geometrically similar specimens, i.e., for a =
constant and y = constant.

Equation 7 is known as BaZant’s size effect law (SEL) and
it can be also recast in the following form:

0o

ONy = ——,
N N (¥

where 6 = (E*Gy./(c;8)))'/*: p = D/D,, also called brit-
tleness number; Dy, = cg;,/go-. It is interesting to note that
Eq. (8) incorporates a characteristic size D, which is usually

Notch FPZ
o
I
0
|
: 1
aU I fFPZ
|
Equivalent LEFM crack I
———
|
- -
a, I ¢
I

Fig.2 Fully developed fracture process zone (FPZ) and equivalent
LEFM crack length at peak load. o represents cohesive stress as a
function of crack opening, &; a, is the notch length (equal to the ini-
tial crack length); Zpp, represents the FPZ length; ¢; represents the
so-called effective FPZ length
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called the transitional size and is the key to describe the tran-
sition from ductile to brittle behavior with increasing size.

2.2 Cohesive Crack Model

Another approach widely used to account for the finite
size of the FPZ is the cohesive crack model pioneered by
Dugdale (1960) and Barenblatt (1962) for ductile materials
with the name “cohesive zone model” and by Hillerborg
et al. (1976) for concrete with the name “fictitious crack
model”. According to the cohesive crack model, the FPZ is
simulated as a crack that is able to transfer stress across the
crack plane. For a mode I fracture, the cohesive tractions
are assumed to be orthogonal to the crack plane and to be
governed by the so-called cohesive law, ¢(6), consisting of
a decreasing function of the crack opening, 6, as depicted in
Fig. 3. Depending upon the material of interest, the cohe-
sive crack law can be formulated with various functions.
However, in most cases, such functions depend on three key
parameters (see Fig. 3): the tensile strength, f’, character-
izing crack initiation; the total fracture energy, Gg, defined
as the area under the cohesive law; the initial fracture energy,
G;, defined as the area under the initial, almost linear portion
of the cohesive law (see Fig. 3). The ratio Gy /G; depends on
the functional form describing the cohesive law: for exam-
ple, for a linear function G/G; = 1 and for an exponential
function G/ G; = 2.

For a linear cohesive law, the cohesive crack model pre-
dicts the nominal strength of notched specimens to be con-
sistent with Bazant’s SEL (Eq. 7) for G}, = G; = G and
D> 0.2, where D= gOD/(gé)ll) is normalized size, and
I, = E*G¢/f] 2 is Hillerborg’s characteristic length (Hiller-
borg et al. 1976). Cedolin and Cusatis (2008) and Cusatis
and Schauffert (2009) showed that the condition D>02
ensures the cohesive stress at the notch tip to be close to zero
and, consequently, the FPZ to be fully developed. Instead, in
the case of a nonlinear cohesive law, Cusatis and Schauffert

Cohesive stress, o

Crack opening, 0

Fig.3 Typical cohesive crack law characterized by the tensile
strength, f/; the initial fracture energy, Gy; total fracture energy, G
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(2009) showed that the predictions of the cohesive crack
model agree with Eq. (7) for G;, = G;and 0.2 < D < 2 and
for G, = Ggand D > 10. The former conditions correspond
to cohesive stress values in the initial portion of the cohe-
sive law, whereas the latter conditions correspond to a fully
developed FPZ. Finally, still for a nonlinear cohesive law,
the cohesive crack model and the effective LEFM predic-
tions deviate significantly one from the other for2 < D < 10
(Cedolin and Cusatis 2008; Cusatis and Schauffert 2009).
In this size range, the cohesive stresses are not within the
initial portion of the cohesive law, and the FPZ is not fully
developed.

Based on these results, Cusatis and Schauffert (2009)
concluded that for typical laboratory size specimens, the
FPZ cannot be fully developed at peak load and size effect
tests cannot be used to identify Gg unless the material is
characterized by a linear cohesive law. On the contrary, size
effect results on typical laboratory specimens of certain
sizes can be fitted by Eq. (7) to identify G; regardless of the
shape of the cohesive law. This is known in the literature as
the “size effect method”, and it was proposed originally by
Bazant for concrete (BaZant 1984; Bazant and Pfeiffer 1987,
Bazant and Planas 1997).

Furthermore, for the size range in which the cohesive
crack model and the equivalent LEFM with G,, = G; pro-
vide similar results, Cusatis and Schauffert (2009) showed
that ¢; =~ 0.44[,. Using this relationship, it is possible to esti-
mate the tensile strength by means of size effect tests as
f! = (0.44E*G¢/cp)!/2.

The size effect method has been used by many authors
for concrete and mortar (BaZant and Pfeiffer 1987; Bazant
and Kazemi 1990a; Cedolin and Cusatis 2008), polymer
composites (Bazant et al. 1996; Salviato et al. 2016b; Mef-
ford et al. 2017), ceramics (BaZant and Kazemi 1990b),
wood (Aicher 2010), rocks such as limestone (BaZant et al.
1991) and granite (BaZant and Kazemi 1990a), and some
biomaterials (Kim et al. 2013), just to mention a few. A
similar approach was proposed by Akono (2016), Hubler

Fig.4 a Shale block from
Marcellus outcrop. b Transverse
isotropy model and correspond-
ing elastic constants

and Ulm (2016) for the interpretation of scratch tests at the
nano- and micro-scale.

In the work presented in this paper, the size effect
method was applied to the characterization of the fracture
parameters of Marcellus shale.

3 Experiments
3.1 Material Characterization

The shale material used in the current study was taken
from outcrops of the Marcellus formation. The blocks were
black and compact featuring alternating light and dark lay-
ers, as illustrated in Fig. 4a. Visual inspection showed that
the shale block was free of macroscopic surface cracks
and voids. The sample could be considered to be dry as
the water content by mass measured by following ASTM
D2216 was less than 0.2%. The average mass density was
2558 kg/m>. The relevant mineralogy data can be found
in Akono and Kabir (2018).

A basic characterization of the mechanical properties
was carried out and included seismic velocity measure-
ments, direct tension, uniaxial compression, and splitting
tests, as reported in Jin et al. (2018). Material anisotropy
was observed for seismic velocity, other elastic properties,
and strength under tensile and compressive loading condi-
tions. The test results revealed that the elastic behavior of
Marcellus shale can be idealized as transversely isotropic,
with the plane of isotropy coinciding with the plane of
sedimentary layering, as shown in Fig. 4b. The relevant
five independent elastic constants, E, E’, v, v/, and G’ are
listed in Table 1. E and v are Young’s modulus and Pois-
son’s ratio, respectively, in the plane of isotropy; E’ and v/
are Young’s modulus and Poisson’s ratio, respectively, in
the direction perpendicular to the isotropy plane; G’ is the
out-of-plane shear modulus.

E'\V,G'

TAsix of symmetry

E, v plane of isotropy

100 mm |

(b)

@ Springer



W. Lietal.

Table 1 Elastic properties of Marcellus shale

Description Symbol (units) Measured value
In-plane modulus E (GPa) 37.7

In-plane Poisson’s ratio v(-) 0.25
Out-of-plane modulus E' (GPa) 16.1
Out-of-plane Poisson’s ratio V(=) 0.35
Out-of-plane shear modulus G' (GPa) 6.9

=

7

=

(a) (b)

=

g

\
(V] @

Fig.5 Sketch of the specimens with three principal notch orienta-
tions: a arrester, b divider, and ¢ short-transverse. d Picture of some
of the tested specimens of different sizes

3.2 Specimen Preparation

The large shale block was first cut into small pieces using
a table tile saw with a diamond blade. A TechCut 5™
precision sectioning machine was used to prepare three-
point-bending (TPB) specimens according to the geometry
reported in Fig. 1. A diamond wafering blade with thickness
of 0.36 mm was used to machine the notches to a target
dimensionless depth o, = 0.28. Following the pioneering
work by Schmidt (1977) and Chong et al. (1987), the speci-
mens were made in such a way that the notches were aligned
with one of the three principal orientations with respect to
the isotropy plane, known as arrester, divider, and short-
transverse, as depicted in Fig. Sa—c, respectively. To perform
size effect tests, geometrically similar specimens of three
sizes (small, medium, and large) were prepared for each
specimen configuration and with size ratios of 1:2:4. Since
only two-dimensional (2D) similarity was considered in this
study, all the specimens had the same thickness. The larger
specimens were prepared first. Pieces were collected after
the larger ones broke under three-point-bend loading. To
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reduce machining effort and to minimize the inevitable ran-
dom scatter of material properties due to shale heterogeneity,
the small- and medium-sized specimens were obtained from
the collected pieces of the large specimens. Due to the stress
concentration at the notch tip, the material away from the
notch that was used to machine the small and medium speci-
mens experienced very low level of stress during the tests of
the large specimens and, consequently, they were considered
to be free of any damage from the initial test. Typical TPB
specimens with varying sizes are shown in Fig. 5d, and the
detailed specimen dimensions are listed in Table 2.

Table 2 shows a certain variability of the various geo-
metric quantities due to machining inaccuracy. In particu-
lar, the largest machining error can be observed in terms
of notch length, ay, which was the shortest dimension to
machine. To check the degree of violation of the geometric
similarity condition due to the notch-machining inaccuracy,
an accurate measurement of the notch length was taken post-
mortem. The values are listed in the fifth column of Table 2.
The table also reports the notch-machining error, MAPE%,
which was estimated from the measured and designated val-
ues of @, by means of the mean absolute percentage error
(MAPE) calculation. As one can see, the MAPEa0 is not
always negligible (as high as 20%) leading to a violation of
the geometric similarity condition. The effect of this devia-
tion on the results will be discussed later in this paper.

3.3 Test Description

The prepared TPB specimens were placed on two supporting
pins with the support span, S, equal to 74, 37, and 18.5 mm
for large, medium, and small size, respectively, and were
loaded vertically under symmetric three-point bending (see
Fig. 6). The tests were conducted with displacement (stroke)
control in a closed-loop controlled Mini-Tester with a load
cell operating in the 889.64 N (200 Ib) range. A constant dis-
placement rate of 0.1, 0.05, and 0.025 mm/min was used for
large, medium, and small specimens, respectively, to ensure
the same strain rate for all investigated specimens. Each test
lasted around 5 min to complete. The load-line displacement
and the applied load were recorded during each test with
a system acquisition frequency of 1 Hz. In total, 27 tests
were conducted with three tests for each specimen size and
configuration.

3.4 Experimental Results

The typical load—displacement curves recorded in the exper-
iments for three sampled specimens (one for each size) are
shown in Fig. 7. The curves feature an initial stage with
a gentle slope, followed by a linear segment and a subse-
quent sudden drop of load as soon as the peak value was
reached. The gentle slope of the initial stage arises from the
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Table 2 Geometrical specifications of the TPB specimens under study

Type Size Specimen no. Depth, D (mm) Thickness, ¢+ Notch length, Dimensionless Notch-machining
(mm) ay (mm) notch length, ay (=) error, MAPE,|
(%)
Arrester Large A-L-1 25.20 14.01 7.02 0.279 4.82
A-L-2 24.23 13.45 6.39 0.264
A-L-3 24.47 13.75 7.41 0.303
Medium A-M-1 12.52 13.81 3.47 0.277 134
A-M-2 12.13 14.25 4.59 0.378
A-M-3 12.33 13.14 3.59 0.291
Small A-S-1 6.13 13.98 2.16 0.352 20.0
A-S-2 5.98 14.36 2.01 0.336
A-S-3 6.16 12.12 1.97 0.320
Divider Large D-L-1 25.6 12.59 7.16 0.280 5.28
D-L-2 25.52 12.92 7.30 0.286
D-L-3 239 13.86 7.60 0.318
Medium D-M-1 12.7 12.86 3.55 0.280 7.64
D-M-2 12.48 13.02 3.05 0.244
D-M-3 11.91 14.42 3.00 0.252
Small D-S-1 6.41 12.70 1.65 0.257 5.47
D-S-2 6.26 13.04 1.78 0.284
D-S-3 6.02 14.14 1.80 0.299
Short-transverse Large ST-L-1 26.12 14.10 7.04 0.270 6.40
ST-L-2 26.2 14.00 6.40 0.244
ST-L-3 25.69 14.40 7.00 0.272
Medium ST-M-1 13.16 14.20 3.63 0.276 2.33
ST-M-2 13.1 14.01 3.66 0.279
ST-M-3 12.72 14.55 3.75 0.295
Small ST-S-1 6.54 14.07 1.91 0.292 4.29
ST-S-2 6.57 14.04 1.73 0.263
ST-S-3 6.44 14.57 1.85 0.287
. 600
Tespstfiware system
500
400

Fig.6 Setup of the loading and data acquisition systems. The loading
system consists of a load frame, a three-point-bending fixture, and a
test software; the test data were collected through the test software

progressive contact between the specimen and the loading
pins. The pre-peak linear segment indicates that no appar-
ent plastic deformation takes place within the tested shale
specimens. After reaching the peak load, the load—displace-
ment curves dropped suddenly for all investigated sizes and
configurations. As a consequence, the specimens failed and

L L

L

L

L

0.1

0.2 0.3

04

0.5

Load-line displacement [mm]

0.6 0.7

Fig. 7 Typical load—displacement curves recorded in the experiments
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split into two pieces right after the peak load. This sudden
failure is quite typical in this type of tests when the control
variable is the machine stroke (displacement of the actuator).
This is because the stroke also includes the deformability of
the entire loading system, which leads to a load—displace-
ment curve featuring snap-back. This issue was analyzed in
detail by Hudson et al. (1972), Wendner et al. (2015), and
Salviato et al. (2016a), among many others. A more gradual
post-peak behavior could be achieved by conducting the tests
under crack mouth opening displacement (CMOD) control,
which, however, requires additional specimen preparation to
attach a CMOD transducer to the specimens. CMOD control
was not pursued in this study, because the size effect method
requires measurements of peak loads only.

Furthermore, it is important to clarify that the brittle
failure behavior observed in the tests does not provide
information on the brittleness or quasi-brittleness of the
material, but it only indicates a loss of stability of the spe-
cific tests in the post-peak regime. Indeed, as mentioned

above, stability and controllability of a fracture test depend
not only on the material properties, but also on other fac-
tors such as machine frame stiffness, control loop feedback
mechanism, controller settings, and specimen geometry
(Salviato et al. 2016a).

The test results for the notched specimens are summa-
rized in Table 3. The reported nominal strength, oy, was
computed from the peak load with the formula reported
in Sect. 2.1 (see Eq. 2). The apparent fracture toughness,
K., and the apparent fracture energy, Gy, were calcu-
lated from the measured nominal strength according to
LEFM: G, = gyDo>, /E* and Ky, = (gyDo3 )'/? (see
Eq. 3). The values of mean and standard deviation (SD)
were calculated on the basis of the three independent tests
performed for each size and each notch orientation. The
results show that the apparent fracture properties depend
not only on the notch orientation due to the effect of mate-
rial anisotropy but also on the specimen size. This is an
indication that the fracture behavior of Marcellus shale

Table 3 Results of three-point-bending tests on Marcellus shale specimens

Type Size Specimen no. Peak load P, (N) Nominal Apparent fracture tough- Apparent fracture
strength, oy, ness, Kj 5 + SD (MPa\/E) energy, Gy, + SD
(MPa) (N/m)
Arrester Large A-L-1 503.67 6.28 0.851 + 0.055 25.344 + 3.250
A-L-2 416.60 5.86
A-L-3 429.80 5.79
Medium  A-M-1 281.00 7.20 0.837 +0.143 24.904 + 8.671
A-M-2 232.78 6.16
A-M-3 348.17 9.67
Small A-S-1 183.02 9.67 0.720 + 0.093 18.292 +4.793
A-S-2 159.70 8.63
A-S-3 135.98 8.20
Divider Large D-L-1 498.03 6.70 0.967 + 0.045 24.815 +2.291
D-L-2 503.39 6.64
D-L-3 413.71 5.80
Medium D-M-1 293.00 7.84 0.852 +0.033 19.272 + 1.482
D-M-2 341.60 9.35
D-M-3 338.65 9.19
Small D-S-1 173.31 9.22 0.675 + 0.050 12.121 + 1.810
D-S-2 182.28 9.90
D-S-3 159.32 8.63
Short-Transverse Large ST-L-1 488.98 5.64 0.820 + 0.043 35913 +£3.714
ST-L-2 473.93 5.47
ST-L-3 481.68 5.63
Medium ST-M-1 310.19 7.00 0.768 + 0.010 31.486 + 0.819
ST-M-2 309.03 7.13
ST-M-3 292.47 6.90
Small ST-S-1 171.78 7.92 0.642 + 0.049 22.084 + 3.437
ST-S-2 177.02 8.11
ST-S-3 194.61 8.94
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deviates from LEFM and must be analyzed with nonlinear
fracture theories.

4 Size Effect Analysis of the Experimental
Data

4.1 Fitting of Size Effect Data

The identification of the fracture properties, ¢; and Gy, can
be obtained by fitting the experimental nominal strength
by means of BaZant’s SEL (Eq. 7) through either linear or
nonlinear regression approaches (BaZant and Li 1996; Tang
et al. 1996). Although these two approaches are not com-
pletely equivalent, because they imply different weights of
the data points, Tang et al. (1996) showed that the results
obtained through the two approaches are the same when the
number of test specimens increases. In this work, the linear
approach is preferred and was adopted in this paper because
of its simplicity. For the linear regression approach, it is
convenient to write Eq. (7) in the form:

Y, =AX +C,, 9)

where X, =g,D/g,, Y, = 1/8651%”’ A =1/(E"Gy),
C, = ¢;/(E*Gy) or

Y, =AX,+C,, (10)
where X, = D.Y, = 632 A, = g,/(E*Gy.).C, =g)c;/(E*Gy).

Equation (9) is general and can be applied even to non-
similar specimens provided that the correct g, and g6 are cal-
culated for each individual specimen. On the contrary, Eq.
(10) can be applied only to geometrically similar specimens
for which g, and g() do not vary from specimen to specimen.
The fitting of the experimental data with Eq. (9) (or Eq. 10)
allows one to compute A; and C, (or A, and C,), which, in
turn, permits one to calculate ¢; and G.

As mentioned earlier, the tested specimens are not exactly
geometrically similar, because the actual geometry of each
specimen deviates slightly from the designed geometry due
to machining inaccuracies. The linear regression analysis
was carried out with two approaches for comparison. The
first, hereafter referred to as “method 17, is based on Eq. (9)
and takes into account the variation in the geometry of the
specimens; the second, hereafter referred to as “method 27,
is based on Eq. (10), instead, and uses the designed geom-
etry of the specimens to compute g, and gj.

4.2 Calculation of g(a) and g’ (@)

The dimensionless energy release rate, g(«), can be obtained
by means of Eq. (4) if the function é(a, v, p) is known. Bao
et al. (1992) proposed formulae to estimate &(-) for a family
of notched bars, which, however, do not include the case

of TPB specimens. For this reason, the function g(a) was
calculated numerically by finite-element analysis (FEA) in
Abaqus Implicit (ABAQUS 2013).

The specimens were modeled with eight-node quadratic
plane stress quadrilateral elements (CPS8) and the singular-
ity field at the notch tip was modeled through the quarter
element technique (Barsoum 1974). A linear elastic trans-
versely isotropic constitutive model was used with the mate-
rial properties reported in Table 1. The J-integral approach
was adopted to estimate the energy release rate G, and the
corresponding dimensionless energy release rate g was cal-
culated according to Eq. (3). To formulate g as a function of
a, the simulations were performed with various dimension-
less crack lengths set equal to the notch lengths, & = @, with
values ranging from 0.25 to 0.32 with increments of 0.01.

Following BaZant and Planas (1997) and Guinea et al.
(1998), the numerical results were interpolated with the fol-
lowing formula:

p(a)?

= 2p (=0

an
where p(a) is a fourth-degree polynomial function. The
interpolation of the numerical results resulted in p(a) =
—8.5776a* + 7.6463a> — 0.8044a> — 0.6373a + 1.7521 for
the arrester configuration; p(a) =  83.079a* — 95.591a3+
42.436a* — 8.5696a + 2.3243 for the divider configuration;
pla) = 168.61a* — 197.05° + 87.288a> — 17.3576-3.0228
for the short-transverse configuration. Figure 8a—c shows
the comparison between the numerical results and the func-
tions p(a). Clearly, the fourth-order polynomial function
provides a very accurate fit of the numerical results for all
notch configurations.

Finally, g’(«) can be computed by direct derivation of
g(a). One gets

2p(a)p'(a)
a .
(1 —a)3Qa + 1)?

12)

With regard to the values of g and g’ for a specific specimen

required for the linear regression analysis, a takes the value

of aj at the beginning of crack propagation, i.e., g, = g(a,)

and g = g'(a).

Pi(@)
(¢ — D*QRa + 1)

g'(@) = (8 +1)

4.3 Identification of Fracture Properties

The linear regression analysis for both method 1 and
method 2 was conducted by means of the classical least
square method. The results of the regression analysis as
well as the experimental data are presented in Fig. 9a—c for
the arrester, divider, and short-transverse configurations,
respectively, for method 1; and in Fig. 10a—c, for method
2. The regression analysis provides a mean estimate of
slope, /_li, and intercept, C'l-, of the straight line as well as
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their standard error (SE), SE,; and SE;, where i = 1 for
method 1 and i = 2 for method 2.

The mean and SE values of the regression parameters
can then be used to compute mean and SE for the fracture
properties. Considering the relation between the fracture
properties and the regression parameters, and according to
the second-order formulae for the statistics of a function of
several random variables (Elishakoff 1983), one can write

i 1 n(SEZ)Z i 7 i
G = =1 — ) G=EGGk (13a)
. SE! . (SEL)2  C*(SE')?
SEL, = —, = ¢ A (13b)
E*A2 ¢ A2 A%

in which A, and C; are assumed to be statistically independ-

ent,1 + n(SEZ)i /A? = 1, n represents the number of the data
points, and, again, i = 1 for method 1 and i = 2 for method
2. The results are reported in Table 4 along with the values
of the coefficient of determination (denoted by R?) and the
root-mean-squared error (RMSE) of the estimate based on
the errors of prediction, both of which characterize the accu-
racy of the fit.

@ Springer

By comparing the fitting results of method 1 and 2, one
can clearly see that a better fitting of the experimental data
was obtained by means of method 1. In particular, one can
see that the RMSE values are almost one order of magnitude
smaller for method 1 than for method 2. Given that the ran-
dom errors in measurement and regression due to material
heterogeneity and other random factors are the same in these
two methods, the greater fitting errors for method 2 must be
attributed to the fact that it fails to incorporate the effect of
the machining errors, which occurred in the notch prepara-
tion processes. The machining errors propagate eventually
to the calculations of g and g’ at a fixed designated «,. This
can be also shown by comparing the fitting results of the
specimens with different configurations. Indeed, the results
show that larger notch-machining errors (see MAPE,, values
in Table 2) correspond to greater fitting errors (see R and
RMSE values in Table 4). Method 1 does not suffer from
the machining errors, because the geometrical similarity of
the specimens is not required. Table 4 shows also that SE ;
is about two orders of magnitude larger than SE;_ in all the
cases. This demonstrates that c; is more susceptible to errors
compared to Gy, under the error normality assumption.
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Fig.9 Linear regression analysis of the experimental nominal strength data relevant to various specimen sizes based on method 1 (see Eq. 9) for

a arrester, b divider, and ¢ short-transverse configurations

Further discussions are based on the fitting results of
method 1, since it provided more accurate estimates of the
fracture properties of the material.

4.4 Size Effect on the Nominal Strength

The experimental data on the nominal strength are reported
in Fig. 11 where the normalized nominal strength, oy, /0y,
is plotted as a function of the brittleness number, § = D/D,,,
with a double logarithmic scale. Since the brittleness num-
ber accounts for both size effect, through D, and geometry
effect, through D, (see Sect. 2.1), Fig. 11 allows one to com-
pare the different configurations (notch orientations with
respect to the shale plane of isotropy).

As one can see, the experimental data agree well with
Bazant’s SEL regardless of the configuration. The SEL pro-
vides a smooth transition from the strength criterion char-
acterized by a horizontal asymptote for § — 0, in which no
size effect on nominal strength is expected (ductile behav-
ior), to LEFM characterized by an inclined asymptote of
slope — 1/2 for f — oo (brittle behavior). Note that the
larger the brittleness number f, the closer the correspond-
ing structure is to the LEFM asymptote. Hence, the term
brittleness must be understood here as the proximity to the
LEFM scaling.

Instead, quasi-brittle behavior occurs for f§ values in the
transition zone typically identified as 0.1 < f < 10. The g
values for all the investigated specimens in this work fall
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Fig. 10 Linear regression analysis of the experimental nominal strength data relevant to various specimen sizes based on method 2 (see Eq. 10)
for a arrester, b divider, and ¢ short-transverse configurations

Table 4 Calculated fracture
properties based on the size
effect method

Method ~ Type R RMSE G.(N/m)  SE4 c;(mm)  SE,

1 Arrester 0.861 0.000827  29.0 000440  0.731 0.492
1 Divider 0919  0.000355 379 0.00424 299 0.452
1 Short-Tran. 0939  0.000534 4438 0.00430 1.23 0.340
2 Arrester 0.656  0.00512 35.1 000962  0.194 1.02

2 Divider 0775  0.00342 31.6 0.00644  1.68 0.734
2 Short-Tran. 0981  0.00116 537 0.00285 1.86 0.203

within the range of 0.4—6.8, which are in the transition zone,
as shown in Fig. 11. Therefore, the fracture behavior of shale
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must be regarded as quasi-brittle, and neither a strength cri-
terion nor LEFM can be used for its description.
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Fig. 11 Comparison of experimental data for all the configurations
with BaZant’s SEL. The nominal strengths oy, are normalized by o,
and plotted against the brittleness number f = D/D,, on a double log-
arithmic scale

4.5 Size Effect on the Apparent Fracture Toughness

The term fracture toughness is widely used in the literature
for both laboratory and field studies with implicit reference
to LEFM. However, as we have discussed in this paper, there
is plenty of confusion between fracture toughness as an
unique material characteristic, which does not depend on the
testing method and the specimen size, and the apparent frac-
ture toughness as a “structural” property, which, however,
is measured with reference to a specific specimen size and
a specific geometry. The confusion can be clarified through
the study of its size and geometry dependency similar to
the discussion in Bazant et al. (1991). As previously done
in this paper, it is convenient to denote the apparent fracture
toughness calculated using LEFM by K., and to denote the
fracture toughness of the material by K.

The normalized apparent fracture toughness of the
investigated specimens, K , /Kj., can be plotted against the
corresponding brittleness number, §, as shown in Fig. 12.
The value of K, was calculated according to Eq. (1) by
setting oy = oy,. and K. was calculated as K|, = \/E*G..
With the values of Gy, reported in Table 4, one has K. =
0.912, 1.20, and 0.917 MPa\/B for the arrester, divider,
and short-transverse configurations, respectively. It can be
seen from Fig. 12 that, for the specimens with a larger brit-
tleness number, a greater apparent fracture toughness was
obtained. Specifically, for geometrically scaled specimens
of the same type, Kj , increases with the brittleness number
or, equivalently, the specimen size D. This observation is in
agreement with the fracture tests on different types of rocks
available in the literature (Bocca et al. 1989; Bazant and
Kazemi 1990a; BaZant et al. 1991; Ayatollahi and Akbar-
doost 2014; Kataoka and Obara 2015).
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Fig. 12 Variation of normalized apparent fracture toughness Ki., /K.
as a function of the brittleness number # on a a linear scale and b a
double logarithmic scale. The fracture toughness of the material K,
can be approximated by K., (i.e., Kj.o & Kj.) only when g is suffi-
ciently large (f > 10)

The variation of Kj_, as a function of § can be predicted
also by the SEL. Substituting Egs. (8) and (4) into Eq. (1)
with oy = oy, and Kj, = 1/E*G,, one obtain

KICA _ ﬂ
K. \1+p 14

Equation 14 is also plotted as a solid line in Fig. 12. The
agreement between the predicted trend and the experimental
data is excellent. The ratio of K|, to Kj. gradually increases
as f increases and eventually converges to the asymptotic
value 1 as f§ — oo. In other words, unless the tested speci-
men is sufficiently large, the fracture toughness of the mate-
rial cannot be approximated by the apparent one. In prac-
tice, § > 10 is required to apply classic LEFM and thus to
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approximate K, by K ,. For the shale material tested in this
paper, specimens with D > 50 mm for the arrester, D > 125
mm for the divider, and D > 75 mm for the short-transverse
are required for a reasonable approximation. It is worth
observing that these values depend on the intrinsic charac-
teristic size Dy, (see Sect. 2.1), which, in turn, depends on the
internal structure and heterogeneity of the material. Hence,
in general, the correct minimum specimen size cannot be
known a priori and its identification requires size effect tests.

4.6 Anisotropy of Fracture Properties

The presented results show that the Marcellus shale frac-
ture properties are significantly anisotropic. Anisotropy of
fracture properties has to be considered to determine crack
deflection under complex loading, e.g., in hydraulic fractur-
ing (Zeng and Wei 2017; Gao et al. 2017; Li et al. 2018a;
Zia et al. 2018; Zeng et al. 2018). The previous studies
(Schmidt 1977; Chandler et al. 2016) showed that the high-
est value of fracture toughness was obtained from divider
specimens and the lowest one from short-transverse, i.e.,
divider > arrester > short-transverse. A similar conclusion
can be drawn from the K;,, measurements reported in this
work, as listed in Table 3, for the large- and medium-sized
specimens. However, this conclusion may be misleading,
since the comparison was conducted based on the apparent
properties measured with specific specimen size and geom-
etry rather that the “true” properties of materials. In this
sense, it is more meaningful to compare the fracture tough-
ness calculated from the size effect tests with the corrections
to the size and geometry effects. For the reported K|, values,
one can see that the divider specimens exhibited the high-
est resistance to mode I fracture, while the values for the
arrester and short-transverse configurations are similar, i.e.,
divider >> short-transverse = arrester. In terms of fracture
energy, the anisotropy of the elastic properties needs to be
taken into account also considering the relation between Gy,
and K as shown in Eq. (3). From the calculated Gy, reported
in Table 4, one can find that short-transverse > divider >
arrester.

Another important characteristic relevant to the fracture
behavior of quasi-brittle materials is the FPZ length, which
can be quantified by ¢; (BaZant and Planas 1997), and it
is strongly related to brittleness of the material. Consider-
ing that #, which is a measure of “structural” brittleness, is
proportional to 1 /¢, a material with a smaller ¢; tends to be
more brittle, and vice versa. Indeed, for c; = 0, Dy, — oo and
the behavior is governed by LEFM.

As shown in Table 4, the arrester specimens exhibit the
shortest FPZ length, while the divider the longest. As a con-
sequence, relatively more brittle behavior is expected for
the arrester configuration given the same size and geometry.
This conclusion agrees with the observation by Chandler
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et al. (2016) that the arrester specimens of Mancos shale
exhibited less inelasticity compared to the other ones,
and the fracture tests on Anvil Point oil shale conducted
by Schmidt (1977) which showed that a loss of stability
occurred only for the tests on the arrester configuration.

5 Comparison with the Cohesive Crack
Model

As discussed in Sect. 2.2, there exists a certain optimal size
range in which the size effect method gives results that are
fully consistent with the cohesive crack model. This aspect,
often overlooked in the literature, is important for practical
applications, since numerical simulations of fracture propa-
gation in rocks are often performed with the cohesive crack
model with fracturing parameters identified in laboratory
tests.

All the experimental data obtained in this paper are plot-
ted in Fig. 13 with reference to the normalized size X = D
and the normalized strength variable Y = (fI'O'Nu)Z/g(’).
The plot also shows the corresponding normalized SEL
(Y = X +0.44) when G, = G;. As one can see, the data
points correspond well to the straight line and are, for the
most part, in the interval 0.2 < D < 2. Only one set of
points, the one relevant to the largest size specimens tested
under the arrester configuration, have D>2. However, even
in this case, the data points do not deviate from the SEL
calculated with G;. This is an indication that the cohesive
crack law for shale is most likely linear all the ways to the
complete separation.

For further verification that the fracture properties
calculated from the size effect tests are appropriate to be
used as parameters of the cohesive crack model, numeri-
cal simulations were performed on selected specimens of

4.5
4
35
8
~ 3
P
§ 2.5
L —SEL
[riy
~ 15 < Arrester
1 O Divider
0.5 A Short-Transverse
0 1 L L 1
0 1 2 3 4
. ,
D = goD/gply

Fig. 13 Comparison of all size effect data with BaZant’s SEL in a par-
ametric space in which BaZant’s SEL is a straight line Y = X + 0.44
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increasing sizes with the standard finite-element (FE) tech-
nique (ABAQUS 2013). The material outside the notch of a
simulated specimen was modeled by standard isoparametric
quadratic elements and with transversely isotropic elastic
constitutive equations characterized by the elastic param-
eters reported in Table 1. The crack line was modeled by
cohesive connections with negligibly small interface thick-
ness and governed by a linear cohesive law. The values of the
fracture parameters were taken from the size effect results
obtained with method 1 (see Table 4). The tensile strength
was estimated on the basis of the formula f/ = (E*G;/1,)"/?
(see Sect. 2.2) which gives 22 MPa, 16 MPa, and 17 MPa,
for the arrester, divider, and short-transverse configuration,
respectively. It is worth mentioning that these values tend
to be higher than the tensile strength measured with Brazil-
ian split-cylinder tests (Li et al. 2016; Jin et al. 2018). This
discrepancy has already been investigated by Cusatis and
Schauffert (2009) who attributed it to an initial short plateau
in the real cohesive law which is neglected by the linear
cohesive law. They also verified that the tensile strength
estimated from the size effect law is the correct one to use
in cohesive crack simulations for large enough specimens
(D >02).

Figure 14 shows a typical FE mesh used in the calcula-
tions. The notch tip was simulated as semi-circular to avoid
stress singularities that are inconsistent with the cohesive
crack model, and the notch width was taken as 0.4 mm and
kept constant for all sizes. This geometrical representation
of the notch is the same as the one adopted by Cusatis and
Schauffert (2009) who extensively studied the effect of the

Fig. 14 Typical finite-element
mesh for three-point-bending
simulations. The notch width

is 0.4 mm for all the simulated
specimens, and the element size
ahead of the notch tip ranges
from 0.05 to 0.2 mm

T
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stress concentration at the notch tip on the cohesive crack
simulation of size effect.

The element size h, ahead of the notch tip was selected
within the relatively small range of 0.05-0.2 mm (about
1/10-1/5 of the FPZ length estimated as 2¢;) and was not
scaled upward with the specimen size to ensure accurate
calculation of the stress concentration and accurate resolu-
tion of the FPZ for all specimen sizes.

Table 5 reports the numerically calculated peak loads
relevant to the investigated specimens along with the cor-
responding experimental value and the prediction error. One
can see that, for all investigated specimens, the numerical
predictions agree well with the experiments. This confirms
once more that the size effect method does provide frac-
ture parameters that are consistent with the cohesive crack
model. In addition, the calculated cohesive stress at the
notch tip corresponding to the peak load of the large speci-
mens of various notch configurations was found to be close
to zero. This validates the assumption of the fully developed
FPZ as discussed in Sect. 2 and suggests that the adoption
of the linear cohesive law is appropriate for the investigated
shale specimens.

The simulated load—displacement curves are shown in
Fig. 15. All the curves feature a steep initial post-peak,
which in several of the simulations is basically vertical. With
these specimen responses and if one accounts for the inevita-
ble deformability of the test apparatus, the actually recorded
load displacement curves would feature a snap-back behav-
ior which is unstable even in displacement control (Wendner
et al. 2015). This is consistent with the experimental results

Table 5 Comparison between

; . Type Size Specimen no. Peak Load
experimental and numerical
peak loads of the selected Experimental (N) Numerical (N) Error (%)
specimens
Arrester Large A-L-2 416.60 451.05 8.27
Medium A-M-2 232.78 236.03 1.40
Small A-S-2 159.70 178.39 11.70
Divider Large D-L-1 498.03 482.04 3.21
Medium D-M-1 293.00 311.69 6.38
Small D-S-1 173.31 190.40 9.86
Short-transverse Large ST-L-3 481.68 510.93 6.07
Medium ST-M-3 292.47 312.99 7.01
Small ST-S-3 194.61 205.99 5.85
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Fig. 15 Numerical load versus displacement curves for the different sizes of the selected a arrester, b divider, and ¢ short-transverse configura-

tions

(see Fig. 7), in which (1) the initial slope of the load—dis-
placement curve is smaller than the simulated one, because it
includes the deformability of the entire system; (2) it was not
possible to record the post-peak, because all the specimens
failed suddenly at the peak load.

6 Conclusions

In this study, size effect tests were conducted on various
three-point-bending (TPB) specimens of increasing size and
different notch configuration to obtain the fracture proper-
ties of Marcellus shale in three principal orientations. The
following conclusions can be drawn:

1. The size effect method provides an indirect way of meas-

uring the fracture energy, the fracture toughness, and the
length of the effective fracture process zone by means

@ Springer

of measurements of the peak loads of specimens with
varying sizes and the elastic properties of the material.
According to this approach, the fracture energy, Gy, of
the investigated Marcellus shale was identified to range
from 29.0 to 44.8 N/m depending on the notch orienta-
tion; the fracture toughness, K, was identified to range
from 0.912 to 1.20 MPay/m; and the effective fracture
process zone length, ¢;, was identified to range from
0.731 to 2.99 mm.

2. Significant anisotropy in the obtained fracture tough-

ness, fracture energy, and effective FPZ length was
observed.

3. The size effect law (SEL) proposed by Bazant accounts

for the effects of both specimen size and geometry. The
geometry dependence allows one to account for the
effect of machining errors in the specimen preparation.
This leads to a fitting of experimental data that exhibit
less scatter and reduced errors.
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4. The brittleness number, f, can be used to quantify the
brittleness of the investigated specimens, which not only
depends on the material characteristics but also on the
specimen size and geometry.

5. The experimental investigation shows remarkable size
effect on the measured nominal strength and apparent
fracture toughness. This aspect is often overlooked in
the literature on shale fracture mechanics. Neither the
strength-based criterion nor classic linear elastic frac-
ture mechanics (LEFM) can predict the size effect data
shown in this paper. On the contrary, the nonlinear frac-
ture mechanics of the quasi-brittle type is applicable for
fracture characterization of shale in laboratory tests and
permits one to extrapolate the measured values to the
values that may be used in field applications.

6. The previously demonstrated relationship between the
fracture parameters of Bazant’s SEL and the fracture
parameters of the widely used cohesive crack model
showed that the fracture energy identified with the size
effect method, G, corresponds to the initial fracture
energy, Gy, of the cohesive crack model. The consistency
between Gy, and G; was verified numerically by means of
numerical simulations. The numerically calculated peak
loads using G; = G, matched the experimental measure-
ments very well.

7. The size effect results suggest also that, for the investi-
gated Marcellus shale, the total fracture energy, Gg, is
close to the initial value, G;. This means that the cohe-
sive law for shale is basically linear and does not feature
any significant nonlinear “tail”.
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