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1 Introduction

Accurate knowledge of the spatiotemporal evolution of 
damage within mechanically loaded structural elements is 
of great importance for a wide range of engineering fields. 
In this direction, the acoustic emission (AE) technique has 
been long ago recognized as an extremely valuable and 
flexible tool, which permits monitoring and even quantify-
ing dynamic processes within loaded structural elements. 
In specific cases, the data provided by the AE technique 
allow gaining some insight into the deformation mechanisms 
(Ohtsu 2010; Aggelis et al. 2013), and also they provide 
timely warning signals concerning forthcoming failure 
(Miller et al. 2005; Kourkoulis et al. 2018a, b).

In laboratory experiments, with specimens prepared 
according to the respective international standards and sub-
mitted to monotonically increasing load until the final frac-
ture, the AE technique allows recording of a number of AE 
hits ranging from several hundreds to several tenths or even 
hundreds of thousands, depending on the material, the exact 
size of the specimen and the loading mode. The AE hits rate 
(hits per second) and the energy release rate are some of the 
parameters that characterize the acoustic emission activity 
and can provide direct information concerning the time rate 
of generation of micro-cracks (Vidya et al. 2013; Moradian 
et al. 2016). Moreover, proper elaboration of data concern-
ing the average frequency and the rise time per amplitude (or 

simply the rise time) of the acoustic signals permits proper 
classification of the internal damage processes according to 
whether they are due to tensile micro-cracking (Mode-I) or 
due to shear (and friction) phenomena (Mode-II) or even due 
to a combination of the above, i.e., mixed-mode phenomena 
(Ohno and Ohtsu 2010; Aggelis 2011).

Usually the data recorded by the AE sensors during any 
type of experiment are represented and analyzed with the 
aid of plots using a logarithmic scale for the hits rate and the 
energy release given that the relation between these quanti-
ties and the respective mechanical ones (like for example 
load or stress) is strongly non-linear, at least after a specific 
load (or stress) threshold.

The aim of this study is to introduce an alternative way 
for the representation of the data concerning the acoustic 
activity, in an attempt to enlighten what happens during the 
very last loading steps just before the fracture of the speci-
mens. This alternative representation is based on a function 
of the inter-event times (denoted from here on as F function), 
which is plotted in terms of an “inverse” time arrow [some-
times denoted as “time-to-failure” (Li and Ma 2014)] using 
logarithmic scales. In fact, the term “time-to-failure” denotes 
the time parameter (tf − t), where tf is the time instant of 
fracture. The pros and cons of this representation are here 
analyzed taking advantage of data from three-point bending 
tests with specimens made of either concrete or marble.

2  An Alternative Way to Represent the AE 
Data: The Function F(τ)

Representation and elaboration of the acoustic activity (or 
in other words of the AE hits rate) is here achieved by intro-
ducing a time function F(τ), which reflects the average fre-
quency of occurrence of ΑΕ hits, in a time window of N 
consecutive hits.
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In order to derive the function F(τ), the inter-event time 
intervals

of a sufficient number of N consecutive hits are used. The 
role of the exact numerical value assigned to N will be dis-
cussed in Sect. 4 (Discussion and Conclusions). In Eq. (1) 
ti stands for the time instant of occurrence of the ith AE 
hit, and ti−1 stands for the time instant of occurrence of the 
previous one. Then, the mean value, τ, of the N inter-event 
times Δti is determined for each group of N consecutive hits, 
denoted from here on as τi, as follows:

Especially for τ1 the above formula is modified as follows:

The mean average frequency of occurrence, F, of the 
AE hits within a given time window between ti − N and ti is 
defined as the reciprocal of τi:

Each value F(τi) of the function F is paired with the aver-
age value t̄i of the time instants of the occurrence of the 
respective N hits. Therefore:

Subsequently, moving to the following (i + 1) AE hit, a 
new value of the function F is calculated, namely the F(τi+1), 
that stands for the time window of the following N consecu-
tive hits, from the moment ti+1 − N to the moment ti + 1, and 
so on.

To illustrate the potentialities and capabilities of the func-
tion F(τ), advantage will be taken of the data recorded by 
the acoustic sensors during some characteristic three-point 
bending tests. As a first step the data are represented and 
analyzed both according to the familiar way (i.e., time vari-
ation of the hits per second) and, also, according to the alter-
native representation (i.e., in terms of the function F(τ)), for 
comparison reasons. As a second step, additional examples 
are considered using exclusively the alternative represen-
tation in terms of F(τ), in order to highlight some crucial 
aspects of the damage processes. In order to ensure compa-
rability of the results, the function F(τ) was derived using 
the same number of consecutive hits (N = 15) for all tests.

(1)Δti = ti − ti−1, i = 2, 3,…

(2)�i =
tN+i−1 − ti−1

N
, i = 2, 3,…

(3)�1 =
tN − t1

N
.
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)

= �i
−1
, i = 1, 2,…

(5)ti =
1

N

N+i−1
∑

i

ti, i = 1, 2,…

3  Some Characteristic Applications

The first application studied refers to the three-point bend-
ing of a prismatic cement-mortar beam of rectangular 
cross-section and overall dimensions 190 × 45 × 45 mm3. 
The sample was prepared using a cement-mortar mixture 
containing ordinary Portland cement, sand of fine aggre-
gates and water in a ratio of 1:3:0.5, respectively (Ster-
giopoulos et al. 2015). The size of the fine aggregates was 
relatively small, ranging from approximately 0.6 mm to 
about 1.8 mm, thus resulting in a specimen of relatively 
low heterogeneity. The beam was loaded under load-con-
trol conditions at a constant rate equal to about 64 N/s. The 
load was applied monotonically up to the fracture of the 
specimen. A small preload of 0.2 kN was applied and the 
fracture load attained was Lf = 3.37 kN (Stavrakas et al. 
2016). The duration of the test was equal to 52 s.
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Fig. 1  a The time variation of the function F in juxtaposition to the 
respective evolution of the number of hits per sec, for a three-point 
bending test of a cement-mortar beam. The number of consecutive 
hits considered in order to determine the function F is N = 15. In the 
embedded plot, a detailed view of the time evolution of both the func-
tion F and the number of hits per second during the last 5 s of the test 
is shown; b the function F plotted against the parameter (tf − t) using 
logarithmic scales, in juxtaposition to the respective load induced. It 
is seen that for the time interval with 8 s<(tf − t) < 9 s, a power law of 
the form F = A(tf − t)−m perfectly describes the dependence of func-
tion F οn (tf − t), with m = 1.11
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In Fig. 1a, the time variation of the acoustic activity is 
plotted according to both the traditional approach (hits per 
second) and also according to the function F(τ), which, in 
fact, corresponds to the mean occurrence of ΑΕ hits. As it 
could be expected, the time evolution of the function F(τ) 
follows closely the respective evolution of the hits per sec. 
Both plots appear to consist of three well distinguishable 
parts: For the major part of the loading procedure, i.e., 
for the time interval with 0 s < t < 46 s, both plots increase 
almost linearly with a very low slope. During the next 5 s, a 
dramatic amplification of the acoustic activity is observed, 
leading both plots to a global maximum just 1 s before the 
macroscopic fracture of the beam, as it can be seen more 
clearly in the graph embedded in Fig. 1a. Finally, during the 
last second, the acoustic activity starts decreasing. It is obvi-
ous, that this very last loading stage should be studied more 
thoroughly, since it corresponds to the peak of the processes 
that eventually lead to macroscopic failure and the respective 
data are very densely packed. It is thus quite possible that 
critical information remains hidden.

In this context, the time evolution of the function F(τ) is 
plotted in Fig. 1b versus the (tf − t) variable, i.e., according 
to an “inverse” time arrow, using logarithmic scales (which 
offer a “magnified” view of what happens during the very 
last loading stage), in juxtaposition to the respective evolu-
tion of the load induced. Regarding the early stages of the 
loading procedure, it is observed that, for the time interval 
with (tf − t) > 22 s, the values of the function F(τ) increase 
(although with strong fluctuations), indicating the genera-
tion of new micro-cracks. Then, when 9 s<(tf − t) < 22 s, the 
function F(τ) is practically stabilized (with a certain degree 
of variability) corresponding perhaps to a stage of growth 
of the micro-cracks already generated during the previous 
time interval. In the next time interval, i.e., the interval with 
0.8 s<(tf−t) < 9 s [which corresponds to a “load-interval” 
ranging from about 85% to almost 99% of the maximum 
load (Lf) attained (Stavrakas et al. 2016)] the function F(τ) 
starts increasing again. Within the specific time interval a 
power law of the form:

seems to perfectly describe the time variation of the func-
tion F(τ), with m = 1.11. This stage is probably related to 
an intense rate of growth of the existing micro-cracks and 
a potential initiation of their coalescence, which lead to the 
formation of macro-cracks. During the next time interval, 
i.e., for (tf−t) < 0.8 s, it seems that the values of the function 
F(τ) are initially stabilized at a high level, exhibiting fluctua-
tions typical of unstable crack growth. After the (tf−t) = 0.3 s 
time instant the values of the function F(τ) start decreasing. 
This decrease is, probably, related to the fact that due to 
the formation and propagation of the fatal macro-crack (or 

(6)F = A
(

tf − t
)−m

macro-cracks) the strain energy available for the formation 
of new surfaces is consumed by the propagating front of this 
macro-crack and therefore there is no strain energy available 
to maintain a high rate of generation of new micro-cracks, 
resulting to decrease of the values of F(τ).

The second application considered refers again to a three-
point bending test with a prismatic cement-mortar beam. 
The difference is that although the beam has almost the 
same overall dimensions as previously (200 × 50 × 50  mm3), 
the size of the fine aggregates is bigger, ranging from 0.6 
to 3.0 mm, resulting in an increased degree of heteroge-
neity. The load was again applied monotonically at a rate 
of 35 N/s until the fracture of the beam at Lf = 3.65 kN. 
The function F(τ) for the specific test is plotted in Fig. 2a 
against the (tf − t) parameter using logarithmic scales. The 
plot of Fig. 2a exhibits the same qualitative characteristics 
with those of Fig. 1b, and could be again divided in more or 
less the same well distinguishable time intervals. The main 
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Fig. 2  a The function F plotted against the parameter (tf − t) using 
logarithmic scales, in juxtaposition to the respective load induced, for 
a three-point bending test of a cement-mortar beam with increased 
degree of heterogeneity. It is seen that for the time interval with 
0.4 s<(tf − t) < 4 s, a power law of the form F = A⋅(tf − t)−m perfectly 
describes the dependence of function F οn (tf−t), with m = 0.86; b 
The function F plotted against the parameter (tf−t) using logarithmic 
scales, in juxtaposition to the respective load induced, for a three-
point bending test of a Dionysos marble beam of very fine internal 
structure. It is seen that for the time interval with 0. 1 s<(tf − t) < 7 s, 
a power law of the form F = A(tf − t)−m perfectly describes the 
dependence of function F οn (tf − t), with m = 1.38
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difference is that the fluctuations observed during the first 
two time intervals (i.e., 4 s<(tf−t) < 15 s and (tf−t) > 15 s) 
are now much more intense, indicating the increased hetero-
geneity of the beam tested. Again, a power law of the same 
form with that of Eq. (6) perfectly describes the intermedi-
ate time interval (i.e., for 0.4 s<(tf−t) < 4 s), but now with 
m = 0.86.

As a third application, a three-point bending test with 
a prismatic beam made of Dionysos marble is consid-
ered. The overall dimensions of the marble beam were 
20 × 20 × 100 mm3. Dionysos marble is characterized by 
very fine internal structure resulting to a very low degree 
of heterogeneity, independently of the size of the speci-
men. The test was now implemented under displacement-
control conditions at a constant displacement rate equal to 
0.17 mm/s. The function F(τ) for the specific test is plotted 
in Fig. 2b, again versus the (tf−t) parameter using logarith-
mic scales. The qualitative characteristics of the plot are 
quite similar to those of the previous two tests; however, 
the fluctuations of the time variation of the function F(τ) 
are much smoother and of much lower amplitude, reflecting 
the extremely fine internal structure of the specific variety 
of marble (Kourkoulis et al. 1999). Again the intermediate 
portion of the plot (i.e., that with 1 s<(tf − t) < 7 s) is very 
well described by the power law of Eq. (6), with m = 1.28.

4  Discussion and Concluding Remarks

An alternative approach for representing and analyzing the 
data collected by the acoustic sensors, during mechanical 
loading of specimens made of brittle materials, like cement-
mortar beams and marble, was introduced, in terms of the 
so-denoted F(τ) function, which reflects the average fre-
quency of occurrence of ΑΕ hits, in a “sliding time window” 
of N consecutive hits. Concerning the numerical value of 
N, it is to be accepted that it is more or less an “arbitrary” 
choice. Indeed, it is not easy (or even permissible) to assign 
a specific numerical value to N. The choice depends on the 
specific test and the overall number of hits recorded during 
the whole duration of the test. The greater the overall num-
ber of hits recorded, the higher the value of N that can be 
adopted without shadowing critical details of the analysis. In 
fact, the value of N somehow describes the “resolution” of 
the analysis. Fortunately, the exact numerical value assigned 
to N does not significantly influence the results of the analy-
sis, assuming of course that N is a relatively small fraction of 
the total number of hits recorded during the test’s duration. 
In order to support the above point of view, the analysis 
for the first experiment discussed in the manuscript is here 
repeated, assigning to N two additional values, i.e., N = 10 
and N = 20 (recall that the analysis described in Sect. 3 was 
implemented using a value equal to N = 15). The results 

are plotted in Fig. 3. As it can be seen from this figure, all 
three plots are extremely close to each other and the over-
all conclusions drawn are not influenced at all. However, it 
is evident that decreasing the value of N results to slightly 
stronger local fluctuations while increasing the value of N 
results to smoother curves. Clearly, further research on the 
specific issue is required, in order to conclude whether an 
optimum number exists for the value of N and what this 
optimum value is.

The analysis of the experimental data in terms of the 
function F(τ) revealed that the acoustic activity at the critical 
time interval just before fracture of the specimen (exclud-
ing the very last second or seconds) obeys a power law. The 
scaling described in Eq. (6) as F = A(tf − t)−m is in agreement 
with the so-called accelerated deformation law, observed in 
seismology before main events (see for example De Santis 
et al. 2015, Guilhem et al 2013, Papazachos et al. 2014, 
Tzanis and Vallianatos 2003), where in an observed physical 
parameter Ω(t) a scaling with (tf− t)−m appears. The latter 
has been also observed in a number of rock fracture experi-
ments, where acoustic emissions or pressure-stimulated cur-
rents (Davidsen et al. 2017; Vallianatos and Triantis 2008) 
were monitored and recorded. In the laboratory scale, exper-
iments under uniaxial stress have shown that, a generalized 
expression of the well-known seismology Omori–Utsu law 
describes the rate of acoustic events before the failure point 
(Baró et al. 2013). Although similar conclusions concern-
ing the evolution of acoustic activity in wood specimens 
(indicating, however, an exponential rather a power law), 
were also reported by Brunner et al. (2006), it is obvious 
that additional research is required to ensure that the specific 
law describes larger classes of materials and specimens of a 
wider range of dimensions under different loading schemes.
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Despite of any limitations, the as above-defined function 
F(τ) allows for a more informative representation of the 
acoustic activity within a given time period. Indeed, accord-
ing to the traditional representation of the acoustic activity 
in terms of hits per second, the step is, by default, 1 s, or in 
other words there is only one piece of information for each 
step/second. On the other hand, adopting the F(τ) function 
the step is in fact the hit itself in combination with the num-
ber of consecutive N hits considered. In this way, more infor-
mation is provided for each second. This is achieved because 
the alternative representation is based on the concept of a 
“sliding time window”, the duration of which is variable 
depending on the inter-event times between successive hits. 
(In the first step of the analysis the N first hits, i.e., the hits 
from n = 1 to n = N are taken into consideration, in the sec-
ond step the hits from n = 2 to n = N + 2 are considered, in 
the third step the hits from n = 3 to n = N + 3, etc.)

To make the above point clear, the two representations 
[the traditional one and that in terms of the function F(τ)] are 
plotted in Fig. 4a in juxtaposition to each other, for the same 
set of data (i.e., those of the first experiment discussed in the 
manuscript), using for both plots logarithmic scales for the 
sake of a fair comparison. It is clear from Fig. 4a that the 
alternative representation based on the function F(τ) offers 
much more information, thus providing a deeper insight or, 
equivalently, a much “thinner” resolution of the time evolu-
tion of the acoustic activity.

The above-mentioned deeper insight is, obviously, 
assisted, by the fact that the function F(τ) is plotted ver-
sus the (tf − t) variable (the “time-to-failure”) on a log time 
scale, illustrating much more clearly the time evolution of 
the acoustic activity during the very last seconds (or even 
tenths of seconds) prior to the failure of the mechanically 
loaded specimens. It could be argued, perhaps, at this point 
that using logarithmic rather than natural scales for plotting 
the acoustic activity could result to distorted view of the 
trends of the quantities considered. This is, unfortunately, 
the penalty that has to be paid in case one wants to enlighten 
events at a specific narrow time interval (in the case studied 
here at the very last loading steps); however, in the applica-
tions considered in the present study this distortion does 
not hide critical details of the time evolution of the quanti-
ties considered. To make this point evident the same set of 
data used to plot Fig. 4a are plotted in Fig. 4b using natural 
scales. Considering Fig. 4a and Fig. 4b comparatively, it can 
be seen that the overall time evolution of both the function 
F(τ) and of the hits per second (in terms of the “inverse” 
time arrow, i.e., versus the (tf − t) parameter) exhibits the 
same qualitative trends: They increase almost for the whole 
duration of the test (although at different rates during various 
time intervals) and only during the last second their values 
start decreasing. This behavior is common for both the natu-
ral and the logarithmic representation; however, the latter 

provides a definitely more detailed view into the very last 
loading stages, balancing, thus, the loss of “common feel-
ing” for the time evolution which is, obviously, closer to the 
plots in terms of natural rather logarithmic scales.

Before concluding, it should be mentioned that the 
correlation of the four distinct phases exhibited by the 
F(τ) − (tf − t) plot is, as yet, somehow speculative. Indeed, 
the specific project (the data of which were discussed here) 
is still in full progress providing additional data supporting 
the conclusions presented in previous sections. This is seen 
in Fig. 5, in which the function F(τ) for a marble speci-
men under uniaxial compression is plotted, again versus the 
(tf − t) parameter, in logarithmic scales. It is, at least, very 
encouraging to note that the qualitative characteristics of 
this plot are in excellent agreement with the respective ones 
already discussed (gathered from three-point bending tests). 
Moreover, the slope of the plot in the respective third time 
interval is again described according to an excellent manner 
by Eq. (6) with an m-value equal to m = 1.20, very close to 
the value of m = 1.28 derived for the marble specimen under 
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three-point bending. In any case, additional characteristics 
of the acoustic events (like, for example, the energy and the 
duration of the acoustic events) must be taken into account, 
in order for a correlation between the acoustic activity and 
the internal damage processes (like, for example, genera-
tion of micro-cracks, crack propagation, coalescence of 
cracks, etc.) to be established. Obviously, for this goal to be 
achieved data from different experiments and a much wider 
range of materials must be considered.
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Fig. 5  Evolution of the F function for a uniaxial compression test of 
a prismatic marble specimen. The slope of the “linear” portion is now 
equal to − 1.20
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