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Abstract
The unconventional fracture model can simulate complex fracture network propagation in a formation with pre-existing 
natural fractures. The interaction between hydraulic fracture branches, or stress shadowing effect, could be modeled by 2D 
or 3D displacement discontinuity method (DDM). In this paper, we concentrate on a hydraulic fracture model that integrates 
3D DDM for computing the induced 3D stress field around the propagating hydraulic fractures and incorporates the changes 
in induced stress into the fracture height calculations and propagation criterion. Examples show that for parallel fractures, 
the height growth may be promoted or suppressed depending on the relative fracture height. For fractures initiated from 
different formation layers, the fracture growth into the layer occupied by the other fractures is reduced due to the vertical 
stress shadowing effect.

Keywords  Hydraulic fracture network · Unconventional fracture model · Stress shadow · Displacement discontinuity 
method

1  Introduction

Interaction among multiple propagating hydraulic frac-
tures or the so-called stress shadowing effect, especially its 
influence on fracture propagation path, has been previously 
studied for fractures initiated and growing in approximately 
the same formation layers (Kresse et al. 2012). The stress 
shadowing effect can influence the height growth for frac-
tures propagating in the same layer or in the different layers 
in depth. The interactions between fractures propagating in 
height in different vertical layers have not been investigated 
yet and can have major implications on the success of a frac-
ture treatment.

In this paper, we present a hydraulic fracture model 
that integrates the constant 3D displacement discontinuity 
method (3D DDM) for computing the induced 3D stress 
field around the propagating hydraulic fractures and incorpo-
rates the induced stress into the fracture height calculations 
and propagation criterion.

The displacement discontinuity method is currently 
widely used to model fracture propagation and interaction. 
Starting from the work of Crouch and Starfield (1983), this 
approach has been evolved from two-dimensional constant 
DDM, to 2D quadratic and higher order DDM, accounting 
for the different element shapes. The 3D DDM approaches 
with constant, quadratic, and higher order discontinuities 
have also been investigated and attract great interest lately 
(Shou 1993; Shou et al. 1997; Wu 2014). Due to the exces-
sive numerical computation cost associated with the imple-
mentation of the full 3D DDM approaches, several simplifi-
cations have been made. These simplifications include using 
2D DDM with 3D correction factor to account for fracture 
height effect (Olson 2004), using a simplified form of 3D 
DDM by neglecting the vertical displacement component, 
and using 3D height correction factor based on vertically 
uniform displacement discontinuity (Wu and Olson 2015). 
The correction factors are derived from the analytical plane 
strain solution for a uniformly loaded vertical fracture of a 
finite height (Sneddon 1946), so they are applicable mostly 
for the cases when the fractures are well contained in the 
same formation interval.

In this paper, we also adopt a simplified form of the full 
3D DDM model for vertical fractures, but consider the frac-
ture height not being restricted in any way. It allows us to 
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model the interaction between the fractures initiating and 
propagating at different depths and in different formation 
layers. It better accounts for the vertical variation of the 
induced stress field and gives more accurate prediction of 
the fracture width and fracture propagation in the hydraulic 
fracture models based on the Pseudo 3D (P3D) framework.

The simplifications of the 3D DDM for the case of the 
vertical fractures are implemented without sacrifice of accu-
racy. The discretization in both vertical and horizontal direc-
tion is implemented in the model. The approach is validated 
against analytical solutions for simple geometries/loading 
conditions, numerical model, as well as against the enhanced 
2D DDM approach previously presented and validated in 
Kresse et al. (2012).

Examples show that for parallel fractures, the height 
growth may be promoted or suppressed depending on the 
relative fracture height. For fractures initiated from different 
formation layers, a fracture may hinder the other fracture 
from growing into the layer it occupies due to the vertical 
stress shadowing effect.

The 3D stress shadow effect is especially important for 
the multistage fracturing in vertical or deviated wells and 
multi-well treatments. Examples will demonstrate that 
3D stress shadow implementation provides more accurate 
account of the effect of fractures interaction on fracture 
width profile and height. It also allows to simulate more 
accurately the influence between stages in vertical and devi-
ated well, as well as to simulate interference between frac-
turing stages in stacked horizontal wells targeting different 
reservoir layers in close proximity.

2 � UFM Model Overview

To simulate the propagation of a complex fracture network 
that consists of many intersecting fractures, the equations 
governing the underlying physics of the fracturing process 
must be satisfied. The basic governing equations include 
equation governing the fluid flow in the fracture network, 
the equation governing the fracture deformation, and the 
fracture propagation/interaction criterion.

Continuity equation assumes that fluid flow propa-
gates along fracture network with the following mass 
conservation:

where q is the local flow rate inside the hydraulic fracture 
along the length, w̄ is an average width or opening of the 
fracture at position s = s(x,y), Hfl(s,t) is the local height of 
the fracture occupied by fluid, and qL is the leak-off volume 
rate through the wall of the hydraulic fracture into the rock 
matrix per unit length (leak-off height hL times velocity uL 
at which fracturing fluid infiltrates into surrounding perme-
able medium), which is expressed through Carter’s leak-off 
model (Carter 1957). The fracture tips propagate as sharp 
front and the total length of the entire hydraulic fracture 
networks at any given time t is defined as L(t).

The properties of injected fluid are defined by power-law 
exponent n′ (fluid behavior index) and consistency index K′. 
The fluid flow could be laminar, turbulent, or Darcy flow 
through proppant pack, and is described correspondingly by 
different laws. For the general case of 1D laminar flow of a 
power-law fluid in any given fracture branch, the Poiseuille 
law (Mack and Warpinski 2000) can be applied

with

Here, w(z) represents fracture width as a function of depth 
at the current position s(x, y).

Fracture width is related to fluid pressure through the 
elasticity equation. The elastic properties of the rock (con-
sidered as isotropic linear elastic material) are defined by 
Young’s modulus E and Poisson’s ratio � . For a vertical 
fracture in a layered medium with variable minimum and 
maximum horizontal stresses [σh(x,y,z) and σH(x,y,z)] and 
fluid pressure p, the width profile can be determined from 
an analytical solution given as

Because the height of the fractures h varies, the set of 
governing equations also include the height growth calcula-
tion based on the approach described in (Kresse et al. 2012)
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where σi and hi are the minimum stress and distance from top 
of the ith layer to fracture bottom tip, pcp is the fluid pressure 
at a reference (perforation) depth hcp measured from the bot-
tom tip, and KIu and KIl are the stress intensity factors at the 
top and bottom tips of the fracture.

The equilibrium model, which calculates fracture height 
based on the pressure at each position of the fracture by 
matching stress intensity factors KIu and KIl, given by 
Eq. (5), to the fracture toughness of the corresponding layer 
containing the tips, is extended to a non-equilibrium model 
(Mack and Warpinski 2000). The non-equilibrium height 
growth calculation takes into account the pressure gradi-
ent due to the fluid flow in the tip regions in the vertical 
direction by adding apparent toughness proportional to the 
fracture’s top and bottom velocities. Then, fracture width 
w(z) at any position z measured from the bottom tip is given 
by Eq. (6), where E′ is the averaged plane strain modulus

Note that one of the limitations of UFM model, the same 
as for the conventional P3D models, is related to the accu-
rate height growth calculations in the cases of complicated 
vertical stress profile. For the height being calculated for 
each fracture element, UFM model assumes that reservoir 
elastic properties are homogeneous, and averaged over all 
layers containing fracture height. Since confining stress 
dominates elastic properties when computing fracture width, 
this assumption is reasonable for many cases (Adachi et al. 
2007). P3D models’ results are in good agreement with Pla-
nar3D models for not too complex stress profiles, and pre-
sent fast and accurate engineering tools for most field appli-
cations. To overcome some limitations of the P3D model, 
the Stacked Height Model option was developed (Cohen 
et al. 2015).

In addition to equations described above, the global vol-
ume balance condition must be satisfied

i.e., the total volume of fluid pumped during time t is equal 
to volume of fluid in fracture network and volume leaked 
from the fracture up to time t. The boundary conditions 
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require the flow rate, net pressure, and fracture width to be 
zero at all fracture tips. The total network consists of two 
major parts: Fracture Network and Wellbore. These two net-
works communicate through injection elements to account 
for perforation friction.

The system of Eqs. (1–7), together with initial and bound-
ary conditions, plus equations governing fluid flow in the 
wellbore and through the perforations represent the complete 
set of governing equations (Kresse et al. 2012). Combin-
ing these equations and discretizing the fracture network 
into small elements leads to a nonlinear system of equations 
in terms of fluid pressure p in each element, simplified as 
f (p) = 0, which is solved using damped Newton–Raphson 
method.

Fracture interaction is one of the most important fac-
tors which must be taken into account to model hydraulic 
fracture propagation in naturally fractured reservoirs. This 
includes the interaction between hydraulic fractures and 
natural fractures, as well as interaction between hydraulic 
fractures. For the interaction between hydraulic and natural 
fractures, an OpenT crossing model, accounting for the fluid 
properties in addition to the rock and natural fractures prop-
erties, was implemented (Kresse et al. 2013).

This paper focuses on modeling the interaction between 
hydraulic fractures, especially on the importance to account 
for the 3D effect.

Notice, that poroelastic effects currently are not included 
in UFM model. It is observed that in unconventional forma-
tion (shales) changes in pore pressure due to leak-off into the 
matrix are of inches from the fracture so poroelastic effect 
may be considered negligible (Detournay and Cheng 1993).

3 � Modeling Stress Shadow

3.1 � 2D DDM Approach

For complex fracture networks, when fractures may orient in 
different directions and intersect each other, to compute the 
effective stress on any given fracture branch from the rest of 
the fracture network, an enhanced 2D Displacement Discon-
tinuity Method (DDM) (Fig. 1) was originally implemented 
in UFM (Kresse et al. 2012).

In a 2D, plane strain, displacement discontinuity solution, 
Crouch and Starfield (1983) described the normal and shear 
stresses (σn and σs) acting on one fracture element induced 
by the opening and shearing displacement discontinuities 
(Dn and Ds) from all fracture elements. To account for the 
3D effect due to finite fracture height, Olson (2004) intro-
duced a 3D correction factor to the influence coefficients Cij. 
The modified elasticity equations of 2D DDM are as follows:
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where Cij are the 2D, plane strain elastic influence coeffi-
cients, and their expressions can be found in Crouch and 
Starfield (1983). The matrix [C] defines the interaction 
between elements, for example Cns

ij gives the normal stress 
at the midpoint of the element i due to shear displacement 
discontinuity at the element j, and Cnn

ij gives the normal 
stress at the midpoint of the element i due to an opening 
displacement discontinuity at the element j. The 3D correc-
tion factor Aij suggested by Olson (2004) was introduced to 
the influence coefficients to account for the 3D effects due 
to finite fracture height that leads to decaying of interaction 
between any two fracture elements when distance between 
them increases

where h is the fracture height, dij is the distance between 
elements i and j, α = 1 and β = 3.2 are empirically derived 
constants (Olson 2008; Laubach et al. 2004). Equation (9) 
clearly shows that the 3D correction factor leads to decaying 
of interaction between any two fracture elements when the 
distance increases.

In UFM model, at each time step, the additional induced 
stresses due to the stress shadow effects are computed. We 
assume that at any time, fracture width equals the normal 
displacement discontinuities (Dn) and shear stress at the 
fracture surface is zero, i.e., Dn

j = wj, σs
i = 0. Substituting 

these two conditions into Eq. (8), we can find the shear dis-
placement discontinuities Ds and normal stress induced on 
each fracture element σn.
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The effects of the stress shadow induced stresses on the 
fracture network propagation pattern are twofold. First, dur-
ing pressure and width iteration, the original in situ stresses 
at each fracture element are modified by adding the addi-
tional normal stress due to the stress shadow effect. This 
directly affects the fracture pressure and width distribution 
which results in a change on the fracture growth. Second, 
by including the stress shadow induced stresses (normal and 
shear stresses), the local stress fields ahead the propagating 
tips are also altered which may cause the local principal 
stress direction to deviate from the original in situ stress 
direction.

Thus, the local stresses around each tip element 
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xy  calculated by enhanced DDM approach are 
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to define local principal stresses and orientation (angle α) of 
local maximum stress around tip elements by

This altered local principal stress direction may result 
in fracture turning from its original propagation plane and 
further affects the fracture network propagation pattern.

Notice that 2D stress shadow implementation, where the 
average induced stresses on any given element are com-
puted based on the 2D DDM equation, does not consider 
the vertical variation of the induced stresses. This could be 
acceptable when different branches have similar height and 
initiated at the same layer (Fig. 2). At the same time when 
fracture branches are vertically offset or initiated in different 
layers and have different heights, the results from 2D stress 
shadow effect might not be accurate (Fig. 4a).

3.2 � 3D DDM Approach

The 3D constant displacement discontinuity method is based 
on the analytical solution to the problem of a constant dis-
placement discontinuity over a finite rectangular element 
||x1|| ≤ a, ||x2|| ≤ b, x3 = 0 in an infinite elastic medium. 
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Fig. 1   Schematics of the 2D stress shadow effect
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Consider the 3D fracture as a collection of rectangular ele-
ments (Fig. 3), where x1, x2, x3 is the local coordinate sys-
tem of the displacement discontinuity element, in which x3 
is normal to the element plane. Each element has a positive 
(x3 = 0+) side and a negative (x3 = 0−) side.

Crossing from one side of the displacement discontinu-
ity element to the other side, the displacements u1, u2, u3 
undergo a jump, given by (Shou 1993)

where D1 and D2 are the shear displacement discontinuities 
and D3 is the normal displacement discontinuity for element 
i, Di = (D1, D2, D3). A negative value of D3 corresponds to a 
positive opening width.

The analytical expressions for the stress components 
�ij, i, j,= 1, 2, 3 induced by constant shear and normal dis-
placement discontinuities given in Eq. (12) over a rectangu-
lar element ||x1|| ≤ a, ||x2|| ≤ b, x3 = 0 in an infinite elastic 
medium in the local coordinate system, at any observation 
point x1, x2, x3, have the form

(12)
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+),

This solution has been first derived by Rongved (1957) 
and Salamon (1964), and lately revisited by Wu (2014). 
Here, � is the Poisson’s ratio, G is the shear modulus, and

Also I,k, I,kl, I,klm are first-, second-, and third-order deriv-
atives of I with respect to coordinate xk, xl, xm , respectively. 
The detailed derivation of Eq. (13) together with expres-
sions for the derivatives of the kernel analytical function I 
in Eq. (13) could be found in Shou (1993), Wu (2014) and 
will not be repeated here.

The corresponding expressions for the displacements are

For the numerical implementation, the fracture surfaces 
are discretized into a grid of N rectangular elements, with 
each element having constant displacement discontinuities 
(D1, D2,D3) . Each rectangular element has its own local 
coordinate system. The displacement and stress fields at the 
midpoint of the i th element due to constant displacement dis-
continuities Dj
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3
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Fig. 2   Illustration of 2D stress shadow effect from fracture 1 on frac-
ture 2. Fractures have similar height and are initiated at the same layer

Fig. 3   A three-dimensional crack in an infinite elastic solid media 
(similar to Wu and Olson 2015, different axes orientation)
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coordinate system. Subsequently, the displacement and stress 
components at the midpoint of the i th element due to constant 
shear and normal displacement discontinuities over all N ele-
ments can be obtained by summing the contribution of each 
individual elements in the network, i.e., they have the form

and

(16)
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, k, n, l = 1, 2, 3 are the boundary influence 

coefficients for stresses and displacements correspondingly. 
For the case of vertical fractures (Fig. 3), the shear and nor-
mal stress components at the midpoint of the i th element 
due to constant shear and normal displacement discontinui-
ties Dj
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The shear and normal stresses at the midpoint of the i th 
element due to constant shear and normal displacement dis-
continuities over all N elements in the fracture network can 
be obtained by summing the contribution of each individual 
element as presented earlier, i.e.,

For the special case of the vertical hydraulic fractures the 
influence coefficients in Eq. (21) are related to Eq. (20) as

We will use the 3D stress shadow given in Eq.  (21) 
to better predict the fracture growth in height. Without 
ignoring the shearing in the dip-slip mode (as in Wu and 
Olson 2015), we use two shear components of displace-
ment discontinuity together with one normal component 
(D1,D2,D3) = (Ds1,Ds2,Dn) in our calculations.

The fundamental difference between 2D and 3D stress 
shadow effects on the fracture height growth is illustrated in 
Fig. 4, where two vertically offset fractures propagating in a for-
mation consisting of multiple layers with piece-wise constant 
in situ minimum horizontal stress. The 2D stress shadow cal-
culation gives an additional constant induced stress by fracture 
1 on top of the in situ stress field at the fracture 2 (x, y) location 
(Fig. 4a). But if the 3D stress shadow corrections are calculated 
at the center of each layer at the (x, y) location of fracture ele-
ment, we will have a vertically variable induced stress shadow, 
leading to a different and more accurate vertical stress profile 
(Fig. 4b). The induced normal stress is compressive within 
approximately the depth interval of the fracture 1, and tensile 
above and below the fracture 1. The width profile of the elements 
in fracture 2 as well as fracture growth in height calculated with 
3D DDM approach will be more accurate and realistic.

4 � Implementation of 3D DDM‑Based Stress 
Shadow Calculations

The 3D DDM approach outlined above has been imple-
mented in a P3D-based complex fracture network model 
which previously used 2D DDM for computing the stress 
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shadow (Kresse et al. 2012). Each fracture element can be 
discretized in an arbitrary number of elements Nheight along 
the fracture height direction (see Fig. 5 with Nheight = 31).

One of the major assumptions and simplification in a P3D 
model is the vertical fracture width profile can be approxi-
mately calculated in each vertical element from the 2D elas-
ticity equation based on the local fluid pressure and stress 
profile. This reduces the fracture problem from a 3D to a 
2D problem and drastically reduces the computation time. 
For a layered formation with piece-wise constant stress, the 
width can be expressed in analytical form (Nolte and Econo-
mides 2000; Fung et al. 1987) shown in Eq. (6). A similar set 
of analytical expressions is available for the Mode I stress 
intensity factors at the top and bottom tips of the fracture 
that are solved to determine the fracture height and the tip 
positions (Eq. 5).

A major advantage of a P3D-based model is that it can 
cope with very complex layered formation with arbitrary 
layer thicknesses which is a commonplace and would pre-
sent a big challenge to a numerical grid-based code to have 
sufficient resolution to capture the detailed layers. However, 
the P3D Eq. (6) does not account for the mechanical interac-
tion with the adjacent fractures. To retain the computational 
efficiency of the P3D model, the interaction among the frac-
tures is taken into account through an induced stress (i.e., 
the stress shadow) that is added to the in situ stress whose 
influence on fracture width is given in Eq. (6). Therefore, the 
3D DDM Eq. (21) is not solved directly for the displacement 
discontinuities Ds1, Ds2, and Dn. Instead, normal displace-
ment discontinuity Dn = − w is obtained from P3D Eq. (6) 
in each element, and used in Eq. (21) to compute Ds1, Ds2 
by solving the first two sets of equations in Eq. (21) with 
zero (far field) shear stresses. The induced normal stress 
component is computed from the last set of Eq. (21), with 
the summation carried over the elements of the neighboring 
fractures.

The main algorithm for the 3D stress shadow calcula-
tions implemented in the complex fracture model (UFM) is 
shown on Fig. 6 and is similar to the 2D DDM stress shadow 
approach (Kresse et al. 2012).

It is worth mentioning that there are different options for 
stress shadow calculations which are implemented in the 
code, such as to use 2D or 3D stress shadow approach, use 
full or simplified 3D DDM, to account for the contribu-
tions from the vertical shear component or not, how many 
elements in vertical discretization to use (Nheight), and how 
many normal displacement discontinuities to use while cal-
culating the shear DD components.

At each time step, the shear DDs and additional normal 
stress caused by the 3D stress shadow effect are computed 
for each fracture element at the position of element center 
(x, y), and at the midpoint of each vertical layer (zone) by 
summing the contribution of all DD elements. The Nheight − 2 
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DD elements are used for calculating the contribution of 
both shear and normal DDs to the normal component of the 
induced stresses. The contribution from the elements which 
are far away from the zone center is neglected.

To avoid singularity along the border of the source 
element (see the next section) when it is too close to the 
receiver element either horizontally or vertically, the normal 
component of the induced stresses is calculated as the linear 
interpolation between the stress shadow values computed 
at the projected points of the centers of the four closest DD 
elements on the receiver element’s plane.

The additional normal stress field caused by the 3D stress 
shadow effect is then added to the normal component of the 
in situ stress field acting on each fracture element over each 
zone (Fig. 3b, on the right). Moreover, the stress shadow 
induced stresses are computed at a small distance ahead of 
all fracture tips which is used in determining the direction 
of incremental fracture tip propagation along with the com-
puted stress intensity factors at the tips.

The stress shadow from the fractures in the previous 
stages is accounted for in the 3D stress shadow calcula-
tion in a similar way as in 2D stress shadow. The calculated 

Fig. 4   Illustration of 2D (a) 
and 3D (b) stress shadow effect 
from fracture 1 on fracture 2 
when fractures are initiated at 
different depths
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numerical stress shadow from previous stage is replaced by 
pre-calculated analytical solution in some situations when 
distance between elements is small. If elements from the 
current and previous stages belong to the same fracture plane 
the projection method is used to avoid possible singularities. 
Stress shadow calculations are performed at the projected 
points and then interpolation is performed to obtain the 
value at the receiver point.

Some of the potential issues related to the implementation 
of the 3D DDM approach for stress shadow calculations in 
a complex simulator are the memory issue and the compu-
tational efficiency. For example, if each fracture element is 
discretized into Nheight − 2 = 29 (with Nheight = 31) elements 
along the fracture height direction, assuming that the num-
ber of hydraulic fracture elements (not including wellbore 
elements) is Nele, the total number of displacement discon-
tinuity elements N will be N = Nele × (Nheight − 2). To obtain 
the shear components of the displacement discontinuity 
( Dj

s1
 and Dj

s2
 ), we need to solve a system of linear algebraic 

equations in which the order of the matrix is 2N ( 2N × 2N 
matrix). Considering that double-precision floating-point 
format occupies eight bytes in computer memory, we will 
need 2N × 2N × 8 × 10−9 GB of memory. For a problem 
with Nele = 1000, which is not uncommon in complex frac-
ture simulations, the stiffness matrix alone occupies approxi-
mately 27 GB of memory, severely limiting its applicability 
and performance.

To alleviate the potential memory issue and reduce the 
computational cost, one alternative is to reduce the number 
of discretization along the fracture height direction. Exclu-
sion of the stress shadow from the far-away elements also 
helps reduce CPU time and memory. Another alternative is 
to use the simplified 3D DDM method, in which the shear 
displacement discontinuity along the fracture height direc-
tion ( Dj

s2
 ) is ignored. This simplification reduces the order 

of the matrix from 2N toN . Therefore, the unknown shear 
displacement discontinuity along the fracture length ( Dj

s1
 ) 

Fig. 5   Discretization of the fracture element with Nheight = 31

Compute the second- and third-order derivatives of I

Compute boundary influence coefficients in the local coordinate 
system of elements (20)

Solve a system of linear algebraic equations for shear displacement 
discontinuities from the first two sets of equations in (21) given the 

normal displacement discontinuities and shear stresses 

Compute the normal component of the stress shadow induced 
stresses for each fracture element at the midpoint of each zone from 

the third set of equations in (21)

Compute influence coefficients in the global coordinate system

Compute the stress shadow induced stress field at a small distance 
ahead of the fracture tip elements for fracture propagation  

Fig. 6   3D DDM implementation

Fig. 7   Anisotropic stress field 
with distance between the initia-
tion points in the y direction of 
10 m. a Five vertical DD ele-
ments are used. b Ten vertical 
DD elements are used
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can be obtained by solving a system of N linear algebraic 
equations. Both alternatives can result in the loss of fidelity 
and reduced accuracy.

In this study, we investigated the consequences of reduc-
ing the number of vertical discretization elements for cal-
culation of the shear DD components. By considering the 
vertical discretization with varying number of elements of 
31, 12, 10, and 5, we saw that without sacrificing too much 
accuracy we can use a discretization of each vertical fracture 
element into 5 DD elements. The comparison of the results 
simulated with ten and five elements for the constant height 

fractures is shown in Figs. 7, 8 and 9 with no visible differ-
ence in results (Kresse et al. 2017). The scale corresponds to 
the fracture width, and fracture width and shape have been 
compared. The choice of vertical discretization precision 
of course depends also on the complexity of the problem, 
including the number of vertical layers and height of the 
fractures.

At the same time since the stress shadow is calculated at 
the middle of each zone using the projection method and 
interpolation, the number of zones could also affect the sim-
ulation time. If the zone height is small and the properties of 

Fig. 8   Isotropic stress field with distance between the initiation points in the y direction of 10 m. a Five DD elements are used. b Ten DD ele-
ments are used

Fig. 9   Isotropic stress field with distance between the initiation point of 10 m in the x and y directions. a Five DD elements are used. b Ten DD 
elements are used
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neighboring zones do not vary too much, some zones could 
be combined to accelerate the stress shadow calculations 
without too much of effect on accuracy.

5 � Validation of 3D Stress Shadow 
Implementations

The 3D stress shadow implementation has been validated 
against analytical and numerical solutions.

5.1 � Plane Strain Fracture Subject to Internal Normal 
and Shear Stresses

To validate 3D stress shadow implementation, a comparison 
is made with the analytical solution for a plane strain frac-
ture under uniform internal normal and shear stress given in 
Pollard and Segall (1987).

For this purpose, a single pressurized fracture of fixed 
height is considered in an infinite elastic medium. The 
fracture length is 2a = 121.92 m and the fracture height is 
1219.2 m. Because the fracture height is much greater than 
the fracture length, the fracture can be considered as a 2D 
plane strain fracture. Uniform net pressure of �33 = 2 MPa is 
applied to the fracture faces. The uniform shear stress inside 
the fracture is �13 = 0.5 MPa.

The analytical solution for the normal and shear dis-
placement discontinuities for a plane strain fracture under 
uniform internal normal and shear stresses is (Pollard and 
Segall 1987)

(23)
Dn =

2(1 − �)

G

√
a2 − x1

2 �33;

Ds =
2(1 − �)

G

√
a2 − x1

2 �13,

Fig. 10   Normal and shear dis-
placement discontinuities along 
the fracture length ( 31 × 31 
mesh) for a fracture under plane 
strain conditions

Fig. 11   Comparison of com-
puted stresses for a fracture 
under plane strain conditions 
with specified DDs
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Fig. 12   Comparison of results 
for a fracture under plane strain 
conditions: stress distribution 
along a � = 0◦ , b � = 30◦ , 
c � = 45◦ , d � = 60◦ , and e 
� = 90◦ (Kresse et al. 2017)
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where a is the fracture half length, and �33 and �13 are the 
normal and shear stresses applied on the crack faces, cor-
respondingly. The comparison between 3D DDM results 
and analytical solution is shown in Fig. 10 for the material 
properties � = 0.25, E = 27.6 GPa, G = 11.04 GPa (Kresse 
et al 2017).

To further validate the 3D stress shadow implementation, 
the analytical solution is used to calculate the normal and 
shear displacement discontinuities ( Dn and Ds ) for the given 
crack of length 2a = 121.92 m subjected to constant normal 
and shear stresses ( �33 = 2 MPa and �13 = 0.5 MPa ). Using 

the computed normal and shear displacement discontinui-
ties as known variables, the system of equations is solved 
for unknown normal and shear stresses. Figure 11 shows a 
comparison between numerical results obtained from 3D 
DDM and the analytical solution for the normal and shear 
stress distribution along the fracture length (Kresse et al. 
2017). Again, the results are in good agreement with each 
other. It is noted that a 31 × 31 square element mesh (31 
elements in length and 31 elements in height) was used in 
the simulations.

Fig. 13   Comparison of results for the anisotropic case with dx = 0, dy = 10 m: a 3D stress shadow and b 2D stress shadow

Fig. 14   Comparison of results for the anisotropic case with dx = 0, dy = 20 m: a 3D stress shadow and b 2D stress shadow
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5.2 � Pressurized Fracture Under Plane Strain 
Conditions

In this example, the stress field around a plane strain pressur-
ized crack of length 2a in a two-dimensional homogeneous, 
elastic medium is used to validate the 3D DDM implementa-
tion. The stress function can be used to obtain the stress field 
in an infinite two-dimensional elastic medium caused by the 
opening of an internal crack |x| < a under uniform pressure 
p . The stress field at any point in the medium is given by 
(Sneddon 1946)
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Fig. 15   Comparison of results for the anisotropic case with dx = 10 m, dy = 20 m: a 3D stress shadow and b 2D stress shadow

Table 1   Input data for validation against CSIRO model

Injection rate 0.1 m3/s

Stress anisotropy 0.9 MPa
Young’s modulus 3 × 1010 Pa
Poisson’s ratio 0.35
Fluid viscosity 0.001 Pa s
Fluid specific gravity 1.0
Min horizontal stress 46.7 MPa
Max horizontal stress 47.6 MPa
Fracture toughness 1 MPa-m0.5

Fracture height 120 m
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Fig. 16   The front (left) and back (right) view of fractures from three 
perforation clusters simulated with 2D (a) and 3D (b) stress shadow. 
The color scale represents the width of the fractures. Fractures are 
marked correspondingly to the perforated clusters they are initiated 

from c. a 2D Stress shadow: front (left) and back (right). b 3D Stress 
Shadow: front (left) and back (right). c Schematics of the fractures 
shown above
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where

The fracture length is 2a = 30 m , and the pressure inside 
the fracture is p = 10 MPa . Other properties of the medium 
are� = 0.18, E = 27.6 GPa, G = 11.7 GPa.

Figure 12a–e shows the stress distribution along different 
angles from the fracture length direction. As can be seen, 
the numerical results obtained from 3D DDM are in good 
agreement with the analytical solution with the exception 

(26)

x + iy = r cos � + i r sin �

(x − a) + iy = r1 cos �1 + i r1 sin �1

(x + a) + iy = r2 cos �2 + i r2 sin �2.

of the case of � = 0◦ . For the case of � = 0◦ , the oscilla-
tions occurred at the element boundaries due to the stress 
singularity associated with the constant DD kernel function.

5.3 � Comparison with Numerical Solutions

The 2D cases used below for comparison have already been 
validated against the numerical results from a 2D DDM-
based hydraulic fracture simulator incorporating a full solu-
tion of the coupled elasticity and fluid flow equations by 
CSIRO (Zhang et al. 2007; Kresse et al. 2012). In this sec-
tion, the 3D stress shadow results are compared with the 2D 
stress shadow results (Figs. 13, 14, 15, Kresse et al. 2017; 
Table 1).

2D and 3D results are in good agreement with each other 
for the considered cases.

5.4 � Effect of 3D Stress Shadow on Vertical Fracture 
Propagation

As it was discussed above, the 3D stress shadow allows bet-
ter prediction of the fracture width profile and height. The 
3D stress shadow effect is calculated at the center of each 
zone at the receiver’s location, and gives a piece-wise con-
stant vertical stress profile update (Fig. 4b). The contribution 
is compressive at the depth of the source element, and tensile 
above and below it.

3D stress shadow will allow us to simulate the interaction 
between vertically offsetting fractures in vertical or devi-
ated wells more accurately. The examples presented below 
include the cases for fractures propagating mostly in viscos-
ity dominant regimes.

5.5 � Three Clusters in Vertical Well

The comparison of the results for runs with 2D stress 
shadow and 3D stress shadow options for the three-cluster 
case is shown on Fig. 16 (Kresse et al. 2017).

Three clusters are initiated from the almost vertical well 
with a small horizontal offset of 1.79 m. The first (1) cluster 
is initiated at depth of 3060 m, second (2) cluster at 3086 m, 
and third (3) cluster at 3109 m. Results from 3D stress 
shadow simulations are shown at the bottom (Fig. 16b), 
while 2D stress shadow simulations are on the top (Fig. 16a). 
The front (left) and back (right) views are presented to better 
understand the results. As we can see, the fracture 3 cannot 
grow in height in 3D stress shadow case because of the effect 
of the stress shadow from fractures 1 and 2. Fracture 1 in 
turn, also cannot grow down due to the 3D stress shadow 
from fracture 3, so it is pushed to grow up, while fracture 3 
is pushed to grow down. These effects could not be properly 
captured by the 2D stress shadow.

Fig. 17   Deviated well: a with 2D stress shadow and b with 3D stress 
shadow
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5.6 � Multistage Case in Deviated Well

A multistage case (one cluster per stage) with four stages 
fractured sequentially from bottom to top is shown in 
Fig. 17.

The stress shadow effect from previous stages is taken 
into account, and results from 3D stress shadow and 2D 
stress shadow simulations are shown for comparison. Note 
that the in situ stress variation is shown in the background. 
Due to stress shadow effect of the still open fracture in stage 
1, the fracture in stage 2 shows more upward growth for the 
3D stress shadow case (Fig. 17b) than the 2D stress shadow 
(Fig. 17a). Similarly, more pronounced upward growth is 
also seen in the fracture 3 for the 3D stress shadow case. 
Fracture 4 has narrower width around perforation for the 
2D stress shadow case due to the inaccurate vertical distri-
bution of the induced stress explained in Fig. 2. In contrast, 

3D stress shadow shows more realistic fractures shape and 
width profile.

5.7 � Stacked Horizontal Well

The 3D stress shadow approach will also allow to better sim-
ulate the interference between fracturing stages in stacked 
horizontal wells targeting different layers in close proximity.

Figures 18 and 19 show an example in which the 4-cluster 
stage in the lower well is first fractured, followed by frac-
turing of the 4-cluster stage in the upper well, using 2D 
(Fig. 18a) and 3D (Fig. 18b) stress shadow computation, 
respectively, to account for the fracture interaction between 
clusters and between stages.

Even with the induced stress by the fractures from the 
lower well, the stage 1 fractures from the upper well still 
have significant downward growth predicted by the 2D 

Fig. 18   Stacked horizontal wells with: a 2D stress shadow and b 3D stress shadow. Stage 1 (lower well) is shown at the left, and both stages 1 
and 2 are shown at the right
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stress shadow approach due to the slightly lower stress in 
the lower zones (Fig. 19a). The significant width and height 
oscillations due to the strong interaction between fractures 
are also observed (Fig. 18a, left). With the 3D stress shadow, 
the fractures from the upper well have more upward growth 
due to the more accurate account of the stress shadow from 
the lower fractures, compared to 2D stress shadow case 
(Fig. 19b). This reflects more accurate and realistic vertical 
variation of the induced stress.

6 � Conclusions

In the 3D stress shadow calculations which are based on the 
3D displacement discontinuity method (DDM), each vertical 
element is divided into a fixed number of DD elements, with 
normal DD from the width profile and shear DD computed 
by solving from zero shear stress condition on the fracture 
face. Stress shadow at the center of each zone at each ele-
ment’s location is calculated and added to the in situ stress 

profile. Stress ahead of the fracture tips is also calculated 
from shear and normal DDs.

Both 2D and 3D stress shadow options are implemented 
in a P3D-based complex fracture network model. Results 
show that the width profile and height growth are calculated 
more accurately with 3D DDM approach especially for the 
situations of significantly vertically offsetting perforations/
stages such as for deviated/vertical wells, and stacked hori-
zontal wells.
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