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Abstract
Time-dependent hole closure is a major problem for the many cavities present in rock salt. We use analytical and numerical 
methods to study how cylindrical holes close under pressure loads with time. We treat salt as a viscoelastic fluid and we use 
an incompressible nonlinear Maxwell constitutive law to model its mechanical behavior. The viscosity is described by either 
a power law or an Ellis model depending on whether dislocation creep is considered alone or in combination with pressure 
solution. The instantaneous closure rate of a circular hole in a power law-based viscoelastic salt is fully determined analyti-
cally. A proxy for the transient closure velocity at the rim is also proposed based on a modified version of the characteristic 
relaxation time θ proposed by Wang et al. (Rock Mech Rock Eng 48(6):2369–2382, 2015) and it has less than 3% inaccuracy 
for times smaller than 3θ, irrespective of the load or salt type. We derive an analytical expression describing the instantaneous 
closure rate in an Ellis-based viscoelastic salt. A load threshold determines whether steady state is approached initially. The 
time θ is also a characteristic relaxation time for this constitutive law, and a master curve can be used to describe the evolu-
tion of the closure velocity with time. Using these characteristic values in a typical application underlines the importance of 
considering pressure solution, in addition to dislocation creep, when studying hole closure in rock salt.
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T∗	� Relaxation time for hole closure in a linear 
compressible Maxwell material

ur	� Radial displacement
vr	� Radial component of the velocity vector
vR	� Closure velocity at the rim
vEll
R

	� Closure velocity at the rim in an Ellis-based 
Maxwell material

v
pl

R
	� Closure velocity at the rim in a power law-

based Maxwell material
vBarker
R

	� Closure velocity at the rim derived by Barker 
et al. (1994)

�	� Kronecker delta
�	� Pseudo-steady-state time
�	� Linear viscosity in a linear Maxwell material
�app	� Apparent viscosity
�D	� Viscosity due to dislocation creep
�PS
0

	� Linear viscosity due to pressure solution
�	� Total stress tensor
�	� Modified characteristic relaxation time
Θ	� Original characteristic relaxation time from 

Wang et al. (2015)
�	� Deviatoric stress tensor
�	� Radial component of the deviatoric stress 

tensor
�II	� Second invariant of the deviatoric stress 

tensor
�∗
II
	� Transition stress in the Ellis model

1  Introduction

The common presence of salt in sedimentary basins around 
the world and its physical properties such as an almost van-
ishing permeability make rock salt involved in many geome-
chanical applications. These include the storage of nuclear 
waste (Westbrook 2016), oil and gas (Preece 1987), CO2 (da 
Costa et al. 2011), compressed air (Djizanne et al. 2014) and 
hydrogen (Lord et al. 2011). Another group of applications 
is related with drilling (Kim 1988; Barker et al. 1994; Dus-
seault et al. 2004; Poiate et al. 2006) and the abandonment 
of caverns and wells (van Heekeren et al. 2009; Hou et al. 
2012; Bérest and Brouard 2014; Orlic and Buijze 2014). 
Cavities located in salt tend to close with time due to the 
creeping properties of rock salt, which can lead to fluid over-
pressure, loss of storage volume or stuck pipe incidents dur-
ing drilling. A proper planning strategy relying on a good 
understanding of hole closure in rock salt is the key to insure 
the success of these applications.

Laboratory experiments show that under conditions 
encountered in the underground rock salt may exhibit the 
behavior of a viscoelastic fluid at engineering timescales 
(Cristescu and Hunsche 1997; Munson 1997; Fossum and 
Fredrich 2002). The long-term fluid-like behavior of salt may 

originate from microscopic deformation mechanisms such 
as dislocation and pressure solution creep. The apparent vis-
cosity due to the movement of dislocations is best described 
using a power law stress dependence model. The power law 
viscosity model has often been applied to fit laboratory data 
obtained for various rock salt types (Carter and Hansen 
1983; Wawersik and Zeuch 1986; Berest and Brouard 1998), 
giving the stress exponent in the range between 3 and 6. Dis-
location creep is dominant at high deformation rates and, in 
addition to its strong dependence on stress, it is also depend-
ent on temperature. Pressure solution, on the other hand, is 
a water-activated solution-precipitation process dominant at 
low rates of deformation in fine-grained salts (Rutter 1983; 
Spiers et al. 1990; Ter Heege et al. 2005a; Urai and Spiers 
2007; Brouard et al. 2009), during which salt dissolves at 
grain contacts and diffuses through wet grain boundaries. At 
the macroscopic scale, pressure solution results in a linear 
viscosity, which is strongly grain size dependent. Although 
there is no single threshold grain size under which pres-
sure solution is always dominant, deformation in a salt with 
1 mm grain size is almost always driven by pressure solution 
(Urai and Spiers 2007; Cornet et al. 2018). Deformation in 
the range of typical halokinetic rates (10−16 to −9 s−1) and 
temperatures (20–140 °C) falls in the transition between 
dislocation and solution-precipitation creep (van Keken 
et al. 1993; Spiers and Carter 1996; Urai and Spiers 2007; 
Li and Urai 2016), indicating that both mechanisms need to 
be taken into account when modeling rock salt deformation. 
The wide grain size distribution in natural salts, going from 
a fraction of mm to several cm (Ter Heege et al. 2005a; Ter 
Heege et al. 2005b), also suggest that both mechanisms may 
occur concurrently.

The time evolution of pressure-driven hole closure in salt 
has been studied both numerically and during in situ experi-
ments. Experimentally, hole closure is recorded at differ-
ent times and an empirical description of it is given for any 
specific scenario (Preece 1987; Kim 1988; Senseny 1990). 
Numerical studies, on the other hand, investigate systemati-
cally the influence of the input parameters on the closure 
using complex rheological models for salt (Munson 1997; 
Hunsche and Hampel 1999; Heusermann et al. 2003; Mac-
kay et al. 2008; van Heekeren et al. 2009; Hou et al. 2012; 
Xie and Tao 2013; Orlic and Buijze 2014; Günther et al. 
2015). Although both approaches prove to be efficient at 
describing closure, they lack the full insight into the process 
provided by analytical solutions based on simpler models. 
However, analytical solutions for viscoelastic media are lim-
ited as soon as the constitutive law is nonlinear. In linear vis-
coelasticity, the correspondence principle applies and solu-
tions can be derived (Gnirk and Johnson 1964). In nonlinear 
viscoelasticity, solutions are available for the steady-state 
closure velocity (Liu et al. 2011; Wang et al. 2015; Cornet 
et al. 2017). Analytical solutions also exist for the initial 
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closure velocity in the case of a viscoelastic Maxwell model 
with power law viscosity (Karimi-Jafari et al. 2006; Wang 
et al. 2015), but a detailed description of the time-dependent 
behavior is missing.

We study the pressure-driven closure of a cylindrical 
circular cavity in rock salt using numerical and analytical 
modeling. The pressure in the hole is kept constant such 
that this study can be directly applied to oil or liquefied 
petroleum gas storage. The constitutive law for salt is an 
incompressible viscoelastic Maxwell model with a nonlinear 
viscosity. The deformation mechanisms associated with the 
viscous behavior are dislocation creep and pressure solu-
tion. We use an Ellis model (Bird et al. 1960; van Keken 
et al. 1993), which takes into account the concurrent occur-
rence of the two end-member creep processes in the paral-
lel series connection, to take both deformation mechanisms 
into account. We quantify the time evolution of hole closure 
which includes the initial, transient and long-term responses. 
We also investigate how closure speed evolves with depth 
and time under typical conditions. The magnitude and time 
dependence of the closure velocities of wells and shafts are 
preferably given in the form of figures from which the inter-
ested reader can directly estimate the closure velocity in any 
problem he faces. Our approach will hopefully increase the 
rate of success of drilling and mining operations thanks to 
the more realistic modeling of salt flow implemented here 
compared to the one currently used in the industry.

2 � Model

2.1 � Constitutive Model

The viscoelastic fluid-like behavior of salt can be described 
using an isotropic Maxwell model, in which the total defor-
mation rate is given by a sum of its elastic and viscous 
contributions:

where i, j are indices going from 1 to 3, D is the total rate of 
deformation tensor, and the superscripts el and vis refer to 
the elastic and viscous contributions, respectively. Assuming 
that there is no volumetric creep, we rewrite Eq. (1) in terms 
of pressure and deviatoric stress as:

where p is the pressure (taken positive in compression), 
K is the bulk modulus, δ is the Kronecker delta, τ is the 
deviatoric stress tensor, G is the elastic shear modulus and 
µapp is the apparent viscosity. The overdot is used to denote 

(1)�ij = �
el
ij
+ �

vis
ij
,

(2)�ij = −
ṗ

K
𝛿ij +

�̇ ij

2G
+

� ij

2𝜇app

,

differentiation with respect to time. Since we assume small 
deformations, the time derivative is just a partial deriva-
tive and the material derivatives are dismissed (Wang et al. 
2015).

The elastic shear modulus of salt is well constrained and 
a representative value is G = 12.4 GPa (Fredrich et al. 2007). 
The elastic moduli of rock salt are nearly independent of 
their origin (Senseny et al. 1992) because many salts are 
primarily (more than 95%) composed of pure halite. Homo-
geneous rock salts are usually near-isotropic, but the addition 
of argillaceous elements can change the elastic properties 
of the salt and introduce some degree of anisotropy (Zong 
et al. 2016).

Rock salt creep is compressible below the compressibil-
ity/dilatancy boundary and dilatant above (Cristescu 1993; 
Hunsche and Hampel 1999; Schulze et al. 2001). Dilatancy 
corresponds to an increase in volume during deformation 
due to microcracking. It is a process that increases dam-
age and it has a dramatic impact on the permeability which, 
in turn, promotes fluid flow and pressure solution. Viscous 
compressibility, on the other hand, is a healing process 
associated with a volume decrease caused by the closure 
of microcracks. Since this volumetric creep cannot occur 
indefinitely, salt can be considered incompressible in the 
long term. Above a mean stress of 5–10 MPa, salt has been 
reported to flow with a constant volume (Fossum and Fre-
drich 2002). These confining pressures are reached in the 
subsurface at depths greater than 250–500 m.

In the following, we also neglect elastic effects related to 
compressibility and assume incompressibility (Dii = 0). The 
constitutive law Eq. (2) becomes:

The viscosity of salt can vary greatly depending on the 
salt type and local conditions. The viscous model considered 
for rock salt in this study is an incompressible Ellis model 
which combines linear viscous pressure solution and non-
linear dislocation creep:

where DPS and DD are, respectively, the deviatoric rate of 
deformation due to pressure solution and dislocation creep. 
Both creep processes are assumed to operate independently. 
The constitutive relationship for diffusion creep is:

�PS
0

 is a Newtonian viscosity (Spiers et al. 1990; Turcotte 
and Schubert 2014):

(3)�ij =
�̇ ij

2G
+

� ij

2𝜇app

.

(4)�
vis = �

PS + �
D,

(5)� ij = 2�PS
0
�

PS
ij
.

(6)�PS
0

=
1

3

Td3

BP

exp

(
QP

RuT

)
,
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where BP is a prefactor for pressure solution in K 
mm3 MPa−1 s−1, QP is the apparent activation energy in J 
mol−1, d is the grain size in mm, T is the temperature in 
Kelvin and Ru = 8.31 J mol−1 K−1 is the universal gas con-
stant. In the following, we use the parameters established by 
Spiers et al. (1990): BP = 4.7 × 10−4 K mm3 MPa−1 s−1 and 
QP = 24.5 × 103 J mol−1. The grain size is 7.5 mm for our 
reference salt presented in Table 1 (Carter et al. 1993).

Dislocation creep is modeled using a power law relation-
ship between the components of deviatoric stress and rate 
of deformation tensors (Carter and Hansen 1983; Ranalli 
1995):

The viscosity µD is:

where AD is a material parameter, τII is the second  
invar iant of the deviator ic stress tensor �

II
=√(

�2
11
+ �2

22
+ �2

33

)/
2 + �2

12
+ �2

13
+ �2

23
 and n is the stress 

exponent (n > 1 for shear thinning media such as rocks). The 
prefactor AD is given by:

Compilations of experimentally determined values for 
BD, QD and n have been reported for both natural and syn-
thetic salts (Wawersik and Zeuch 1986; Kirby and Kronen-
berg 1987; Carter et al. 1993; Berest and Brouard 1998; 
Hunsche and Hampel 1999). We focus on three different 
salt kinds whose material properties are presented in Table 1 
and which are representative of the variety of salts found 
in nature. Salt A represents a weak salt from Avery Island, 
USA (Berest and Brouard 1998), Salt B values are based 
on several Avery Island salts (Carter et al. 1993) and Salt C 
refers to a competent salt from the Asse mine in Germany 
(Berest and Brouard 1998). Salt B is the reference salt.

The apparent viscosity µapp for an Ellis model is derived 
from Eq. (4):

(7)� ij = 2�D
�

D
ij
.

(8)�D =
AD

2
�1−n
II

,

(9)AD =
2√
3
n+1

exp
�

QD

RuT

�

BD

.

where APS = 2�PS
0

 . For low deviatoric stresses, the Ellis 
model reproduces a linear viscosity, while for high devia-
toric stresses, power law viscosities are recovered (Fig. 1). 
The transition from one behavior to the other occurs when 
DPS = DD, so:

where �∗
II
 is the transition stress and D∗

II
 is the transition 

deformation rate.

2.2 � Setup

We study the closure velocity at the rim of a cylindrical hole 
with radius R embedded in rock salt and subjected to internal 
and far-field pressure loads. We consider a highly elongated 
cylinder as representative of boreholes and caverns, and we 
use a plane strain condition in the plane perpendicular to 
the hole axis. We assume that the host rock is homogeneous 
and isotropic.

At the hole rim, we apply normal tractions corresponding 
to the well pressure − pw and at the exterior far-field bounda-
ries, we consider an ambient pressure − p (Fig. 2). Pressures 
are taken positive in compression while stresses are positive in 
extension. The pressure difference Δp = pw − p̄ is taken to be 
always negative leading to borehole closure. In the following, r 
and θ are used to denote polar coordinates. Due to the rotational 

(10)�app =
1

2

(
1

APS

+
�n−1
II

AD

)−1

,

(11)�∗
II
=

(
AD

APS

) 1

n−1

=
APS

2
D∗

II
,

Table 1   Power law flow law properties of three different natural salts

Salt B is the salt of reference

BD (MPa−n s−1) QD (kJ mol−1) n

Salt A 4.12 × 10−4 54.0 3.14
Salt B 2.0 × 10−4 62.3 4.5
Salt C 8 × 10−4 82.9 6.25

Fig. 1   Normalized viscosity as a function of the second deviatoric 
stress invariant for pressure solution, dislocation creep and the Ellis 
model for Salt B
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symmetry of the setup around the z-axis, the problem reduces 
to one dimension along the radial coordinate (Fig. 2). In the 
following, the radial component of the stress or rate of defor-
mation tensor is implied when no subscripts and no tilde are 
used. The pressures of reference used hereafter correspond to 
the conditions encountered at 2000 m depth. p = 45 MPa and 
pw = 40 MPa results in a negative pressure difference of 5 MPa.

A purely mechanical approach is adopted in this study and 
we neglect porous fluid flow, thermal diffusion and chemi-
cal interactions. The mechanical parameters are dependent on 
temperatures, however, and we define 60 °C as a temperature 
of reference at 2000 m depth.

2.3 � Numerical Modelling

General analytical solutions are not readily available in the 
case of pressure-driven hole closure in a material obeying a 
nonlinear viscoelastic rheological behavior, and we need to 
resort to numerical approaches. In polar coordinates, the non-
vanishing components of the rate of deformation tensor for the 
setup considered here are:

where vr is the only non-zero radial component of the veloc-
ity vector. Applying the incompressibility condition gives:

which after integration leads to:

where vR is the closure velocity at the rim. Assuming there 
is no body force, the force balance is:

(12)�rr =
dvr

dr
; ��� =

vr

r
,

(13)
dvr

dr
+

vr

r
= 0,

(14)vr = vR
R

r
,

(15)
��

�r
+ 2

�

r
= 0,

where σ is the radial component of the total stress tensor 
defined as � = −p + �.We use two independent numerical 
codes based on the above equations to validate each other in 
the general case for which no analytical solutions are avail-
able. The first numerical code is based on the finite-element 
method (FEM) (Zienkiewicz et al. 2005) and uses a mixed 
formulation to deal with incompressibility. A three-node 
truss element is used to interpolate the velocity field and the 
pressure is discretized only at the exterior element nodes to 
ensure that the resulting mixed system of equations is solv-
able. We use an implicit scheme to discretize the constitutive 
law from Eq. (2) in time and we assume to be in the limit of 
small deformations such that:

where k is the time index and ∆t is the time increment. 
Finally, we have:

where

Equation (17) is used in the discretization of the force 
balance Eq. (15), expressed at the time step k + 1, in which 
�app is treated as a function of the unknown deviatoric stress 
�k+1 . The approach to solve the nonlinear set of equations is 
based on using a combination of Picard iterations as done 
in FOLDER (Adamuszek et al. 2016) and incomplete stress 
updates. The initial guess for µapp is its value at the previous 

(16)Dk+1 =
�k+1 − �k

2GΔt
+

�k+1

2�k+1
app

,

(17)�k+1 = 2�k+1
eff

Dk+1 + �k+1
eff

�k,

(18)�k+1
eff

=

(
1

GΔt
+

1

�k+1
app

)−1

,

(19)�k+1
eff

=
�k+1
eff

GΔt
.

Fig. 2   Sketches of the two- and 
one-dimensional geometries 
of the problem with boundary 
conditions. The nodes in the 
numerical models are distrib-
uted according to a geometric 
sequence, giving a much finer 
mesh close to the hole. The 
domain size is much larger in 
the actual simulations
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time step, except for the first time step, where µapp is evaluated 
for n = 1. In each Picard iteration, the nonlinear viscosity µapp is 
taken from the previous iteration, the resulting linear system is 
solved for the velocity, the new deviatoric rate of deformation 
and stress distributions are then computed and µapp is updated. 
During the Picard iterations, the stress in Eq. (17) is:

where iter is the Picard iteration number. The deviatoric 
stress at the first time step is the one obtained by solving the 
linear elastic problem.

The second numerical approach is based on an integral 
rather than differential formulation, which explicitly incor-
porates the incompressibility limit. The force balance from 
Eq. (15) can be integrated from r = R to ∞:

Differentiating the first term in Eq. (21) with respect to time 
in the limit of small deformations (R is considered constant) 
gives:

Thus, we obtain:

Dividing the constitutive law for a Maxwell body Eq. (3) 
by r and integrating from r = R to ∞:

Using the result obtained in Eq. (23) gives:

With D = − vRR
/
r2 in the incompressible limit from 

Eq. (14):

(20)
�k+1(iter + 1) = 2�k+1

eff
(iter)Dk+1(iter + 1) + �k+1

eff
(iter)�k,

(21)

∞

∫
R

d�

dr
dr + 2

∞

∫
R

�

r
dr = 0.

(22)
d

dt

⎛⎜⎜⎝

∞

∫
R

d�

dr
dr

⎞⎟⎟⎠
=

d

dt
Δp = 0.

(23)

∞

∫
R

𝜏̇

r
dr = 0.

(24)2G

∞

∫
R

D

r
dr =

∞

∫
R

𝜏̇

r
dr +

∞

∫
R

G

𝜇app

𝜏

r
dr.

(25)2

∞

∫
R

D

r
dr =

∞

∫
R

�

�appr
dr.

(26)
vR

R
= −

∞

∫
R

1

�app

�

r
dr.

The closure velocity is evaluated numerically at every 
time step using the above expression. After evaluating the 
rate of deformation using vR, the stress at the next step is 
then computed using the implicit scheme from Eq. (20). 
Several Picard iterations are performed at every time step to 
ensure that a converged solution is reached. This approach 
is much faster than the FEM one because no system of equa-
tions needs to be solved.

As both numerical models are incompressible, a strong 
boundary effect may be observed due to the finite size of the 
numerical domain. This effect is stronger the more nonlinear 
the problem is and we minimize it by putting the exterior 
boundary far enough to approach the infinite body condition. 
This is important to reproduce some of the analytical solu-
tions and to validate the numerical codes. In our simulations, 
the boundary is set at most at a distance of one hundred 
thousand times the borehole radius.

3 � Analytical Solutions for End‑Member 
Constitutive Laws

3.1 � Elastic and Linear Viscoelastic Hole Closure

The response to instantaneous loads in a viscoelastic body is 
dictated by elasticity. In our case, elasticity is linear and the 
material is isotropic and incompressible, the displacement 
and stress fields for pressure-driven hole closure are (Jaeger 
et al. 2007):

where ur is the radial displacement. We note from the last 
expression that pressure remains constant throughout the 
body. The linear viscoelastic solution is now readily derived 
from these expressions using the correspondence principle. 
The behavior of a viscoelastic fluid can be described by a lin-
ear Maxwell model with relaxation function Gt(t) = Ge−t∕ TM, 
where TM = �∕G is the intrinsic material relaxation time 
and µ is the linear viscosity of this material. Other models 
than Maxwell can be considered to treat linear viscoelastic 
bodies and a review of closure displacements governed by 
these models is given by Gnirk and Johnson (1964). The 

(27)ur =
Δp

2G

R2

r
,

(28)�rr = −p − Δp
(
R

r

)2

,

(29)��� = −p + Δp
(
R

r

)2

,

(30)p = p,
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expressions for total stress components Eqs. (28) and (29) 
obtained for elastic bodies are independent of material 
parameters, and they remain valid for the viscoelastic case. 
The closure displacement and velocity, on the other hand, in 
the case of a linear Maxwell model, become:

for t ≥ 0.
These expressions are valid in the limit of small defor-

mations, where the borehole radius is considered constant. 
The closure velocity solution is used to benchmark the time 
dependence of the numerical codes in the linear limit.

In the compressible case, the closure velocity in a linear 
viscoelastic Maxwell body due to the creation of a hole in a 
preexisting pressure field − p̄ is:

which confirms that only the pressure difference Δp matters 
for closure. The elastic volumetric deformation is, therefore, 
not involved in the closure of linear viscoelastic bodies and 
it does not play a role in closure at all.

3.2 � Nonlinear Viscous Hole Closure

The steady-state behavior of a viscoelastic fluid is governed 
by its viscous component, which we base on an incom-
pressible Ellis model. The deviatoric stress at the rim in 
an Ellis viscous fluid is computed by solving (see “Steady-
State Closure Velocity for an Incompressible Ellis Fluid” 
for derivation):

where B is the incomplete beta function. The rate of defor-
mation at the rim is then estimated:

and the steady-state velocity at the rim is obtained from 
D(R) = − vEll

R
(∞)

/
R . The steady-state quantities for time-

dependent variables are denoted with the infinite symbol ∞.
When |Δp|/�∗

II
 tends to infinity, the power law limit is 

approached (Wang et al. 2015; Cornet et al. 2016), and the 
velocity at the rim is:
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(
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t
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)
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r
,
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r
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H(t),
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��(R)�B
⎛
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1 +
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;
1
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,
n − 2

n − 1

⎞
⎟⎟⎠

⎞⎟⎟⎠
= �Δp�,

(35)D(R) =
�(R)

APS

+ sgn(�)
|�(R)|n
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In Fig. 3, the closure velocity at the rim vR is plotted 
as a function of the load Δp for an Ellis viscous fluid. 
This plot is a graphical representation of the general ana-
lytical solution presented above. The load level Δp

/
�∗
II
 

provides a good estimation of the dominant deformation 
mechanism. When |Δp|/𝜏∗

II
< 1 , there is a linear increase 

of the velocity with the load indicating that the linear 
deformation mechanism, i.e., pressure solution, is domi-
nant. When |Δp|/𝜏∗

II
> 1 , the velocity increase due to an 

increase in the load is nonlinear and depends on the stress 
exponent n, and when |Δp|/𝜏∗

II
≫ 1 , vR is governed by 

Δpn . The dominant deformation mechanism in this limit 
is dislocation creep. This figure is very similar to the one 
obtained by Cornet et al. (2017) for a Carreau viscous 
fluid, which is expected as Ellis and Carreau fluids are 
largely similar.

Looking at the stress distributions for different load 
ratios |Δp|/�∗

II
 (Fig. 4) confirms that when |Δp|/𝜏∗

II
< 1 the 

material behaves linearly everywhere and for |Δp|/𝜏∗
II
> 1 

a zone dominated by nonlinear behavior is present adja-
cent to the hole. This zone is characterized by a less pro-
nounced decrease of stress with distance and with a dif-
ferent stress split: the pressure is no longer constant and it 
supports an increasingly bigger portion of the total stress 
for higher stress exponents n.

The analytical solution presented above is used to bench-
mark our numerical approaches. Both numerical codes repro-
duce correctly the analytical solution as seen from Fig. 4. In 
the following, we use the second approach, which does not 
rely on FEM, to model the time-dependent closure of salt 
cavities.

(36)v
pl

R
(∞) = sgn (Δp)R

(|Δp|∕n)n
AD

.

Fig. 3   Normalized steady-state closure velocity at the rim as a func-
tion of the load level |Δp|/ �∗

II
 for an Ellis viscous fluid for the three 

salts from Table 1



3098	 J. S. Cornet, M. Dabrowski 

1 3

4 � Hole Closure for a Power Law Viscoelastic 
Rock Salt

4.1 � Initial Closure Velocity

We first use a simple power law relationship for the viscous 
component of an incompressible Maxwell model. Upon an 
abrupt load, the initial response of the system is purely elas-
tic and the stresses are given by:

Wang et al. (2015) established that the initial closure 
velocity at the rim is (see “Initial Closure Velocity for an 
Incompressible Nonlinearly Viscoelastic Material Having a 
Power Law Viscosity Model” for derivation):

This expression is independent of the elastic modulus, as 
indicated by Eq. (26). The derivation of this result relies on 
the fact that ∫ ∞

R
Del

/
rdr = 0 (from Eq. (23)), which does 

(37)� = −Δp
R2

r2
.

(38)v
pl

R
(t = 0+) = sgn(Δp)R

|Δp|n
nAD

= nn−1v
pl

R
(t = ∞).

not mean that the elastic rate of deformation is initially zero 
everywhere, as was assumed by Barker et al. (1994). Their 
expression for the initial closure velocity at the rim is:

which is similar to the one above and has been used in 
the oil industry (Liu et al. 2011), although it is internally 
inconsistent (Cornet et al. 2016). Their prefactor is as much 
as five times larger than the correct one when n = 5.

From the initial closure velocity, the total rate of deforma-
tion is computed: D = − v

pl

R
R
/
r2 . The initial viscous rate of 

deformation is derived from the stress distribution Eq. (37):

and the elastic rate of deformation is then computed from 
Del = D − Dvis . The initial rate of deformation and stress 
distribution are, therefore, fully characterized. In Fig. 5, 
we plot the rates of deformation for the reference case. The 
elastic rate of deformation is negative at the rim but quickly 
changes sign away from it to become equal to the total rate 

(39)vBarker
R

(t = 0+) = sgn(Δp)R
3(n−1)∕ 2

2n − 1

|Δp|n
AD

,

(40)Dvis = − sgn (Δp)
|Δp|n
AD

R2n

r2n
,

Fig. 4   Normalized stress distributions as a function of the distance to the hole for different values of the load level |Δp|/ �∗
II
 for n = 4.5. The ana-

lytical solutions are plotted using lines while the numerical results from the first and second approaches are represented by markers
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of deformation in the far field. Initially, the viscous rate of 
deformation at the rim is always n times larger than the total 
one while the magnitude of the negative elastic rate of defor-
mation is n − 1 times larger.

The entire domain can be divided into a zone dominated 
by elastic deformation and another one dominated by viscous 
deformation. The size of the proximal, viscously dominated 
zone Rvis, i.e., the zone where the magnitude of the viscous 
rate of deformation is larger than the elastic one, is initially 
equal to:

which shows that a viscous-dominated zone is always pre-
sent around the rim, no matter the type of salt.

4.2 � Time‑Dependent Hole Closure

In this section, we focus on the complete evolution of hole 
closure with time. Wang et al. (2015) defined a characteristic 
relaxation time Θ as the ratio of the initial closure velocity to 
the rate of closure velocity (see “Initial Closure Acceleration 
for an Incompressible Nonlinearly Viscoelastic Material Hav-
ing a Power Law Viscosity Model” for derivation) at the rim. 
We propose a slightly modified expression for the character-
istic relaxation time denoted:

Since vpl
R
(∞) = n1−nv

pl

R
(t = 0+):

(41)
Rvis(t = 0)

R
= (2n)

1

2n−2 ,

(42)𝜃 = −
vR(t = 0+) − vR(∞)

v̇R(t = 0+)
.

(43)� =
2n − 1

(n − 1)2

AD

2G
|Δp|1−n(1 − n1−n

)
= Θ ⋅

(
1 − n1−n

)
.

The correction factor 1 − n1−n is equal to 0.89 for n = 3 
and 0.99 for n = 4.5, so the difference between the character-
istic relaxation time of Wang et al. (2015) and ours is hardly 
noticeable for closure in a power law-based Maxwell body.

In Fig. 6, θ is plotted as a function of pressure load for 
the three different salts from Table 1 and at different tem-
peratures. A shear modulus G of 12.4 GPa is used in the 
computations. θ spans several orders of magnitude and is 
strongly influenced by the load, salt type and temperature. θ 
is a strongly decreasing function of Δp.

In Fig. 7, the closure velocity drop from initial to steady 
state is investigated for the three salts from Table 1. The 
plots confirm the validity of the solutions for the instan-
taneous and long-term velocities and the relevance of the 
characteristic time since at t = θ the velocity drop is close 
to 50% irrespective of the salt type and load. If we define 
steady state as the moment when over 97% of the drop 
occurred, then steady state is reached after about t = 620θ 
The ratio between the initial and the steady-state velocity 
is nn−1 which is equal to 9 when n = 3 and 625 when n = 5. 
The magnitude of the velocity drop is, therefore, appreci-
ably different for the three types of salts, even though the 
decay proceeds with the same normalized time. The right 
plot of Fig. 7 shows that the normalized velocity drop does 
not depend on the load |Δp| . This implies that the closure 
velocity depends at all time on the load as |Δp|n . It also sug-
gests that the velocity drop for all salts can be described by a 
master curve for which we propose an empirical expression:

This proxy for the closure velocity has less than 3% error 
when t < 3𝜃 independently of the salt, load and temperature 
considered. At larger times, the decay is dependent on the 
stress exponent n and the − 0.48 power we propose approxi-
mates the decays for n = 3.14 and n = 4.5 but not the one for 
n = 6.25. This proxy should, therefore, not be used at large 
times for large stress exponents.

The transition from the initial to the long-term behavior 
can also be seen in the time evolution of the stress distri-
bution (left column of Fig. 8). The distribution of is ini-
tially governed everywhere by the linear elastic behavior 
of the material and becomes progressively governed by 
its nonlinear behavior in the neighborhood of the hole. In 
the elastic-dominated zone, the deviatoric stress is distrib-
uted as r−2 while in the viscous-dominated zone the spatial 
dependency is as r−2/n. The stress split between pressure 
and deviatoric stress evolves with time, with pressure sup-
porting an increasingly bigger proportion of the total stress 
in the viscous zone. The right column of Fig. 8 shows 
the total, elastic and viscous rates of deformation. Due 

(44)

v
pl
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(t) = v

pl

R
(t = ∞) +

(
v
pl

R
(t = 0+) − v

pl

R
(t = ∞)
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(
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(
2.55
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�

)1.08
)−0.48∕ 1.08

.

Fig. 5   Initial normalized rates of deformation distributions when 
n = 3. The circles denote negative values of the elastic rate of defor-
mation
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to incompressibility, the total rate of deformation scales 
as r−2 at all times. The elastic rate of deformation Del is 
always negative close to the rim and becomes positive and 
equal to the total rate of deformation at distances greater 
than Rvis. Finally, the viscous rate of deformation Dvis pro-
gressively evolves from a dependency in r−2n initially to 
a dependency in r−2 at steady state. In the transition from 
initial to steady state, Dvis has one branch in r−2 close to 
the rim and one in r−2n in the far field.

Finally, Fig. 9 investigates the evolution of the radius 
of the viscous-dominated zone Rvis with time for the three 
salts from Table 1. Initially, Rvis is given by Eq. (41) and 
is only governed by the stress exponent n. Figure 9 shows 

how the growth of the viscous-dominated zone changes 
with time until it reaches its late-stage evolution.

5 � Hole Closure for an Ellis Viscoelastic Rock 
Salt

5.1 � Initial Closure Velocity

In this section, we use an Ellis model for viscosity in the 
viscoelastic Maxwell constitutive law and we investigate 
how it affects the closure velocity. The initial stress is 
again purely elastic Eq. (37) and an expression for the 

Fig. 6   θ as a function of the 
pressure difference for the three 
salts from Table 1 at 60 °C (left) 
and different temperatures for 
Salt B (right)

Fig. 7   Normalized closure velocity at the rim as a function of time for power law viscoelastic salts. Left: closure velocity for three different salts, 
under reference conditions (semi-log scale). Right: closure velocity for different loads, for Salt B (loglog scale)
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initial closure velocity at the rim is (see “Initial Closure 
Velocity for an Incompressible Nonlinearly Viscoelastic 
Material Having an Ellis Viscosity Model” for derivation):

As for the power law viscoelastic material, the total, viscous 
and elastic rates of deformation can be derived so the instan-
taneous closure in an Ellis viscoelastic material is also fully 
characterized analytically for any load ratio |Δp|/�∗

II
 (Fig. 10).

The size of the initial viscously dominated zone is then 
estimated:

(45)

vEll
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=

Δp
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(
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1
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pl
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(t = 0+).
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R
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1
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1
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Fig. 8   Normalized stress (left) and rate of deformation (right) distributions at different times. t = 1e − 1 ∗ � , t = 1e1 ∗ � and t = 1e3 ∗ � for Salt 
B under reference conditions. The circles in the strain rate plots show the magnitude of the elastic strain rate when it is negative

Fig. 9   Evolution of the size of the viscous-dominated zone with time 
for three different salts under reference conditions
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When |Δp|/𝜏∗
II
≫ 1 , i.e., when dislocation creep is the 

dominant viscous deformation mechanism, Eq. (41) and 
Fig. 5 are recovered. The case |Δp|/�∗

II
= n1∕ n−1 corresponds 

to an infinitely large Rvis(t = 0) meaning that the viscous 
deformation is dominant everywhere. We use this criterion 
to define a pseudo-steady state which is reached instantane-
ously in an Ellis-based Maxwell material for all loads |Δp| 
smaller than n1∕ n−1�∗

II
 (Fig. 10).

In Fig. 11 the ratios of the initial to the steady-state clo-
sure velocities are plotted as a function of the load ratio 
|Δp|/�∗

II
 . For |Δp|/𝜏∗

II
< 1 , pressure solution is the dominant 

viscous deformation mechanism and the initial and steady-
state closure velocities are equal. For |Δp|/𝜏∗

II
> 1 , disloca-

tion creep is the dominant viscous deformation mechanism 
and for |Δp|/𝜏∗

II
≫ 1 the initial closure velocity is nn−1 larger 

than the steady-state one (Eq. (38)).

5.2 � Transient Hole Closure

We use the characteristic relaxation time θ defined by 
Eq. (42) to evaluate the time at which the transition in clo-
sure velocity from initial to final occurs. θ can be computed 
analytically for an Ellis-based Maxwell material (see “Ini-
tial closure acceleration for an incompressible nonlinearly 
viscoelastic material having an Ellis viscosity model” for 
the derivation of the initial closure velocity rate at the rim). 

The expression for Θ that was originally proposed by Wang 
et al. (2015) overestimates the time at which the drop from 
initial to steady-state closure occurs when pressure solution 
is important. For example, when |Δp|/�∗

II
= 1 , the charac-

teristic time is overestimated by a factor 12.5 for Salt B if 
the unmodified version of θ is used.

Fig. 10   Distributions of the 
normalized initial rates of 
deformation for different loads 
|Δp|/ �∗

II
 for Salt B. The circles 

denote negative values of the 
elastic rate of deformation

Fig. 11   Ratios of the instantaneous to the steady-state closure veloci-
ties using an Ellis viscoelastic constitutive law for the three salts from 
Table 1 as a function of the load ratio |Δp|/ �∗

II
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In Fig. 12, the initial to steady-state closure velocity drop 
is plotted for different salts and loads. The time is normalized 
by the version of θ proposed in Eq. (42). The figure confirms 
the validity of using this characteristic time as it captures the 
moment at which the closure velocity has dropped by approxi-
mately half its net change no matter the salt or load. The curves 
for |Δp|/�∗

II
= 0.1 and 1 show the same pattern as the ones for 

loads larger than n1∕ n−1�∗
II
 . When |Δp| < n1∕ n−1𝜏∗

II
 , the magni-

tude of the velocity drop (Fig. 11) is so small that steady state 
can be approximated even though true steady state is never 
reached instantaneously in an Ellis-based Maxwell material. 
When |Δp| ≫ 𝜏∗

II
 , dislocation creep is the dominant viscous 

deformation mechanism and the time evolution of the velocity 
drop for a power law-based Maxwell body is retrieved.

5.3 � Depth Dependence

In the subsurface, both the temperature and the pressure dif-
ference ∆p increase with depth, and we investigate how hole 
closure speed varies with depth and time in a typical appli-
cation. The salt considered here is Salt B from Table 1. It is 
incompressible and its constitutive law is viscoelastic with 
nonlinear viscosity. The viscosity is based on an Ellis model 
with a depth-independent grain size of 7.5 mm. Figure 13 
presents the depth distribution of the temperature and dif-
ferential pressure load ∆p used in this application. At shal-
low depths where temperatures and loads are low, pressure 
solution is the dominant viscous deformation mechanism 
while at great depths dislocation creep dominates.

The third column of Fig. 13 shows the evolution with depth of 
three characteristic times: θ, Θ and γ. γ is the pseudo-steady-state 

time, i.e., the time necessary for the viscous rate of deformation 
to be dominant over the elastic one everywhere: Rvis = ∞ . The 
depth distributions of θ and Θ are very similar with differences 
appearing only at shallow depths, where pressure solution is 
the dominant viscous deformation mechanism. This figure illus-
trates the magnitude of the overestimation done if Θ is used to 
evaluate the relaxation time. Comparing the curves for θ and γ 
shows that their behavior is opposite: θ decreases with depth 
while γ increases. From 1100 to 1300 m depth, γ is not rep-
resented because the closure velocity at these depths reaches 
pseudo-steady state instantaneously. This interpretation of cav-
ity closure is very different from the one that would be done 
based on θ alone and illustrates the usefulness of using both 
characteristic times θ and γ in combination when interpreting 
hole closure data.

In Fig. 14, closure velocity profiles are displayed at differ-
ent times to show their evolution for the Ellis and the power 
law-based viscoelastic models. Initially at t = 10−3 year, the 
velocity profiles of the two approaches are only different 
in the upper 200 m from 1100 to 1300 m. At these depths, 
the salt is already behaving almost completely viscously for 
the Ellis model. With time, the overlap of the two curves at 
the deeper depths disappears and the closure velocities are 
higher for the Ellis model. The increase in closure velocities 
is larger, the more dominant pressure solution is as a defor-
mation mechanism. Finally, the complete velocity profile 
for the Ellis model does not change a lot after 1 year which 
confirms the use of the time γ to evaluate when steady state 
is approached.

Fig. 12   Normalized closure velocities at the rim as a function of time 
for Ellis-based Maxwell salts. Left: closure velocities for three differ-
ent salts, when |Δp|/ �∗

II
= 5 . Right: closure velocities for different 

loads, for Salt B. The proxy for the closure velocity in a power law-
based Maxwell Eq. (44) is also shown in both plots for comparison
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6 � Discussion

6.1 � Plasticity

This study focuses on the viscoelastic behavior of salt and 
dismisses plasticity. This assumption has been made due to 
the observation that above 5–10 MPa confining pressure, salt 

is incompressible (Fossum and Fredrich 2002). As already 
pointed out, these confining pressures are reached below 
250–500 m and the no-plasticity assumption is, therefore, 
valid for most applications. Only shallow applications like 
mines and certain caverns need to take plastic behavior into 
account. The cavity-induced stress concentration close to 
the rim can, however, lead to a deeper extension of the zone 

Fig. 13   Evolution of the temperature, load and characteristic times θ, Θ and γ with depth

Fig. 14   Profiles for the velocity at the rim as a function of time for the Ellis and power law-based viscoelastic models
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influenced by plasticity. At the depths where dilatancy is 
important, an increase in permeability is observed (Hunsche 
and Hampel 1999; Alkan 2009). If brine is present in the cav-
ity, increased pressure solution can occur when the brine per-
meates through the damaged zone. If natural gas or air is pre-
sent, on the other hand, pressure solution is prevented (Peach 
et al. 2001). As pointed out above, the stress in the salt body 
is initially linear elastic and the deviatoric stresses close to 
the rim are high. As it is high, a dominantly nonlinear viscous 
zone appears in the neighborhood of the hole and starts to 
grow. In this viscously dominated zone, the deviatoric stresses 
decrease with time and an analysis of the factor of safety 
shows that plasticity is most important for short timescales 
(Wang et al. 2015). For long timescales, the stresses close 
to the hole converge to the viscous steady-state solution and 
only changes in cavern pressure are problematic. In the case 
of storage facilities, the pressure drops due to production have 
to be controlled to prevent catastrophic failure. As pointed out 
by Wang et al. (2011), hole pressure changes larger than ∆p/n 
lead to failure and should, therefore, be avoided. More than the 
instantaneous plastic behavior of the salt, it is the reactivation 
of cavity closure through pressure changes after a long idle 
time which should be planned with great care.

6.2 � Viscosity

This study describes the viscous component of the viscoelas-
tic law by its steady-state behavior. The transient rheological 
creep behavior has been dismissed because the relaxation 
time associated with transient geometrical creep closure is 
much longer (Karimi-Jafari et al. 2006; Wang et al. 2015). 
The transient rheological behavior of salt is due to the micro-
structure of salt rearranging to adapt to the newly applied 
stress and it leads to strain hardening during creep tests. 
Geometrical creep, on the other hand, comes from the slow 
redistribution of stresses following a change in hole pressure 
and makes hole closure time dependent, even though the 
constitutive law does not take into account transient creep. 
As pointed out by Karimi-Jafari et al. (2006), rheological 
transient creep vanishes rapidly and it, therefore, does not 
have a large impact for long-term applications. In the short 
term, following a change in cavern pressure, rheological 
transient creep leads to faster closure rates and hole relaxa-
tion has two different relaxation times: one due to transient 
rheological creep and the other one due to transient geomet-
rical creep closure. The salt in the subsurface is pre-stressed 
so the microstructure of the salt does not have to rearrange 
extensively and strain hardening is limited. In this light, the 
magnitude of the closure velocity drop due to transient rheo-
logical creep might be much smaller than the other one.

Fluid-assisted grain boundary migration is a strain-acti-
vated process which happens in relation with dislocation 
creep. During dislocation creep, dislocations accumulate in 

grains to form subgrains. The progressive accumulation of 
dislocations at subgrain boundaries leads to the rotation of 
the subgrains until they are detached and form new small 
grains (Drury and Urai 1990). Grain boundary migration, 
on the other hand, leads to increased grain sizes. The differ-
ence in strain energy between neighboring grains promotes 
the growth of the small undeformed grains at the expense 
of the old deformed ones. From this perspective, grain size 
is best described by a distribution (Ter Heege et al. 2005b) 
and a single value like mean or median does not capture the 
competition between the grain size increase and reduction 
processes (Ter Heege 2002). As pointed out by Cornet et al. 
(2018), the viscosity of salt is highly sensitive to grain size 
and a more elaborated model taking into account grain size 
distributions should be considered. In this study, a constant 
grain size has been used for the salt body because there is a 
lack of data regarding grain size distributions in Avery Island 
salts. On the other hand, the dislocation creep parameters used 
in this study have been established under steady-state condi-
tions, when grain boundary migration was active, implying 
that the softening associated with this recrystallization process 
is already included in the parameters used above.

6.3 � Practical Implications

Engineers like to have ready-to-use tools and formulas which 
evaluate the importance of various input parameters to deter-
mine their significance. One of these formulas is the one 
giving the initial closure velocity presented by Barker et al. 
(1994) which relies on a power law-based viscoelastic model. 
Although it is widely used in the field to assess hole closure, 
it is inconsistent and breaks its own assumptions (Cornet 
et al. 2016). Furthermore, it dismisses the contribution of 
pressure solution and only considers dislocation creep. Pres-
sure solution is often dismissed or referred to as an undefined 
mechanism (Munson 1997) and considered not relevant when 
it comes to cavity closure in rock salt. This is due to the fact 
that dislocation creep is the deformation mechanism inves-
tigated in the high-load creep tests usually implemented in 
the laboratory. Under low loads, however, Bérest et al. (2015) 
showed that pressure solution is governing deformation. In 
this study, we have come up with new analytical solutions 
giving the closure velocity at the rim which are both consist-
ent and considering the additional contribution from pressure 
solution. We have shown that it is of high importance to take 
pressure solution into account close to the surface or at large 
timescales. If this is not done, the closure velocity might be 
underestimated by several orders of magnitude. Using our 
analytical solutions, better estimates of the closure rate will 
be done resulting on a better forecast of cavity closure.
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7 � Conclusion

Pressure difference-driven closure of infinitely long cylin-
drical holes is investigated numerically and analytically in 
Maxwell type nonlinear viscoelastic salts. Two models are 
considered for the viscosity: the power law and the Ellis 
model which assumes that pressure solution and dislocation 
creep operate independently. The latter prevents viscosities 
to reach infinite values and is more general by including both 
the first model and a grain size-dependent linear viscous 
regime. Plasticity is not considered in this study due to the 
high confining pressures encountered at depths larger than 
500 m and transient viscosity is also dismissed. A constant 
mean grain size is assumed in the salt body but the param-
eters for dislocation creep include the softening effect due 
to water-assisted grain boundary migration.

First, hole closure in power law-based viscoelastic models 
is considered and fully characterized initially. The transient 
evolution of hole closure is complex but its time dependency 
is well captured by the characteristic time θ, which is a mod-
ified version of the one proposed by Wang et al. (2015). This 
characteristic time describes the moment when half the drop 
from initial to steady-state closure velocity has occurred. A 
proxy for the closure velocity at the rim is proposed which 
has less than 3% inaccuracy for times smaller than 3θ, irre-
spective of the load or salt type. The time evolution of the 
stress and rate of deformation distributions are also investi-
gated and show the growth of a nonlinear viscously domi-
nated zone in the neighborhood of the hole.

Hole closure in Ellis-based Maxwell salts is also investigated 
and analytical solutions are provided for the instantaneous and 
steady-state cases. A load threshold is defined analytically to 
determine whether steady state is already approached initially 
in these salts. The time evolution of closure is analyzed and the 
characteristic time θ is shown to be also relevant to describe 
the viscoelastic relaxation occurring for this constitutive law. 
Finally, the evolution with depth and time of closure in an 
underground application is considered. The closure velocity at 
shallow depths is shown to reach steady state almost instantane-
ously due to pressure solution. This underlines the necessity of 
considering pressure solution as a deformation mechanism in 
rock salt. The characteristic times and load thresholds described 
in this study are efficient tools to better understand how closure 
occurs in salt cavities at depth and will hopefully bring some 
answers to engineers working in this field.
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Appendix

Steady‑State Closure Velocity for an Incompressible 
Ellis Fluid

From Eq. (15)

Making the change of variable D = −vRR
/
r2 , with

We get

For an Ellis model

So

Making another change of variables leads to:

which can be solved as:

where 2F1 is Gauss’s hypergeometric function. Using Euler’s 
hypergeometric transformation, and the relationship linking 
2F1 with the beta incomplete function B, we get:

which is valid for n > 2. Using the boundary condition at 
r = R and that �∗

II
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AD

/
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Initial Closure Velocity for an Incompressible 
Nonlinearly Viscoelastic Material Having a Power 
Law Viscosity Model

As established in Eq. (26):

For a power law viscosity model this becomes:

In t = 0+ , the stress is elastic: � = − Δp
(

R

r

)2

,

Initial Closure Acceleration for an Incompressible 
Nonlinearly Viscoelastic Material Having a Power 
Law Viscosity Model

Assuming closure is occurring, i.e., Δp < 0 , and deriving 
Eq. (56) according to time gives

but from the constitutive law we know that:

so
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In t = 0+ , the stress is elastic: � = −Δp
(

R

r

)2

,

Initially, vR
R
= −

1

AD

|Δp|n
n

 so:

Initial Closure Velocity for an Incompressible 
Nonlinearly Viscoelastic Material Having an Ellis 
Viscosity Model

As established in Eq. (26):

so for an Ellis viscosity model we have:

At t = 0+ , � = −Δp
(

R

r

)2

,

Initial Closure Acceleration for an Incompressible 
Nonlinearly Viscoelastic Material Having an Ellis 
Viscosity Model

Assuming closure is occurring, i.e., Δp < 0 , and deriving 
Eq. (67) according to time gives
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Using that D = − vRR
/
r2 and Eq. (10)

At t = 0+, � = −Δp
(

R

r

)2

,

so, finally
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