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Abstract
The fracture characterization of shale rocks requires understanding the scaling of the measured properties to enable the 
extrapolation from small-scale laboratory tests to field applications. In this study, the fracture properties of Marcellus shale 
were obtained through size effect tests. Fracture tests were conducted on three-point-bending specimens with increasing 
size. The test results show that the nominal strength decreases with increasing specimen size and it can be fitted well by 
Bažant’s size effect law. This demonstrates that shale fracture behavior deviates from classical linear elastic fracture mechan-
ics (LEFM), and it has quasi-brittle characteristics. This implies, in turn, that the fracture toughness (or fracture energy) 
computed according to LEFM is size-dependent and, in general, cannot be considered a material property. Furthermore, the 
size effect analysis allows one to accurately identify the quasi-brittle fracture properties, namely the initial fracture energy 
and the effective fracture process zone length. A significant anisotropy was observed in the fracture properties determined 
with three principal notch orientations.
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E∗  Effective elastic modulus
g, g′  Dimensionless energy release rate and its 

derivative
g0, g

′
0
  Dimensionless energy release rate at �0 and its 

derivative value
k  Dimensionless stress intensity factor
�  Dimensionless function
�0  A parameter in size effect law
MAPEa0

  Notch-machining error
R2  Coefficient of determination
RMSE  Root-mean-squared error
SD  Standard deviation
SE  Standard error

1 Introduction

In recent years, the study of different aspects of shale rocks 
has surged as a result of the vital role that they play in 
various energy-related applications including oil and gas 
production, subsurface carbon dioxide sequestration, and 
nuclear waste disposal. Understanding the fundamental 
mechanical processes in shale formations, as well as their 
interaction with the in-situ stress field, pore pressure, and 
hydraulic loading, is essential to promote industrial inno-
vations such as the development of the hydraulic fractur-
ing techniques. In particular, of critical importance is the 
experimental and computational study of crack initiation 
and propagation as well as the identification of the fracture 
properties required to apply fracture mechanics theories and 
numerical simulation tools to field applications [see, e.g., 
Li et al. (2016, 2017, 2018b), Chau et al. (2016), Zeng et al. 
(2018), Zia et al. (2018)].

Fracture characterization of shale is usually based on lin-
ear elastic fracture mechanics (LEFM). The LEFM mode I 
fracture toughness has been used widely for the characteriza-
tion of intact rock with respect to its resistance to crack prop-
agation. Schmidt (1977) investigated the fracture toughness 
of Anvil Point oil shale using notched three-point-bending 
specimens with varying notch orientations with respect to 
the rock bedding. The measured fracture toughness values, 
varying from 0.3 to 1.1 MPa

√

m , were found to decrease 
with an increase in kerogen content and were highest for 
notches orthogonal to the bedding and lowest for notches 
parallel to the bedding. Chong et al. (1987) proposed a semi-
circular bend (SCB) specimen subjected to three-point-bend-
ing loading for fracture toughness measurements of Colo-
rado oil shale. The obtained values for notches orthogonal 
to the bedding were determined using a stress intensity fac-
tor method, a compliance method, and a J-integral based 
method and were reported to vary from 0.88 to 1.0 MPa

√

m . 
In contrast to Schmidt’s observation (Schmidt 1977), it was 

found that the static fracture toughness of organic-rich oil 
shale is higher than that of lean material.

By means of a similar test configuration, Sierra et al. 
(2010) reported the fracture toughness of Woodford shale 
to be in the range of 0.74–1.17 MPa

√

m and to be related 
to the clay content of the samples. Lee et al. (2015) per-
formed SCB tests on Marcellus shale core containing cal-
cite-filled natural fractures (veins). These tests showed that 
the presence of calcite-filled veins has a significant effect 
on the crack propagation path. For the specimens without 
veins, the fracture toughness was reported to vary from 
0.18 to 0.73 MPa

√

m depending on the specimen bedding 
plane orientations. Chandler et al. (2016) reported fracture 
toughness measurements on Mancos shale using a modi-
fied short-rod methodology. The highest fracture toughness 
value, 0.72 MPa

√

m was obtained for notches normal to 
the bedding, and the lowest one, 0.21 MPa

√

m for notches 
aligned with the bedding. In addition to the conventional 
fracture tests, micro-scale scratch tests (Hubler and Ulm 
2016; Akono and Kabir 2016; Kabir et al. 2017) were also 
utilized for the fracture characterization of various types of 
shale rocks.

In addition to the aforementioned dependence on the 
organic content of samples, several studies have shown that 
the laboratory-determined fracture characteristics of shale 
and shale-like rocks are influenced by the water content 
(Lim et al. 1994; Chen et al. 2017; Yan et al. 2017) and the 
loading rate (Kabir et al. 2017). Although important, these 
aspects are beyond the scope of the study presented in this 
paper in which only dry specimens and quasi-static loading 
conditions were considered.

Despite the abundance of shale fracture experimental 
data, only a few studies focused on the size and geometry 
dependence of shale fracture properties measured in labora-
tory tests. Wang et al. (2017) measured the fracture tough-
ness of a shale outcrop in Chongqing, China, using SCB and 
cracked chevron notched Brazilian disk (CCNBD) speci-
mens, and noticed that the obtained toughness values from 
these two methods were different.

The measured toughness of various geomaterials was 
observed to vary with the shape and size of the investigated 
specimens (Ingraffea et al. 1984; Kataoka and Obara 2015; 
Barpi et al. 2012; Bocca et al. 1989; Khan and Al-Shayea 
2000; Wang and Hu 2017; Ayatollahi and Akbardoost 2014). 
For instance, Kataoka and Obara (2015) observed that the 
fracture toughness of Kimachi sandstone increased as the 
radius of the SCB specimens increases from 12.5 to 150 
mm, and converged to a constant value for a radius larger 
than 70 mm.

Furthermore, it has been known for some time that labo-
ratory measurements of LEFM fracture toughness under-
estimate the in-situ toughness determined from field data 
(Chong et al. 1989; Chong and Smith 1984).
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The size and shape dependence of the LEFM fracture prop-
erties suggests that shale has a quasi-brittle fracture behavior 
characterized by a non-negligible size of the fracture process 
zone (FPZ) (Bažant 1984). The FPZ is a volume of material 
ahead of the crack tip in which (1) the material experiences 
damage and softening; (2) the stress field is nonuniform, and 
the magnitude of the stresses decreases with increasing defor-
mation. This violates the LEFM assumption that the energy 
dissipation associated with fracture occurs in one mathemati-
cal point. Hence, nonlinear fracture mechanics approaches 
must be adopted for the correct analysis of fracture phenom-
ena in quasi-brittle materials in general and shale rocks in 
particular.

2  Fracture Mechanics and Size Effect 
of Anisotropic Quasi‑brittle Materials

This section reviews two fracture mechanics approaches, 
namely the equivalent linear elastic fracture mechanics and the 
cohesive crack model, which have been adopted extensively 
in the literature for the analysis of quasi-brittle fracture and, 
more specifically, for the interpretation of size effect tests on 
quasi-brittle materials. The discussion is limited to the case 
of orthotropic material symmetry, which includes the case of 
shale.

2.1  Equivalent Linear Elastic Fracture Mechanics

According to Bao et al. (1992), the Mode I stress intensity fac-
tor, KI , of a specimen with crack length a subject to bending 
(see Fig. 1) and made of a orthotropic material can be written 
as follows:

where �N is the nominal stress, k(�, �,�) and �(�, �,�) are 
dimensionless functions, � = a∕D is the dimensionless crack 
length, D = specimen depth, � = �1∕4S∕D , and S = speci-
men span. � = Ex∕Ey , � = 0.5(ExEy)

1∕2∕Gxy − (�xy�yx)
1∕2 are 

dimensionless elastic constants and Ex , Ey , �xy , �yx , Gxy are 

(1)KI = �N

√

Dk(�, �,�) = �N�(�, �,�)
√

�D�,

the elastic constants defined in the Cartesian coordinate sys-
tem depicted in Fig. 1. For a three-point-bending test, the 
nominal stress can be defined as follows:

where P = applied load and t = specimen thickness.
Furthermore, under plane stress conditions, the energy 

release rate, G, can be calculated as follows:

where

and

Equation (3) represents Irwin’s relation for orthotropic 
materials under plane stress and is similar to the one for 
isotropic materials except that the effective elastic modulus, 
E∗ , is used as opposed to the isotropic modulus of elastic-
ity. Equation (3) was first proposed by Sih et al. (1965) and 
has been adopted widely in the literature [see, e.g., (Bao 
et al. 1992; Bažant et al. 1996; Kim et al. 2013; Salviato 
et al. 2016b)], but its validity is limited to mode I fracture 
whose propagation is aligned with the axes of symmetry of 
the material. Indeed, Eq. (3) can be shown to be a particular 
case of the generalized formulation proposed by Laubie and 
Ulm (2014a, b), which accounts for generic fracture modes 
and fracture orientations.

On the basis of the equivalent LEFM, the peak load condi-
tion for “positive” specimen geometries (i.e., the ones char-
acterized by g�(𝛼) > 0 ) can be written (Bažant 1984; Bažant 
and Planas 1997) with reference to an equivalent crack length, 
a = a0 + cf ( � = �0 + cf∕D ), as:

where �Nu is the nominal stress at the peak load (nominal 
strength), a0 is the notch length of the notched specimen that 
is equal to the initial crack length before fracture propagation 
occurs, �0 = a0∕D is the dimensionless notch length (equal 
to the initial value of the dimensionless crack length � ), GIc 
and cf are the effective LEFM fracture energy and the effec-
tive FPZ length, respectively, both assumed to be material 
properties. Note that the term notch is used interchange-
ably with the initial crack in this work consistently to the 
available LEFM literature, because the notches are assumed 
to be sharp (with zero radius of curvature at the tip). For 

(2)�N = 1.5
S

D

P

Dt
,

(3)G =
K2

I

E∗
=

�2

N
D

E∗
g(�, �,�),

(4)g(�, �,�) = k(�, �,�)2 = ���(�,� , �)2

(5)E∗ =

√

2ExEy�
1∕2

1 + �
.

(6)G
(

�0 + cf∕D
)

=
�2

Nu
D

E∗
g(�0 + cf∕D) = GIc,

xz

y a

L

S

D

t

Fig. 1  Geometry of the three-point-bending test setup, in which L, D, 
and t represent specimen length, depth, and thickness, respectively; S 
is the span; a is the crack length
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orthotropic materials, GIc and cf have, in general, different 
values for different fracture orientations. The fracture energy 
can be related to the fracture toughness, KIc , through Irwin’s 
relation: GIc = K2

Ic
∕E∗ . In Eq. (6) and in what follows, the 

direct dependence of g(⋅) on � and � is dropped for simplic-
ity of notation.

The concept of effective FPZ is introduced to account 
for the non-negligible size of the actual FPZ, as illustrated 
in Fig. 2. It is worth pointing out that the FPZ is assumed 
to be fully developed at peak load, which means that the 
stress profile varies from zero at the notch tip to the tensile 
strength at the tip of the FPZ (see Fig. 2). In addition, (1) 
the length of fully developed FPZ length, �FPZ , is assumed 
to be a material property and, as such, size-independent; 
(2) cf is assumed to be proportional to �FPZ , and the ratio 
cf∕�FPZ ≈ 0.5 is often reported in the literature (Bažant and 
Planas 1997).

By approximating g(�0 + cf∕D) with only the linear term 
of its Taylor series expansion at �0 , one obtains

where g0 = g(�0) and g�
0
= g�(�0) are size-independent only 

in the case of geometrically similar specimens, i.e., for � = 
constant and � = constant.

Equation 7 is known as Bažant’s size effect law (SEL) and 
it can be also recast in the following form:

where �0 = (E∗GIc∕(cfg
�
0
))1∕2 ; � = D∕D0 , also called brit-

tleness number; D0 = cfg
�
0
∕g0 . It is interesting to note that 

Eq. (8) incorporates a characteristic size D0 which is usually 

(7)�Nu =

√

E∗GIc

Dg0 + cfg
�
0

,

(8)�Nu =
�0

√

1 + �
,

called the transitional size and is the key to describe the tran-
sition from ductile to brittle behavior with increasing size.

2.2  Cohesive Crack Model

Another approach widely used to account for the finite 
size of the FPZ is the cohesive crack model pioneered by 
Dugdale (1960) and Barenblatt (1962) for ductile materials 
with the name “cohesive zone model” and by Hillerborg 
et al. (1976) for concrete with the name “fictitious crack 
model”. According to the cohesive crack model, the FPZ is 
simulated as a crack that is able to transfer stress across the 
crack plane. For a mode I fracture, the cohesive tractions 
are assumed to be orthogonal to the crack plane and to be 
governed by the so-called cohesive law, �(�) , consisting of 
a decreasing function of the crack opening, � , as depicted in 
Fig. 3. Depending upon the material of interest, the cohe-
sive crack law can be formulated with various functions. 
However, in most cases, such functions depend on three key 
parameters (see Fig. 3): the tensile strength, f ′

t
 , character-

izing crack initiation; the total fracture energy, GF , defined 
as the area under the cohesive law; the initial fracture energy, 
Gf , defined as the area under the initial, almost linear portion 
of the cohesive law (see Fig. 3). The ratio GF∕Gf depends on 
the functional form describing the cohesive law: for exam-
ple, for a linear function GF∕Gf = 1 and for an exponential 
function GF∕Gf = 2.

For a linear cohesive law, the cohesive crack model pre-
dicts the nominal strength of notched specimens to be con-
sistent with Bažant’s SEL (Eq. 7) for GIc = Gf = GF and 
D̂ > 0.2 , where D̂ = g0D∕(g

�
0
l1) is normalized size, and 

l1 = E∗Gf∕f
�2
t

 is Hillerborg’s characteristic length (Hiller-
borg et al. 1976). Cedolin and Cusatis (2008) and Cusatis 
and Schauffert (2009) showed that the condition D̂ > 0.2 
ensures the cohesive stress at the notch tip to be close to zero 
and, consequently, the FPZ to be fully developed. Instead, in 
the case of a nonlinear cohesive law, Cusatis and Schauffert 

a0

a0

cf

ℓFPZ

Notch FPZ

Equivalent LEFM crack

δ

σ

Fig. 2  Fully developed fracture process zone (FPZ) and equivalent 
LEFM crack length at peak load. � represents cohesive stress as a 
function of crack opening, � ; a0 is the notch length (equal to the ini-
tial crack length); �FPZ represents the FPZ length; cf represents the 
so-called effective FPZ length

Crack opening, δ 

C
oh

es
iv

e 
st

re
ss

, σ
 

Gf

GF

ft'
Gf

GF+

Fig. 3  Typical cohesive crack law characterized by the tensile 
strength, f ′

t
 ; the initial fracture energy, Gf ; total fracture energy, GF
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(2009) showed that the predictions of the cohesive crack 
model agree with Eq. (7) for GIc = Gf and 0.2 ≤ D̂ ≤ 2 and 
for GIc = GF and D̂ > 10 . The former conditions correspond 
to cohesive stress values in the initial portion of the cohe-
sive law, whereas the latter conditions correspond to a fully 
developed FPZ. Finally, still for a nonlinear cohesive law, 
the cohesive crack model and the effective LEFM predic-
tions deviate significantly one from the other for 2 ≤ D̂ ≤ 10 
(Cedolin and Cusatis 2008; Cusatis and Schauffert 2009). 
In this size range, the cohesive stresses are not within the 
initial portion of the cohesive law, and the FPZ is not fully 
developed.

Based on these results, Cusatis and Schauffert (2009) 
concluded that for typical laboratory size specimens, the 
FPZ cannot be fully developed at peak load and size effect 
tests cannot be used to identify GF unless the material is 
characterized by a linear cohesive law. On the contrary, size 
effect results on typical laboratory specimens of certain 
sizes can be fitted by Eq. (7) to identify Gf regardless of the 
shape of the cohesive law. This is known in the literature as 
the “size effect method”, and it was proposed originally by 
Bažant for concrete (Bažant 1984; Bažant and Pfeiffer 1987; 
Bažant and Planas 1997).

Furthermore, for the size range in which the cohesive 
crack model and the equivalent LEFM with GIc = Gf pro-
vide similar results, Cusatis and Schauffert (2009) showed 
that cf ≈ 0.44l1 . Using this relationship, it is possible to esti-
mate the tensile strength by means of size effect tests as 
f �
t
= (0.44E∗Gf∕cf)

1∕2.
The size effect method has been used by many authors 

for concrete and mortar (Bažant and Pfeiffer 1987; Bažant 
and Kazemi 1990a; Cedolin and Cusatis 2008), polymer 
composites (Bažant et al. 1996; Salviato et al. 2016b; Mef-
ford et al. 2017), ceramics (Bažant and Kazemi 1990b), 
wood (Aicher 2010), rocks such as limestone (Bažant et al. 
1991) and granite (Bažant and Kazemi 1990a), and some 
biomaterials (Kim et al. 2013), just to mention a few. A 
similar approach was proposed by Akono (2016), Hubler 

and Ulm (2016) for the interpretation of scratch tests at the 
nano- and micro-scale.

In the work presented in this paper, the size effect 
method was applied to the characterization of the fracture 
parameters of Marcellus shale.

3  Experiments

3.1  Material Characterization

The shale material used in the current study was taken 
from outcrops of the Marcellus formation. The blocks were 
black and compact featuring alternating light and dark lay-
ers, as illustrated in Fig. 4a. Visual inspection showed that 
the shale block was free of macroscopic surface cracks 
and voids. The sample could be considered to be dry as 
the water content by mass measured by following ASTM 
D2216 was less than 0.2%. The average mass density was 
2558 kg/m3 . The relevant mineralogy data can be found 
in Akono and Kabir (2018).

A basic characterization of the mechanical properties 
was carried out and included seismic velocity measure-
ments, direct tension, uniaxial compression, and splitting 
tests, as reported in Jin et al. (2018). Material anisotropy 
was observed for seismic velocity, other elastic properties, 
and strength under tensile and compressive loading condi-
tions. The test results revealed that the elastic behavior of 
Marcellus shale can be idealized as transversely isotropic, 
with the plane of isotropy coinciding with the plane of 
sedimentary layering, as shown in Fig. 4b. The relevant 
five independent elastic constants, E, E′ , � , �′ , and G′ are 
listed in Table 1. E and � are Young’s modulus and Pois-
son’s ratio, respectively, in the plane of isotropy; E′ and �′ 
are Young’s modulus and Poisson’s ratio, respectively, in 
the direction perpendicular to the isotropy plane; G′ is the 
out-of-plane shear modulus.

Fig. 4  a Shale block from 
Marcellus outcrop. b Transverse 
isotropy model and correspond-
ing elastic constants

100 mm

Direction of bedding

bedding/lamination

(a)

plane of isotropy

E', , G'
Asix of symmetry

E, 

(b)
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3.2  Specimen Preparation

The large shale block was first cut into small pieces using 
a table tile saw with a diamond blade. A TechCut 5 TM 
precision sectioning machine was used to prepare three-
point-bending (TPB) specimens according to the geometry 
reported in Fig. 1. A diamond wafering blade with thickness 
of 0.36 mm was used to machine the notches to a target 
dimensionless depth �0 = 0.28 . Following the pioneering 
work by Schmidt (1977) and Chong et al. (1987), the speci-
mens were made in such a way that the notches were aligned 
with one of the three principal orientations with respect to 
the isotropy plane, known as arrester, divider, and short-
transverse, as depicted in Fig. 5a–c, respectively. To perform 
size effect tests, geometrically similar specimens of three 
sizes (small, medium, and large) were prepared for each 
specimen configuration and with size ratios of 1:2:4. Since 
only two-dimensional (2D) similarity was considered in this 
study, all the specimens had the same thickness. The larger 
specimens were prepared first. Pieces were collected after 
the larger ones broke under three-point-bend loading. To 

reduce machining effort and to minimize the inevitable ran-
dom scatter of material properties due to shale heterogeneity, 
the small- and medium-sized specimens were obtained from 
the collected pieces of the large specimens. Due to the stress 
concentration at the notch tip, the material away from the 
notch that was used to machine the small and medium speci-
mens experienced very low level of stress during the tests of 
the large specimens and, consequently, they were considered 
to be free of any damage from the initial test. Typical TPB 
specimens with varying sizes are shown in Fig. 5d, and the 
detailed specimen dimensions are listed in Table 2.

Table 2 shows a certain variability of the various geo-
metric quantities due to machining inaccuracy. In particu-
lar, the largest machining error can be observed in terms 
of notch length, a0 , which was the shortest dimension to 
machine. To check the degree of violation of the geometric 
similarity condition due to the notch-machining inaccuracy, 
an accurate measurement of the notch length was taken post-
mortem. The values are listed in the fifth column of Table 2. 
The table also reports the notch-machining error, MAPEa0

 , 
which was estimated from the measured and designated val-
ues of �0 by means of the mean absolute percentage error 
(MAPE) calculation. As one can see, the MAPEa0

 is not 
always negligible (as high as 20% ) leading to a violation of 
the geometric similarity condition. The effect of this devia-
tion on the results will be discussed later in this paper. 

3.3  Test Description

The prepared TPB specimens were placed on two supporting 
pins with the support span, S, equal to 74, 37, and 18.5 mm 
for large, medium, and small size, respectively, and were 
loaded vertically under symmetric three-point bending (see 
Fig. 6). The tests were conducted with displacement (stroke) 
control in a closed-loop controlled Mini-Tester with a load 
cell operating in the 889.64 N (200 lb) range. A constant dis-
placement rate of 0.1, 0.05, and 0.025 mm/min was used for 
large, medium, and small specimens, respectively, to ensure 
the same strain rate for all investigated specimens. Each test 
lasted around 5 min to complete. The load-line displacement 
and the applied load were recorded during each test with 
a system acquisition frequency of 1 Hz. In total, 27 tests 
were conducted with three tests for each specimen size and 
configuration.

3.4  Experimental Results

The typical load–displacement curves recorded in the exper-
iments for three sampled specimens (one for each size) are 
shown in Fig. 7. The curves feature an initial stage with 
a gentle slope, followed by a linear segment and a subse-
quent sudden drop of load as soon as the peak value was 
reached. The gentle slope of the initial stage arises from the 

Table 1  Elastic properties of Marcellus shale

Description Symbol (units) Measured value

In-plane modulus E (GPa) 37.7
In-plane Poisson’s ratio � (–) 0.25
Out-of-plane modulus E

′ (GPa) 16.1
Out-of-plane Poisson’s ratio �′ (–) 0.35
Out-of-plane shear modulus G

′ (GPa) 6.9

(a) (b)

(c)

10 mm

(d)

Fig. 5  Sketch of the specimens with three principal notch orienta-
tions: a arrester, b divider, and c short-transverse. d Picture of some 
of the tested specimens of different sizes
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progressive contact between the specimen and the loading 
pins. The pre-peak linear segment indicates that no appar-
ent plastic deformation takes place within the tested shale 
specimens. After reaching the peak load, the load–displace-
ment curves dropped suddenly for all investigated sizes and 
configurations. As a consequence, the specimens failed and 

Table 2  Geometrical specifications of the TPB specimens under study

Type Size Specimen no. Depth, D (mm) Thickness, t 
(mm)

Notch length, 
a
0
 (mm)

Dimensionless 
notch length, �

0
 (–)

Notch-machining 
error, MAPE

a
0
 

(%)

Arrester Large A-L-1 25.20 14.01 7.02 0.279 4.82
A-L-2 24.23 13.45 6.39 0.264
A-L-3 24.47 13.75 7.41 0.303

Medium A-M-1 12.52 13.81 3.47 0.277 13.4
A-M-2 12.13 14.25 4.59 0.378
A-M-3 12.33 13.14 3.59 0.291

Small A-S-1 6.13 13.98 2.16 0.352 20.0
A-S-2 5.98 14.36 2.01 0.336
A-S-3 6.16 12.12 1.97 0.320

Divider Large D-L-1 25.6 12.59 7.16 0.280 5.28
D-L-2 25.52 12.92 7.30 0.286
D-L-3 23.9 13.86 7.60 0.318

Medium D-M-1 12.7 12.86 3.55 0.280 7.64
D-M-2 12.48 13.02 3.05 0.244
D-M-3 11.91 14.42 3.00 0.252

Small D-S-1 6.41 12.70 1.65 0.257 5.47
D-S-2 6.26 13.04 1.78 0.284
D-S-3 6.02 14.14 1.80 0.299

Short-transverse Large ST-L-1 26.12 14.10 7.04 0.270 6.40
ST-L-2 26.2 14.00 6.40 0.244
ST-L-3 25.69 14.40 7.00 0.272

Medium ST-M-1 13.16 14.20 3.63 0.276 2.33
ST-M-2 13.1 14.01 3.66 0.279
ST-M-3 12.72 14.55 3.75 0.295

Small ST-S-1 6.54 14.07 1.91 0.292 4.29
ST-S-2 6.57 14.04 1.73 0.263
ST-S-3 6.44 14.57 1.85 0.287

Test software system

Three-point-
bending fixture

Specimen

Fig. 6  Setup of the loading and data acquisition systems. The loading 
system consists of a load frame, a three-point-bending fixture, and a 
test software; the test data were collected through the test software 0
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Fig. 7  Typical load–displacement curves recorded in the experiments
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split into two pieces right after the peak load. This sudden 
failure is quite typical in this type of tests when the control 
variable is the machine stroke (displacement of the actuator). 
This is because the stroke also includes the deformability of 
the entire loading system, which leads to a load–displace-
ment curve featuring snap-back. This issue was analyzed in 
detail by Hudson et al. (1972), Wendner et al. (2015), and 
Salviato et al. (2016a), among many others. A more gradual 
post-peak behavior could be achieved by conducting the tests 
under crack mouth opening displacement (CMOD) control, 
which, however, requires additional specimen preparation to 
attach a CMOD transducer to the specimens. CMOD control 
was not pursued in this study, because the size effect method 
requires measurements of peak loads only.

Furthermore, it is important to clarify that the brittle 
failure behavior observed in the tests does not provide 
information on the brittleness or quasi-brittleness of the 
material, but it only indicates a loss of stability of the spe-
cific tests in the post-peak regime. Indeed, as mentioned 

above, stability and controllability of a fracture test depend 
not only on the material properties, but also on other fac-
tors such as machine frame stiffness, control loop feedback 
mechanism, controller settings, and specimen geometry 
(Salviato et al. 2016a).

The test results for the notched specimens are summa-
rized in Table 3. The reported nominal strength, �Nu , was 
computed from the peak load with the formula reported 
in Sect. 2.1 (see Eq. 2). The apparent fracture toughness, 
KIcA , and the apparent fracture energy, GIcA , were calcu-
lated from the measured nominal strength according to 
LEFM: GIcA = g0D�

2

Nu
∕E∗ and KIcA = (g0D�

2

Nu
)1∕2 (see 

Eq. 3). The values of mean and standard deviation (SD) 
were calculated on the basis of the three independent tests 
performed for each size and each notch orientation. The 
results show that the apparent fracture properties depend 
not only on the notch orientation due to the effect of mate-
rial anisotropy but also on the specimen size. This is an 
indication that the fracture behavior of Marcellus shale 

Table 3  Results of three-point-bending tests on Marcellus shale specimens

Type Size Specimen no. Peak load P
u
 (N) Nominal 

strength, �
Nu

 
(MPa)

Apparent fracture tough-
ness, K̄

IcA
± SD (MPa

√

m)
Apparent fracture 
energy, Ḡ

IcA
± SD 

(N/m)

Arrester Large A-L-1 503.67 6.28 0.851 ± 0.055 25.344 ± 3.250
A-L-2 416.60 5.86
A-L-3 429.80 5.79

Medium A-M-1 281.00 7.20 0.837 ± 0.143 24.904 ± 8.671
A-M-2 232.78 6.16
A-M-3 348.17 9.67

Small A-S-1 183.02 9.67 0.720 ± 0.093 18.292 ± 4.793
A-S-2 159.70 8.63
A-S-3 135.98 8.20

Divider Large D-L-1 498.03 6.70 0.967 ± 0.045 24.815 ± 2.291
D-L-2 503.39 6.64
D-L-3 413.71 5.80

Medium D-M-1 293.00 7.84 0.852 ± 0.033 19.272 ± 1.482
D-M-2 341.60 9.35
D-M-3 338.65 9.19

Small D-S-1 173.31 9.22 0.675 ± 0.050 12.121 ± 1.810
D-S-2 182.28 9.90
D-S-3 159.32 8.63

Short-Transverse Large ST-L-1 488.98 5.64 0.820 ± 0.043 35.913 ± 3.714
ST-L-2 473.93 5.47
ST-L-3 481.68 5.63

Medium ST-M-1 310.19 7.00 0.768 ± 0.010 31.486 ± 0.819
ST-M-2 309.03 7.13
ST-M-3 292.47 6.90

Small ST-S-1 171.78 7.92 0.642 ± 0.049 22.084 ± 3.437
ST-S-2 177.02 8.11
ST-S-3 194.61 8.94
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deviates from LEFM and must be analyzed with nonlinear 
fracture theories.

4  Size Effect Analysis of the Experimental 
Data

4.1  Fitting of Size Effect Data

The identification of the fracture properties, cf and GIc , can 
be obtained by fitting the experimental nominal strength 
by means of Bažant’s SEL (Eq. 7) through either linear or 
nonlinear regression approaches (Bažant and Li 1996; Tang 
et al. 1996). Although these two approaches are not com-
pletely equivalent, because they imply different weights of 
the data points, Tang et al. (1996) showed that the results 
obtained through the two approaches are the same when the 
number of test specimens increases. In this work, the linear 
approach is preferred and was adopted in this paper because 
of its simplicity. For the linear regression approach, it is 
convenient to write Eq. (7) in the form:

where X1 = g0D∕g
�
0
 ,  Y1 = 1∕g�

0
�2

Nu
 ,  A1 = 1∕(E∗GIc) , 

C1 = cf∕(E
∗GIc) or

where X2 = D , Y2 = �−2
Nu

 , A2 = g0∕(E
∗GIc) , C2

=g
�
0
c
f
∕(E∗

G
Ic
).

Equation (9) is general and can be applied even to non-
similar specimens provided that the correct g0 and g′

0
 are cal-

culated for each individual specimen. On the contrary, Eq. 
(10) can be applied only to geometrically similar specimens 
for which g0 and g′

0
 do not vary from specimen to specimen. 

The fitting of the experimental data with Eq. (9) (or Eq. 10) 
allows one to compute A1 and C1 (or A2 and C2 ), which, in 
turn, permits one to calculate cf and GIc.

As mentioned earlier, the tested specimens are not exactly 
geometrically similar, because the actual geometry of each 
specimen deviates slightly from the designed geometry due 
to machining inaccuracies. The linear regression analysis 
was carried out with two approaches for comparison. The 
first, hereafter referred to as “method 1”, is based on Eq. (9) 
and takes into account the variation in the geometry of the 
specimens; the second, hereafter referred to as “method 2”, 
is based on Eq. (10), instead, and uses the designed geom-
etry of the specimens to compute g0 and g′

0
.

4.2  Calculation of g(�) and g�(�)

The dimensionless energy release rate, g(�) , can be obtained 
by means of Eq. (4) if the function �(�,� , �) is known. Bao 
et al. (1992) proposed formulae to estimate �(⋅) for a family 
of notched bars, which, however, do not include the case 

(9)Y1 = A1X1 + C1,

(10)Y2 = A2X2 + C2,

of TPB specimens. For this reason, the function g(�) was 
calculated numerically by finite-element analysis (FEA) in 
Abaqus Implicit (ABAQUS 2013).

The specimens were modeled with eight-node quadratic 
plane stress quadrilateral elements (CPS8) and the singular-
ity field at the notch tip was modeled through the quarter 
element technique (Barsoum 1974). A linear elastic trans-
versely isotropic constitutive model was used with the mate-
rial properties reported in Table 1. The J-integral approach 
was adopted to estimate the energy release rate G, and the 
corresponding dimensionless energy release rate g was cal-
culated according to Eq. (3). To formulate g as a function of 
� , the simulations were performed with various dimension-
less crack lengths set equal to the notch lengths, � = �0 , with 
values ranging from 0.25 to 0.32 with increments of 0.01.

Following Bažant and Planas (1997) and Guinea et al. 
(1998), the numerical results were interpolated with the fol-
lowing formula:

where p(�) is a fourth-degree polynomial function. The 
interpolation of the numerical results resulted in p(�) =
−8.5776�4 + 7.6463�3 − 0.8044�2 − 0.6373� + 1.7521 for 
the arrester configuration; p(�) = 83.079�4 − 95.591�3+

42.436�2 − 8.5696� + 2.3243 for the divider configuration; 
p(�) = 168.61�4 − 197.05�3 + 87.288�2 − 17.357�+3.0228 
for the short-transverse configuration. Figure 8a–c shows 
the comparison between the numerical results and the func-
tions p(�) . Clearly, the fourth-order polynomial function 
provides a very accurate fit of the numerical results for all 
notch configurations.

Finally, g�(�) can be computed by direct derivation of 
g(�) . One gets

With regard to the values of g and g′ for a specific specimen 
required for the linear regression analysis, � takes the value 
of �0 at the beginning of crack propagation, i.e., g0 = g(�0) 
and g�

0
= g�(�0).

4.3  Identification of Fracture Properties

The linear regression analysis for both method 1 and 
method 2 was conducted by means of the classical least 
square method. The results of the regression analysis as 
well as the experimental data are presented in Fig. 9a–c for 
the arrester, divider, and short-transverse configurations, 
respectively, for method 1; and in Fig. 10a–c, for method 
2. The regression analysis provides a mean estimate of 
slope, Āi , and intercept, C̄i , of the straight line as well as 

(11)g(�) = �
p(�)2

(1 + 2�)2(1 − �)3
,

(12)

g�(�) = (8�2 + 1)
p2(�)

(� − 1)4(2� + 1)3
+ �

2p(�)p�(�)

(1 − �)3(2� + 1)2
.



10 W. Li et al.

1 3

their standard error (SE), SEAi and SECi , where i = 1 for 
method 1 and i = 2 for method 2.

The mean and SE values of the regression parameters 
can then be used to compute mean and SE for the fracture 
properties. Considering the relation between the fracture 
properties and the regression parameters, and according to 
the second-order formulae for the statistics of a function of 
several random variables (Elishakoff 1983), one can write 

 in which Ai and Ci are assumed to be statistically independ-
ent, 1 + n(SEi

A
)i∕Ā2

i
≈ 1 , n represents the number of the data 

points, and, again, i = 1 for method 1 and i = 2 for method 
2. The results are reported in Table 4 along with the values 
of the coefficient of determination (denoted by R2 ) and the 
root-mean-squared error (RMSE) of the estimate based on 
the errors of prediction, both of which characterize the accu-
racy of the fit.

(13a)Ḡi
Ic
=

1

E∗Āi

(

1 +
n(SEi

A
)2

Ā2

i

)

, c̄i
f
= E∗C̄iḠ

i
Ic

(13b)SE
i
GIc

=
SE

i
A

E∗Ā2

i

, SE
i
cf
=

√

√

√

√

(SEi
C
)2

Ā2

i

+
C̄2

i
(SEi

A
)2

Ā4

i

,

By comparing the fitting results of method 1 and 2, one 
can clearly see that a better fitting of the experimental data 
was obtained by means of method 1. In particular, one can 
see that the RMSE values are almost one order of magnitude 
smaller for method 1 than for method 2. Given that the ran-
dom errors in measurement and regression due to material 
heterogeneity and other random factors are the same in these 
two methods, the greater fitting errors for method 2 must be 
attributed to the fact that it fails to incorporate the effect of 
the machining errors, which occurred in the notch prepara-
tion processes. The machining errors propagate eventually 
to the calculations of g and g′ at a fixed designated �0 . This 
can be also shown by comparing the fitting results of the 
specimens with different configurations. Indeed, the results 
show that larger notch-machining errors (see MAPEa0

 values 
in Table 2) correspond to greater fitting errors (see R2 and 
RMSE values in Table 4). Method 1 does not suffer from 
the machining errors, because the geometrical similarity of 
the specimens is not required. Table 4 shows also that SEcf 
is about two orders of magnitude larger than SEGIc in all the 
cases. This demonstrates that cf is more susceptible to errors 
compared to GIc under the error normality assumption.

Fig. 8  Calculation of the 
function p(�) , defining the 
dimensionless energy release 
rate according to Eq. (11), by a 
fourth-degree polynomial inter-
polation of the FEA solutions 
for the investigated a arrester, b 
divider, and c short-transverse 
configurations
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Further discussions are based on the fitting results of 
method 1, since it provided more accurate estimates of the 
fracture properties of the material.

4.4  Size Effect on the Nominal Strength

The experimental data on the nominal strength are reported 
in Fig. 11 where the normalized nominal strength, �Nu∕�0 , 
is plotted as a function of the brittleness number, � = D∕D0 , 
with a double logarithmic scale. Since the brittleness num-
ber accounts for both size effect, through D, and geometry 
effect, through D0 (see Sect. 2.1), Fig. 11 allows one to com-
pare the different configurations (notch orientations with 
respect to the shale plane of isotropy).

As one can see, the experimental data agree well with 
Bažant’s SEL regardless of the configuration. The SEL pro-
vides a smooth transition from the strength criterion char-
acterized by a horizontal asymptote for � → 0 , in which no 
size effect on nominal strength is expected (ductile behav-
ior), to LEFM characterized by an inclined asymptote of 
slope − 1/2 for � → ∞ (brittle behavior). Note that the 
larger the brittleness number � , the closer the correspond-
ing structure is to the LEFM asymptote. Hence, the term 
brittleness must be understood here as the proximity to the 
LEFM scaling.

Instead, quasi-brittle behavior occurs for � values in the 
transition zone typically identified as 0.1 ≤ � ≤ 10 . The � 
values for all the investigated specimens in this work fall 
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Fig. 9  Linear regression analysis of the experimental nominal strength data relevant to various specimen sizes based on method 1 (see Eq. 9) for 
a arrester, b divider, and c short-transverse configurations
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within the range of 0.4–6.8, which are in the transition zone, 
as shown in Fig. 11. Therefore, the fracture behavior of shale 

must be regarded as quasi-brittle, and neither a strength cri-
terion nor LEFM can be used for its description.
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Fig. 10  Linear regression analysis of the experimental nominal strength data relevant to various specimen sizes based on method 2 (see Eq. 10) 
for a arrester, b divider, and c short-transverse configurations

Table 4  Calculated fracture 
properties based on the size 
effect method

Method Type R
2 RMSE G

Ic
 (N/m) SE

Gf
c
f
 (mm) SE

cf

1 Arrester 0.861 0.000827 29.0 0.00440 0.731 0.492
1 Divider 0.919 0.000355 37.9 0.00424 2.99 0.452
1 Short-Tran. 0.939 0.000534 44.8 0.00430 1.23 0.340
2 Arrester 0.656 0.00512 35.1 0.00962 0.194 1.02
2 Divider 0.775 0.00342 31.6 0.00644 1.68 0.734
2 Short-Tran. 0.981 0.00116 53.7 0.00285 1.86 0.203
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4.5  Size Effect on the Apparent Fracture Toughness

The term fracture toughness is widely used in the literature 
for both laboratory and field studies with implicit reference 
to LEFM. However, as we have discussed in this paper, there 
is plenty of confusion between fracture toughness as an 
unique material characteristic, which does not depend on the 
testing method and the specimen size, and the apparent frac-
ture toughness as a “structural” property, which, however, 
is measured with reference to a specific specimen size and 
a specific geometry. The confusion can be clarified through 
the study of its size and geometry dependency similar to 
the discussion in Bažant et al. (1991). As previously done 
in this paper, it is convenient to denote the apparent fracture 
toughness calculated using LEFM by KIcA and to denote the 
fracture toughness of the material by KIc.

The normalized apparent fracture toughness of the 
investigated specimens, KIcA∕KIc , can be plotted against the 
corresponding brittleness number, � , as shown in Fig. 12. 
The value of KIcA was calculated according to Eq. (1) by 
setting �N = �Nu , and KIc was calculated as KIc =

√

E∗GIc . 
With the values of GIc reported in Table 4, one has KIc = 
0.912, 1.20, and 0.917 MPa

√

m for the arrester, divider, 
and short-transverse configurations, respectively. It can be 
seen from Fig. 12 that, for the specimens with a larger brit-
tleness number, a greater apparent fracture toughness was 
obtained. Specifically, for geometrically scaled specimens 
of the same type, KIcA increases with the brittleness number 
or, equivalently, the specimen size D. This observation is in 
agreement with the fracture tests on different types of rocks 
available in the literature (Bocca et al. 1989; Bažant and 
Kazemi 1990a; Bažant et al. 1991; Ayatollahi and Akbar-
doost 2014; Kataoka and Obara 2015).

The variation of KIcA as a function of � can be predicted 
also by the SEL. Substituting Eqs. (8) and (4) into Eq. (1) 
with �N = �Nu and KIc =

√

E∗GIc , one obtain

Equation 14 is also plotted as a solid line in Fig. 12. The 
agreement between the predicted trend and the experimental 
data is excellent. The ratio of KIcA to KIc gradually increases 
as � increases and eventually converges to the asymptotic 
value 1 as � → ∞ . In other words, unless the tested speci-
men is sufficiently large, the fracture toughness of the mate-
rial cannot be approximated by the apparent one. In prac-
tice, � ≥ 10 is required to apply classic LEFM and thus to 

(14)
KIcA

KIc

=

√

�

1 + �
.
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Fig. 12  Variation of normalized apparent fracture toughness KIcA∕KIc 
as a function of the brittleness number � on a a linear scale and b a 
double logarithmic scale. The fracture toughness of the material KIc 
can be approximated by KIcA (i.e., KIcA ≈ KIc ) only when � is suffi-
ciently large ( 𝛽 > 10)
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approximate KIc by KIcA . For the shale material tested in this 
paper, specimens with D ≥ 50 mm for the arrester, D ≥ 125 
mm for the divider, and D ≥ 75 mm for the short-transverse 
are required for a reasonable approximation. It is worth 
observing that these values depend on the intrinsic charac-
teristic size D0 (see Sect. 2.1), which, in turn, depends on the 
internal structure and heterogeneity of the material. Hence, 
in general, the correct minimum specimen size cannot be 
known a priori and its identification requires size effect tests.

4.6  Anisotropy of Fracture Properties

The presented results show that the Marcellus shale frac-
ture properties are significantly anisotropic. Anisotropy of 
fracture properties has to be considered to determine crack 
deflection under complex loading, e.g., in hydraulic fractur-
ing (Zeng and Wei 2017; Gao et al. 2017; Li et al. 2018a; 
Zia et al. 2018; Zeng et al. 2018). The previous studies 
(Schmidt 1977; Chandler et al. 2016) showed that the high-
est value of fracture toughness was obtained from divider 
specimens and the lowest one from short-transverse, i.e., 
divider > arrester > short-transverse. A similar conclusion 
can be drawn from the KIcA measurements reported in this 
work, as listed in Table 3, for the large- and medium-sized 
specimens. However, this conclusion may be misleading, 
since the comparison was conducted based on the apparent 
properties measured with specific specimen size and geom-
etry rather that the “true” properties of materials. In this 
sense, it is more meaningful to compare the fracture tough-
ness calculated from the size effect tests with the corrections 
to the size and geometry effects. For the reported KIc values, 
one can see that the divider specimens exhibited the high-
est resistance to mode I fracture, while the values for the 
arrester and short-transverse configurations are similar, i.e., 
divider >> short-transverse ≈ arrester. In terms of fracture 
energy, the anisotropy of the elastic properties needs to be 
taken into account also considering the relation between GIc 
and KIc as shown in Eq. (3). From the calculated GIc reported 
in Table 4, one can find that short-transverse > divider > 
arrester.

Another important characteristic relevant to the fracture 
behavior of quasi-brittle materials is the FPZ length, which 
can be quantified by cf (Bažant and Planas 1997), and it 
is strongly related to brittleness of the material. Consider-
ing that � , which is a measure of “structural” brittleness, is 
proportional to 1∕cf , a material with a smaller cf tends to be 
more brittle, and vice versa. Indeed, for cf → 0 , D0 → ∞ and 
the behavior is governed by LEFM.

As shown in Table 4, the arrester specimens exhibit the 
shortest FPZ length, while the divider the longest. As a con-
sequence, relatively more brittle behavior is expected for 
the arrester configuration given the same size and geometry. 
This conclusion agrees with the observation by Chandler 

et al. (2016) that the arrester specimens of Mancos shale 
exhibited less inelasticity compared to the other ones, 
and the fracture tests on Anvil Point oil shale conducted 
by Schmidt (1977) which showed that a loss of stability 
occurred only for the tests on the arrester configuration.

5  Comparison with the Cohesive Crack 
Model

As discussed in Sect. 2.2, there exists a certain optimal size 
range in which the size effect method gives results that are 
fully consistent with the cohesive crack model. This aspect, 
often overlooked in the literature, is important for practical 
applications, since numerical simulations of fracture propa-
gation in rocks are often performed with the cohesive crack 
model with fracturing parameters identified in laboratory 
tests.

All the experimental data obtained in this paper are plot-
ted in Fig. 13 with reference to the normalized size X = D̂ 
and the normalized strength variable Y = (f �

t
�Nu)

2∕g�
0
 . 

The plot also shows the corresponding normalized SEL 
( Y = X + 0.44 ) when GIc = Gf . As one can see, the data 
points correspond well to the straight line and are, for the 
most part, in the interval 0.2 < D̂ < 2 . Only one set of 
points, the one relevant to the largest size specimens tested 
under the arrester configuration, have D̂ > 2 . However, even 
in this case, the data points do not deviate from the SEL 
calculated with Gf . This is an indication that the cohesive 
crack law for shale is most likely linear all the ways to the 
complete separation.

For further verification that the fracture properties 
calculated from the size effect tests are appropriate to be 
used as parameters of the cohesive crack model, numeri-
cal simulations were performed on selected specimens of 
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Fig. 13  Comparison of all size effect data with Bažant’s SEL in a par-
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increasing sizes with the standard finite-element (FE) tech-
nique (ABAQUS 2013). The material outside the notch of a 
simulated specimen was modeled by standard isoparametric 
quadratic elements and with transversely isotropic elastic 
constitutive equations characterized by the elastic param-
eters reported in Table 1. The crack line was modeled by 
cohesive connections with negligibly small interface thick-
ness and governed by a linear cohesive law. The values of the 
fracture parameters were taken from the size effect results 
obtained with method 1 (see Table 4). The tensile strength 
was estimated on the basis of the formula f �

t
= (E∗Gf∕l1)

1∕2 
(see Sect. 2.2) which gives 22 MPa, 16 MPa, and 17 MPa, 
for the arrester, divider, and short-transverse configuration, 
respectively. It is worth mentioning that these values tend 
to be higher than the tensile strength measured with Brazil-
ian split-cylinder tests (Li et al. 2016; Jin et al. 2018). This 
discrepancy has already been investigated by Cusatis and 
Schauffert (2009) who attributed it to an initial short plateau 
in the real cohesive law which is neglected by the linear 
cohesive law. They also verified that the tensile strength 
estimated from the size effect law is the correct one to use 
in cohesive crack simulations for large enough specimens 
( D̂ > 0.2).

Figure 14 shows a typical FE mesh used in the calcula-
tions. The notch tip was simulated as semi-circular to avoid 
stress singularities that are inconsistent with the cohesive 
crack model, and the notch width was taken as 0.4 mm and 
kept constant for all sizes. This geometrical representation 
of the notch is the same as the one adopted by Cusatis and 
Schauffert (2009) who extensively studied the effect of the 

stress concentration at the notch tip on the cohesive crack 
simulation of size effect.

The element size he ahead of the notch tip was selected 
within the relatively small range of 0.05–0.2 mm (about 
1/10–1/5 of the FPZ length estimated as 2cf ) and was not 
scaled upward with the specimen size to ensure accurate 
calculation of the stress concentration and accurate resolu-
tion of the FPZ for all specimen sizes.

Table 5 reports the numerically calculated peak loads 
relevant to the investigated specimens along with the cor-
responding experimental value and the prediction error. One 
can see that, for all investigated specimens, the numerical 
predictions agree well with the experiments. This confirms 
once more that the size effect method does provide frac-
ture parameters that are consistent with the cohesive crack 
model. In addition, the calculated cohesive stress at the 
notch tip corresponding to the peak load of the large speci-
mens of various notch configurations was found to be close 
to zero. This validates the assumption of the fully developed 
FPZ as discussed in Sect. 2 and suggests that the adoption 
of the linear cohesive law is appropriate for the investigated 
shale specimens.

The simulated load–displacement curves are shown in 
Fig. 15. All the curves feature a steep initial post-peak, 
which in several of the simulations is basically vertical. With 
these specimen responses and if one accounts for the inevita-
ble deformability of the test apparatus, the actually recorded 
load displacement curves would feature a snap-back behav-
ior which is unstable even in displacement control (Wendner 
et al. 2015). This is consistent with the experimental results 

Fig. 14  Typical finite-element 
mesh for three-point-bending 
simulations. The notch width 
is 0.4 mm for all the simulated 
specimens, and the element size 
ahead of the notch tip ranges 
from 0.05 to 0.2 mm

he = 0.05 - 0.2 mm

0.4 mm

Table 5  Comparison between 
experimental and numerical 
peak loads of the selected 
specimens

Type Size Specimen no. Peak Load

Experimental (N) Numerical (N) Error (%)

Arrester Large A-L-2 416.60 451.05 8.27
Medium A-M-2 232.78 236.03 1.40
Small A-S-2 159.70 178.39 11.70

Divider Large D-L-1 498.03 482.04 3.21
Medium D-M-1 293.00 311.69 6.38
Small D-S-1 173.31 190.40 9.86

Short-transverse Large ST-L-3 481.68 510.93 6.07
Medium ST-M-3 292.47 312.99 7.01
Small ST-S-3 194.61 205.99 5.85
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(see Fig. 7), in which (1) the initial slope of the load–dis-
placement curve is smaller than the simulated one, because it 
includes the deformability of the entire system; (2) it was not 
possible to record the post-peak, because all the specimens 
failed suddenly at the peak load.

6  Conclusions

In this study, size effect tests were conducted on various 
three-point-bending (TPB) specimens of increasing size and 
different notch configuration to obtain the fracture proper-
ties of Marcellus shale in three principal orientations. The 
following conclusions can be drawn:

1. The size effect method provides an indirect way of meas-
uring the fracture energy, the fracture toughness, and the 
length of the effective fracture process zone by means 

of measurements of the peak loads of specimens with 
varying sizes and the elastic properties of the material. 
According to this approach, the fracture energy, GIc , of 
the investigated Marcellus shale was identified to range 
from 29.0 to 44.8 N/m depending on the notch orienta-
tion; the fracture toughness, KIc , was identified to range 
from 0.912 to 1.20 MPa

√

m ; and the effective fracture 
process zone length, cf , was identified to range from 
0.731 to 2.99 mm.

2. Significant anisotropy in the obtained fracture tough-
ness, fracture energy, and effective FPZ length was 
observed.

3. The size effect law (SEL) proposed by Bažant accounts 
for the effects of both specimen size and geometry. The 
geometry dependence allows one to account for the 
effect of machining errors in the specimen preparation. 
This leads to a fitting of experimental data that exhibit 
less scatter and reduced errors.
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Fig. 15  Numerical load versus displacement curves for the different sizes of the selected a arrester, b divider, and c short-transverse configura-
tions
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4. The brittleness number, � , can be used to quantify the 
brittleness of the investigated specimens, which not only 
depends on the material characteristics but also on the 
specimen size and geometry.

5. The experimental investigation shows remarkable size 
effect on the measured nominal strength and apparent 
fracture toughness. This aspect is often overlooked in 
the literature on shale fracture mechanics. Neither the 
strength-based criterion nor classic linear elastic frac-
ture mechanics (LEFM) can predict the size effect data 
shown in this paper. On the contrary, the nonlinear frac-
ture mechanics of the quasi-brittle type is applicable for 
fracture characterization of shale in laboratory tests and 
permits one to extrapolate the measured values to the 
values that may be used in field applications.

6. The previously demonstrated relationship between the 
fracture parameters of Bažant’s SEL and the fracture 
parameters of the widely used cohesive crack model 
showed that the fracture energy identified with the size 
effect method, GIc , corresponds to the initial fracture 
energy, Gf , of the cohesive crack model. The consistency 
between GIc and Gf was verified numerically by means of 
numerical simulations. The numerically calculated peak 
loads using Gf = GIc matched the experimental measure-
ments very well.

7. The size effect results suggest also that, for the investi-
gated Marcellus shale, the total fracture energy, GF , is 
close to the initial value, Gf . This means that the cohe-
sive law for shale is basically linear and does not feature 
any significant nonlinear “tail”.
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