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Abstract
A large gold reserve was recently discovered at Haveri district of Karnataka state of India where open-pit mining was planned 
to extract these deposits. Stability analysis for open-pit mine slope at this site is presented in the article. Extensive geological 
investigations and laboratory testing suggested high variability in geological features of discontinuities, rock mass quality 
and intact rock properties. Hence, it was decided to perform stability analysis of the rock slope using probabilistic approach 
along with deterministic approach. Deterministic analysis was carried out with average properties of rock, and reliability 
analysis of the rock slope was carried out using both traditional and advanced probabilistic methods. In traditional probabil-
istic method, rock mass strength properties were treated as random variables without considering spatial variation of rock 
properties and reliability index was evaluated by Monte Carlo (MC) simulation on augmented radial basis function-based 
response surface. In advanced probabilistic analysis, spatial variability of rock mass strength properties was considered by 
generating anisotropic random field using Fourier series method with spatial averaging over finite difference zones. Reli-
ability index was then estimated by performing MC simulation using random finite difference method. A comparison was 
provided between the results of stability analysis of slope from all these approaches. Rock slope was found to be stable in 
both deterministic and probabilistic approaches; however, the degree of stability predicted was different for both methods. 
Deterministic approach was found to be inappropriate to analyse the stability of slope having rock mass with variable proper-
ties. Further, reliability index and expected performance level of slope were highly underestimated by traditional probabilistic 
method as compared to advanced probabilistic method.
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RQD  Rock quality designation
RMR  Rock mass rating
Ei  Young’s modulus
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k  Number of random input vectors obtained 
from Latin hypercube simulation

Pf  Probability of failure
FOSobs  Observed value of FOS obtained from 

FLAC analysis
FOSsim  Simulated values of FOS obtained from 

response surface
NSE  Nash–Stucliffe efficiency
PBIAS  Percent bias
RSR  Ratio of root-mean-square error to stand-

ard deviation of observed data
PDF  Probability density function
R  Reliability index
�−1  Standard normal inverse
x, z  Horizontal and vertical coordinates of 2D 

slope model
w(x, z)  Gaussian random field function
μw  Mean of w(x, z)
σw

2  Variance of w(x, z)
Δx,Δz  Horizontal and vertical distances of a 

point from (x0, z0)
ACF  Autocorrelation function
�w(Δx,Δz)  Analytical form of ACF
VAR  Variance
SOF  Scale of fluctuation
δx, δz  Horizontal and vertical scale of 

fluctuations
�x, �z  Lag in horizontal and vertical directions
Dx, Dz  Rectangular zone size in FLAC model
wD(x, z)  Spatial average function of random field 

w(x, z) over zone of size Dx, Dz
γ(Dx, Dz)  Variance reduction factor
E[…]  Expected value
Var[…]  Variance value
Y1, Y2, Y3 …Yp  Discrete random variables ( p in number)
YGM  Geometric mean of discrete random 

variables
X  General 1D random field
D  Element length in 1D
XGM  Geometric average of X over D
ξ  Spatial coordinate in 1D
LAS  Local average subdivision
xe, ze  Centroid of the FLAC2D zone
wD(xe, ze)  Averaged rock property over the rectan-

gular zone defined by [xe −
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Lx, Lz  Length and width of rectangular region in 
which random field is generated

Re(…)  Real part of complex number
m, n  Summation indices of Fourier series
amn, bmn  Zero mean independent Gaussian random 

variables
σmn

2  Variance of amn, bmn

q(x, z)  Lognormal random field
μq  Mean value of lognormal random field
vq  COV of lognormal random field
μFOS  Mean FOS
VFOS  COV of FOS
ψ(r)  Radial basis function
r0  Radius of domain of compact support of 

RBF
λi  Coefficients for ith RBF
g(Z)  FEM/FDM model output with vector Z as 

input
∥ Z − Zi ∥  Euclidean norm (distance) of vector Z 

from Zi

d  Dimension of input vector
l  d + 1
b  l Constants in RBF approximation
P(Z)  Linear polynomial augmented to RBF
gn×1  Output vector obtained by solving g(Z) at 

Latin hypercube samples
An×n , Bn×m  Matrices involved in construction of RBF 

response surface
0  Zero matrix

1 Introduction

A large gold reserve was recently discovered at Ganajur vil-
lage, which is located in Haveri district in Karnataka state 
of India. A drilling programme was carried out at the site, 
which suggested an inferred resource of 1.53 million tones 
gold grading 3.79 g/t (approximately 122,000 oz of con-
tained gold). Most of the drill holes intersected significant 
gold mineralisation over a considerable width. A mineralised 
zone of 600 m along the strike direction and 120 m along the 
depth was discovered. Open-pit mining is planned at the site 
to extract gold deposits. One of the biggest challenges of the 
project is the stability analysis of open-pit slope because of 
large variability in geological features and rock properties 
at the site.

Rock slope stability is a very complex problem because 
of various types of uncertainties present in the rock mass 
properties. The uncertainties in rock mass are generally clas-
sified into three types, i.e., inherent uncertainty, statistical 
uncertainty and systematic uncertainty (Duzgun et al. 2002). 
These uncertainties are accounted for in deterministic analy-
ses by a certain factor of safety (FOS). This might ensure 
safe design for the structure, but a clear understanding of rel-
ative importance of input variables and failure mechanism of 
structure is not possible (Phoon and Kulhawy 1999). Studies 
are available in the literature regarding stability analysis of 
rock slopes using deterministic approach (Bhasin and Kay-
nia 2004; Pal et al. 2012; Tiwari and Latha 2016). Thus, 
it becomes necessary to include these uncertainties in the 
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assessment of stability of rock slopes. Probabilistic meth-
ods provide an efficient method to consider these uncertain-
ties in the stability analysis of rock slopes by assessing the 
performance of slope in terms of probability of failure (Pf) 
and reliability index. However, the application of probabil-
istic methods in the field of rock mechanics especially for 
the stability of rock slopes is not very common and limited 
research is available in this field.

Different types of probabilistic methods have been 
developed over the years to analyse the stability of vari-
ous geotechnical structures. These methods can broadly 
be divided into two types, one which ignores and other, 
which includes the spatial variation of rock mass proper-
ties. Reliability index for first method can be obtained 
via MC sampling after generating a response surface for 
response of system (FOS for slopes), but the spatial vari-
ability is ignored, whereas advanced probabilistic meth-
ods aim to capture the heterogeneity of the rock mass 
properties. This is incorporated in the slope by model-
ling rock mass properties as random field and assuming 
a suitable correlation function and scale of fluctuation 
(SOF). The magnitude of SOF determines the extent to 
which the random variables are significantly correlated 
(Vanmarcke 1983). Estimation of SOF is difficult since 
it requires large amount of test data and its value var-
ies from site to site. Since it is difficult to perform test-
ing for rock due to high cost involved and difficulties in 
interpretation of results, probabilistic analysis of real rock 
slopes is generally carried out by ignoring spatial vari-
ability of rock mass properties (Park et al. 2005; Duzgun 
and Bhasin 2009; Li et al. 2011). However, the studies 
conducted on soils slopes (Griffiths and Fenton 2000, 
2004; Griffiths et al. 2009; Suchomel and Mašín 2010) 
and some rock slopes (Hsu and Nelson 2006; Srivastava 
2012) indicate that ignoring spatial variability in rock 
mass properties may significantly affect the reliability 
index of the slopes. It can be concluded from literature 
review that limited studies are available regarding slope 
stability analysis for real rock slopes using probabilistic 
methods and most of the studies have applied traditional 
probabilistic approaches by ignoring spatial variability in 
rock mass strength.

The objective of this paper is to evaluate stability of a 
large rock slope using deterministic and different proba-
bilistic approaches and to describe the merits and demerits 
of each of these methods. Extensive laboratory tests have 
been carried out to estimate various rock properties using 
samples obtained from boreholes at different locations. Sta-
tistical parameters like mean, standard deviation, SOF are 
estimated using the test results. Deterministic analysis is car-
ried out by adopting average values of rock mass properties. 
In the first probabilistic approach namely traditional proba-
bilistic approach, augmented radial basis functions (RBF) 

are generated for the analysis and reliability index and Pf 
is estimated by MC simulation. In the second probabilistic 
approach, i.e., advanced probabilistic approach, reliability 
index and Pf  are estimated using random finite difference 
method (RFDM) implemented via Fourier series method. 
Results of different approaches are compared and insights 
gained are discussed.

2  Details of the Case Study

2.1  General Description

The area under the study known as Ganajur Main prospect 
is located in the Haveri district in north-western part of 
Karnataka state of India. The area surrounding the Gana-
jur Main prospect is known for ancient gold mining. Par-
ticularly evidences of old workings existed for the adja-
cent Karajgi block; however, the Ganajur Main prospect is 
the latest discovery made. A drilling programme was car-
ried out at the site, which suggested an inferred resource 
of 1.53 million tones gold grading 3.79 g/t (approximately 
122,000 oz of contained gold). Most of the drill holes 
intersected significant gold mineralisation over a con-
siderable width. A mineralised zone of 600 m along the 
strike direction and 120 m along the depth is discovered. 
The area is generally a gently undulating plain with few 
north–west–south–east trending small ridges. The average 
elevation difference is in the order of 50–60 m, and the 
landmass of the area is situated between the elevations of 
515–570 m above mean sea level (msl). The area enjoys 
a subtropical climate with temperatures ranging between 
18 and 40 °C. The rainfall in the region varies from over 
903 mm in west to less than 592 mm in east. Figure 1 
shows the photograph of the site. Figure 2 shows the loca-
tion map of the site.

2.2  General Geology

The Ganajur Main Deposit is located within the late 
Archaean western Dharwar Craton of Southern India and 
occurs as a part of the Ranibennur Group and in the Dhar-
war–Shimoga (or the Shimoga) greenstone belt. The Shi-
moga greenstone belt contains numerous banded cherty iron 
formations within a vast mass of greywacke. The eastern 
part of the iron formation is of sulphide facies containing 
mainly pyrite and arsenopyrite. The sulphide facies iron for-
mation is auriferous, and the Shimoga greenstone belt has 
been known for ancient artisanal gold mining, notably at 
Chinmulgund and Karajgi.

The mineralisation at Ganajur Main Deposit is hosted 
largely by greywacke and inter-bedded banded auriferous 
ferruginous chert (the banded iron formation), which are the 
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part of the greenstone Shimoga belt. The ferruginous chert is 
characteristic of sulphide facies, as pyrite, arsenopyrite and 
chalcopyrite occur as significant component. Gold minerali-
sation, occurring as disseminations and fine veinlets, dem-
onstrates close association with the strong sulfidation. The 
mineralisation is mainly strata bound, dominantly confined 
to the sulphide facies banded iron formation and is charac-
terised by strong sulphide mineralisation, silica breccia and 
minor quartz veining developed within a sulfidic chert unit. 
The gold mineralisation is epigenetic in nature but strata 
bound because it is confined to the cherty iron formation. 
The main gold zones form a moderately to steeply dipping 
tabular body trending north-west to north–north-west and 
dipping north-east. Fractures are filled with remobilised 
silica or quartz carbonate veinlets. The amount of gold is 
directly proportional to the amount of sulphides. The min-
eralisation dominantly occurs as disseminations with a small 
amount in fine veinlets. Figure 3 shows the geological map 
of the Ganajur main prospect.

Field observations, discontinuity surveying, core drill-
ing and laboratory tests are carried out for this study. Four 
exploratory boreholes were drilled using diamond core drill-
ing rig with 63.5 mm core diameter to investigate the joint 

conditions. The boreholes were drilled up to a depth ranging 
from 84.0 to 90.0 m from the existing ground level. Field 
core logging was done with description of layers, depth of 
ground water level, core recovery and rock quality designa-
tion (RQD). A total of 190 joints were measured, and major 
joint sets were identified using DIPS based on equal-area 
stereographic projection (Fig. 4). It was observed that there 
are four major joint sets (J1, J2, J3, and J4) at the site along 
with some random joint sets. The mean orientations (dip/
dip directions) of joints are J1—32°/038°, J2—40°/090°, 
J3—80°/180° and J4—80°/200°. Joint parameters such as 
the spacing, persistence, roughness, filling and aperture were 
determined in the field in accordance with ISRM-suggested 
methods (ISRM 1981). It was observed that joint parameters 
were highly varying at the site with high variations in joint 
spacing, roughness and alteration parameters. Most of the 
joints were found to be undulating with smooth to rough 
texture. Joints were found to be wet to damp in the upper 
part of rock mass, while joints were dry at higher depths. 
Joint spacing was varying from extremely close to wide at 
some locations. Unaltered fresh to slightly altered joints with 
infill were prevalent.

Fig. 1  Photographs of typical landscape in the Ganajur Main project area (SRK 2012). a Typical landscape looking north, b on the south-west 
border of the tenement, c on the old workings of Karajgi Block 3, d on the exposure of auriferous banded sulphidic chert
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Rock mass at the site is classified according to well-
accepted classification systems like RQD, Rock Mass Rat-
ing (RMR) and Geological Strength Index (GSI). Because 
of the variations in the intact rock properties, joint condi-
tions and joint set spacing at the site, it was not appropriate 
to specify a single value of rock mass classification rating 
and hence a range of rock mass classification ratings was 
estimated. Average value and range of the values of the 
rock mass classification ratings for the rock mass are sum-
marised in Table 1.

2.3  Laboratory Tests

Physical and mechanical properties of intact rock were 
determined through laboratory testing of samples collected 
from boreholes. As mentioned earlier, for the geotechnical 
investigation on the intact rock, four exploratory boreholes 
were drilled using diamond core drilling rig with 63.5 mm 
core diameter. The boreholes were drilled up to a depth 
ranging from 84.0 to 90.0 m from the existing ground level. 
A total of 237 core samples were collected from the bore-
holes, and various laboratory tests were conducted. Uniaxial 

Fig. 2  Location map of the Ganajur Main prospect (SRK 2012)
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compressive strength (UCS), Young’s modulus (Ei), Pois-
son’s ratio (ν), tensile strength (σt) and unit weight (γ) were 
determined through the tests conducted according to the 
suggested methods (ISRM 1981). Variability in the rock 
properties was observed, and hence ranges of the proper-
ties estimated in the laboratory testing are given in Table 2. 
Figure 5 shows the pictures of rock samples before testing 
and after testing for UCS test.

3  Slope Stability Analysis Using 
Deterministic Method

For the stability analysis of rock slope, it is important to 
analyse the possibility of any structurally controlled failures. 
Hence for the current study, a kinematic analysis has been 
carried out using mean joint set orientations of major joint 
sets to analyse the stability of slope and benches against var-
ious structurally controlled failures, i.e., planar, wedge and 
toppling failures. Figure 6 shows the possibility of kinematic 
failures for the typical steepest bench, i.e., with maximum 

bench angle of 68° against different types of structurally 
controlled failures, i.e., planar (Fig. 6a), wedge (Fig. 6b) and 
toppling (Fig. 6c) failures. It is observed that the possibility 
of any structurally controlled failures along the slope and 
benches is nil.

Since, for this slope, possibility of structurally controlled 
failures does not exist and further the slope dimensions are 
large as compared to joint spacing, stability analysis of 
the slope has been carried out using equivalent continuum 
approach. Rock slope stability analysis is performed in two-
dimensional explicit finite difference software FLAC (Fast 
Lagrangian Analysis and Continua) in plane strain mode. 
The rock slope is discretised into total of 12,349 square finite 
difference zones some of which reduces to triangular zones 
at the slope face boundary as shown in Fig. 7. The bottom 
boundary of slope is fixed in both horizontal and vertical 
directions, while the side boundaries of slope are fixed only 
in horizontal direction and vertical movement is allowed. 
Rock mass yielding was defined using Hoek–Brown strength 
criterion. The rock mass strength properties are derived from 
intact rock strength parameters and GSI using the relations 

Fig. 3  Geological map of Ganajur Main prospect (SRK 2012)
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provided by Hoek et al. (2002). Summary of rock mass prop-
erties used in the stability analysis is given in Table 3. The 
FOS of slope is estimated by shear strength reduction (SSR) 
technique.

FOS obtained from deterministic analysis is 3.84. The 
slip surface can be seen by plotting maximum shear strain 
increment contours as shown in Fig. 8. This plot shows the 
toe of slope having high concentration of shear strain rate 
having a magnitude of 2.5E−06, and thus failure would initi-
ate at this point and will propagate upwards. It is observed 
that FOS is higher than the target FOS, i.e., 1.5 and hence 
slope seems to be highly stable using deterministic analysis.

4  Slope Stability Analysis Using 
Probabilistic Methods

While the variability in rock mass properties cannot be taken 
into account in deterministic analysis, probabilistic methods 
are generally aimed at statistical characterisation of output 
(FOS for this case) for a given input statistics, i.e., rock mass 

Fig. 4  Stereographic projections 
of major joint sets—J1, J2, J3 
and J4 at the site with mean 
orientations

Table 1  Summary of rock mass classification ratings for slope

Classification Range Average Description

Core recovery 27–100 63.5 –
RQD 10–90 50 Very poor–good
RMR 33–71 54 Poor–good
GSI 28–65 50 Disintegrated–blocky

Table 2  Statistical moments of the intact rock properties present at 
the site

Min. minimum, Max. maximum, SD standard deviation

Property Average Min. Max. SD

Unit weight (kN/m3) 27.20 22 30 1.33
Young’s modulus (GPa) 9.14 2.47 16.93 4.45
UCS (MPa) 56.5 12.62 151.2 35.01
Poisson’s ratio 0.2 0.15 0.33 0.068
Tensile strength (MPa) 9.6 3.89 15.21 3.38
Hoek–Brown parameter (mi) 15 12 18 1
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properties. The stability of slope is defined in terms of Pf/
reliability index instead of a FOS which is necessary owing 
to the uncertainties in rock mass properties. In this section, 
assessment of stability of the slope using two different types 
of probabilistic methods is carried out, i.e., by ignoring spa-
tial variability and by considering spatial variability of rock 
mass properties.

4.1  Traditional Probabilistic Methods

In this method, reliability index of slope is estimated by 
treating input parameters as random variables and spatial 
variability in rock mass properties is ignored. There are two 
commonly adopted approaches in traditional probabilistic 

methods: the most probable point-based approaches and the 
sampling-based approaches. Most probable point approach 
involves searching a design point in input space with an 
objective depending on method adopted (FORM/SORM) 
(Ang and Tang 1975). This approach divides the input space 
into safe region and unsafe region. A performance function, 
i.e., Y = g(Z) where Z is vector of input variables required 
to obtain the FOS. The input space for which input values 
yield FOS less than 1 is called failure region. It involves 
calculation of derivatives of performance function and hence 
generally adopted where an explicit expression of the perfor-
mance function can easily be obtained such as slopes with 
simple geometry. Stability analysis of slopes with complex 
geometries and constitutive behaviour is generally carried 

Fig. 5  Photographs of the samples used for UCS testing of rock a before testing and b after testing
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Fig. 6  Kinematic analysis using mean orientation of joint sets a planar failure, b wedge failure, c toppling failure
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out using numerical programs, and this approach cannot be 
used for such cases.

The sampling-based approaches use MC sampling/Latin 
hypercube sampling (LHS). It involves generating random 
input vectors ( Z1,Z2,… ,Zk) from input variable space (rock 
properties for this case) and repeated calculation of the FOS 
is carried out. This is easy to be implemented in numerical 
programs but is computationally expensive and time con-
suming as it requires large number of runs. One of the meth-
ods to reduce this computational effort is response surface 
method—a simpler explicit function is developed which acts 
as surrogate to actual input(rock properties)–output (FOS) 
relationship. This is also known as meta-modelling tech-
nique. Augmented RBF-based response surface is adopted 
in this study since its accuracy is higher for both linear and 
nonlinear responses.

As mentioned earlier, rock mass strength is defined using 
Hoek–Brown criterion for the current study and hence esti-
mation of FOS for the slope requires different rock mass 
properties, i.e., Hoek–Brown constants ( mb, sb ), deformation 
modulus (Em) and intact rock UCS. All of these important rock 
mass properties, i.e., mb, sb,Em required to estimate FOS are 
related to rock mass classification rating GSI and intact rock 
properties, i.e., mi,Ei by well-accepted relations (Hoek et al. 

2002; Hoek and Diederichs 2006). Hence, the rock mass clas-
sification rating GSI and intact rock properties, i.e., mi,Ei and 
UCS considered to be random variables in the present study. 
Since the rock mass properties can be obtained with intact 
rock properties and GSI, a single realisation of mi,Ei , GSI 
and intact rock UCS can be understood as an indirect single 
realisation of rock mass properties, i.e., mb, sb , Em and intact 
rock UCS required to estimate FOS of the slope. Statistical 
parameters of GSI and intact rock parameters (input random 
variables) are given in Tables 1 and 2, and distributions of 
these random variables were assumed to be lognormal as sug-
gested in the literature (Ching et al. 2011). Figure 9 shows the 
histogram of UCS data for intact rock and lognormal curve 
fitting over these data. Rest all input parameters are treated 
as deterministic at their mean values. Space filling design, 
LHS, is adopted to obtain k vectors from input parameter dis-
tributions (Montgomery 2001). These Latin hypercube sam-
ples of intact rock properties and GSI are converted into rock 
mass properties and input in deterministic FLAC-2D model 
as shown in Fig. 7, and FOS is calculated for each of them. 
Seventy-five input vectors were utilised for response surface 
construction, and its methodology is outlined in appendix. A 
compactly supported RBF type II (Wu 1995) augmented with 
linear polynomial is adopted for the response surface. The 

Fig. 6  (continued)
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response surface can then be constructed by either consider-
ing rock mass properties or intact rock properties as input; 
however, to reduce computational effort during estimation 
of probability of failure, the response surface is constructed 
which requires intact rock parameters and GSI as input and 
gives FOS as output directly. Hence, the requirement of deter-
mining rock mass properties for each random realisation of 
intact rock properties is removed during probability of failure 
estimation. It is to be noted that relations provided between 
intact rock and rock mass properties by Hoek et al. (2002) and 
Hoek and Diederichs (2006) are implicitly embedded in the 
response surface.

The response surface’s accuracy is determined before cal-
culating the Pf as it is a surrogate model. Since errors at the 
sample points (input vectors) are zero for RBF meta-models 
(Krishnamurthy 2003), 25 off sampling points are generated 
and FOS is calculated for them. FOS obtained from this is 
denoted as observed value  (FOSobs). These 25 off sample 
points are then also substituted in response surface, and FOS 
is calculated and is denoted as simulated values  (FOSsim). 
The accuracy of the response surface is then determined on 
the basis of three quantitative indices, i.e., Nash–Sutcliffe 
efficiency (NSE), percent bias (PBIAS) and the ratio of root-
mean-square error to standard deviation of observed data 
(RSR) as recommended by Moriasi et al. (2007). These indi-
ces are defined as

(1)NSE = 1 −

� ∑k

i=1

�
FOSobs

i
− FOSsim

i

�2
∑k

i=1

�
FOSobs

i
− FOSmean

i

�2
�

(2)PBIAS =

�∑k

i=1

�
FOSobs

i
− FOSsim

i

�
∗ 100

∑k

i=1

�
FOSobs

i

�
�

Fig. 7  Finite difference grid used for slope stability analysis

Table 3  Rock mass properties used for deterministic analysis

Property Value

Unit weight (kN/m3) 27.20
Young’s modulus (GPa) 2.81
Poisson’s ratio 0.2
Hoek–Brown frictional parameter (mb) 2.515
Hoek–Brown cohesive parameter (sb) 0.0039
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The performance indices for the response surface con-
structed for this slopes are mentioned in Table 4. It can be 
observed that the performance of response surface devel-
oped is Very Good according to all the indices and hence 
reliability index of the slope is estimated using this response 
function.

It is required to estimate the reliability index estimation of 
probability density function (PDF) and statistical parameters 

(3)RSR =

��∑k

i=1

�
FOSobs

i
− FOSsim

i

�2�

��∑k

i=1

�
FOSobs

i
− FOSmean

i

�2�

Fig. 8  Shear strain contour for the slope in deterministic approach

Fig. 9  Best-fit probability distribution for uniaxial compressive 
strength of intact rock

Table 4  Performance of RBF-
based response function based 
on different criteria

Index Value Performance

NSE 0.9992 Very good
PBIAS − 0.2780 Very good
RSR 0.0275 Very good
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of FOS. Now MC simulation is conducted directly on the 
evaluated response function by substituting randomly real-
ised values of input parameters, i.e., UCS, mi, Ei and GSI. A 
total of  106 MC simulations were carried out for this slope, 
and number of simulations which results in value of FOS 
less than one (failure criterion) divided by total number of 
simulations is defined as Pf. Figure 10 shows the MC simula-
tion and best-fit lognormal curve for the FOS in this method. 
Reliability index (R) is then calculated as

where μFOS is mean FOS and VFOS is CV of FOS. Table 5 
gives detailed results of statistical parameters of FOS, reli-
ability index, Pf and expected performance level for the 
slope estimated using this method. It can be observed that 
mean FOS is close to the FOS value estimated from deter-
ministic analysis. Although the FOS is much higher than the 

(4)
R =

ln

�
�FOS√
1+V2

FOS

�

�
ln(1 + V2

FOS
)

target FOS still the expected performance level of the slope 
is Above Average. This is due to high coefficient of variation 
(CV) of the FOS for the slope due to high variability in rock 
properties. This shows that it is important to consider vari-
ability in rock properties and to evaluate stability of slopes 
in terms of reliability index and Pf along with FOS instead 
of FOS alone.

4.2  Advanced Probabilistic Methods

As mentioned earlier, neglecting spatial variability of 
strength parameters of rock mass may lead to significant 
underestimation/overestimation of Pf and reliability index, 
depending on amount of variability in rock mass prop-
erties. Random fields are usually adopted to model spa-
tial variability in rock properties of the slope. One of the 
important components of random field characterisation is 
autocorrelation function which provides the measure of 
correlation between same rock properties at two different 
spatial locations as function of distance. In 2D isotropic 
random field, correlation between two points only depends 
on absolute distance between them and not on the orienta-
tion relative to each other. This is not the usual case with 
many geotechnical problems since correlation between 
strength properties is generally different in horizontal and 
vertical direction. Thus, anisotropic 2D stationary random 
field is adopted for the present study in which correlation 
between two locations is defined as

where �w(Δx,Δz) is autocorrelation function, w (x, z) is the 
random field—a function of horizontal and vertical coor-
dinates (x, z), Δx,Δz are horizontal and vertical distances 
from (x, z), COV is covariance and VAR is variance. Two 
widely used correlation functions are single exponential and 
squared exponential. For simplicity, single exponential 2D 
autocorrelation model is adopted and can be written as

where δx and δz are horizontal and vertical SOFs, respec-
tively. It is a measure of distance within which properties 
are significantly correlated (Vanmarcke 1983). The autocor-
relation model is a function of the lag 

(
�x = |Δx|; �z = |Δz|) . 

Equation 6 is also known as separable Markov correlation 
model. Small values of δx and δz lead to domain being cor-
related only till shorter distances resulting in rougher ran-
dom fields, and for increasing values of SOFs, the spatial 
distribution of rock property becomes smoother, i.e., less 
spatial variability. Directional influence on extent of correla-
tion has also been accounted. There are number of methods 

(5)�w(Δx,Δz) =
COV[w(x, z),w(x + Δx, z + Δz)]

VAR[w(x, z)]

(6)�w(Δx,Δz) = exp

(
−
2|Δx|
�x

−
2|Δz|
�z

)

Fig. 10  Simulated data and best-fit probability distribution for FOS in 
traditional probability method

Table 5  Summary of the results obtained from traditional probabilis-
tic method analysis

Mean FOS 3.74
COV of FOS (%) 33
Reliability index 3.94
Probability of failure, Pf 5.38e−04
Expected performance level (U.S. Army Corps of 

Engineers 1999)
Above average
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to generate realisations from a random field (Fenton and 
Griffiths 2008). In this paper, we have discretised random 
field through Fourier series method (Jha and Ching 2013). 
This method is suitable for large domain random fields with 
short correlation lengths.

4.2.1  Estimating Scale of Fluctuations

SOFs (δx, δz) are site dependent and are difficult to estimate 
if the data points collected are not closely spaced. SOFs also 
vary for different rock types at a particular site because of the 
different formation process of various rock types, and thus 
different spatial correlation is expected. Ching et al. (2011) 
postulated SOFs of strength of sedimentary rock being equal 
to those for the forming soils. Two procedures are reported 
in the literature for the estimation of SOF from the available 
data. First is maximum likelihood method which involves 
assuming different sets of numerical values of parameters of 
proposed autocorrelation function (ACF) model, and the set of 
parameter values which maximises the maximum likelihood 
function are considered optimal. The second method is curve 
fitting method proposed by Vanmarcke (1983), who suggested 
that the parameters of ACF must be adjusted so as to best fit 
the actual sample correlation coefficients obtained from the 
measured data, i.e., fitting theoretical correlation model to the 
experimental correlation. It is required that data point must be 
equally spaced which acts as a disadvantage for curve fitting 
method in this case. Since test data points are unequally spaced 
in the slope domain, maximum likelihood method is adopted 
to estimate ACF parameters. The data point values along with 
their spatial locations are listed in Table 6.

Figure 11 shows the contour of likelihood function evalu-
ated for probable ranges of �x and �z in log scale. It is maxim-
ised for values of δx = 1.67 and δz = 64. These values of SOFs 
of UCS are valid only for this site, and it matches well with 
the ranges specified in Ching et al. (2011) for sedimentary 
rocks. These values of SOFs will be used by random field 
simulation of UCS as well as those of mi and Ei. Reason 
for this is similar to as explained by Fenton et al. (2005) 
for soil properties, i.e., the spatial correlation structure for 
various soil parameters is similar because they are governed 
by same set of factors like stress history, geologic conditions 
and source materials. Furthermore, it is also assumed that 
SOFs of intact rock property (i.e., �x and �z calculated above) 
and those of rock mass are same (Ching et al. 2011).

4.2.2  Local Averaging of Random Field

In continuum softwares such as in finite difference software, 
it is required to assign one single value to each zone. Hence, 
an average value of the field over the element needs to be 
evaluated. It can be obtained by integration over the rectan-
gular zone as

where wD(x, z) is spatial average of the Gaussian field w(x, z) 
over the rectangular zone of size Dx and Dz. wD(x, z) has the 
same expected value as that of w(x, z) as shown in Eq. 8a. 
But the variance gets reduced by certain factor γ(Dx, Dz) 
called variance reduction factor as shown in Eq. 8b.

(7)wD(x, z) =
1

DxDz

x+Dx∕2

∫
x−Dx∕2

z+Dz∕2

∫
z−Dz∕2

w(x, z)dzdx

Table 6  Variation in uniaxial compressive strength of intact rock with 
sample extraction location

Borehole Horizontal coordinates Depth UCS 
 (MPa)

x (m) y (m) z (m)

GT01 16,39,984.00 5,43,915.00 17.5 21.22
21.5 20.81
25.5 12.62
27.5 34.8
40 30.74
43.5 82.33
62.55 31.16
69.5 13.82
70.5 43.65
82.75 30.14

GT02 16,40,059.00 5,43,961.00 12.5 17.46
13.75 58.38
17.5 29.1
19.55 53.26
24.25 70.03
33.73 82.01
34.5 92.92
47 84.99
49.75 103.04
67.5 43.36
81.25 84.43

GT03 16,39,913.00 5,44,075.00 17 54.73
23.5 28.2
26.25 136.94
28.5 75.48
53 151.17
54.5 50.91
83 85.17

GT04 16,39,992.00 5,44,057.00 16.5 34.8
32 32.75
58.5 119.82
76.5 37.29
81.75 37.66
86.5 34.24



2167Stability Analysis of a Large Gold Mine Open-Pit Slope Using Advanced Probabilistic Method  

1 3

where E and Var denote expected value and variance, respec-
tively, σw

2 is the variance of w(x, z). For the autocorrelation 
function that is separable and symmetric in all the quadrants, 
like the function adopted in Eq. 6, γ(Dx, Dz) is given by

Since strength of geo-materials is dominated by its low 
strength domains, Fenton and Griffiths (2008) recommended 
geometric mean for estimating overall strength as geometric 
mean weighs more for low values as compared to high values. 
Geometric mean YGM is obtained by taking pth root of product 
of p non-negative random variables ( Y ). For discrete random 
variables, it is defined as

For 1D random field X , geometric average XGM over an 
element of length D is expressed as

(8a)E
[
wD(x, z)

]
= E[w(x, z)]

(8b)Var
[
wD(x, z)

]
= �2

w
�
(
Dx,Dz

)

(9)

�
(
Dx,Dz

)
=

4

D2
x
D2

z

Dx

∫
0

Dz

∫
0

(||Dx
|| − �x

)(||Dz
|| − �z

)
�
(
�x, �z

)
d�xd�z

(10)YGM =
(
Y1, Y2, Y3,… , Yp

)1∕p

(11)XGM = exp

⎛⎜⎜⎝
1

D

D

∫
0

ln(X(�))d�

⎞⎟⎟⎠

where ξ is spatial coordinate.
For a lognormal random field X, its logarithm will be nor-

mally distributed. This implies that geometric mean in original 
space gets transformed into arithmetic mean in logarithmic 
space expressed as (similar to Eq. 10).

After evaluating arithmetic average in logarithmic 
space, it is transformed back into original space by taking 
exponential.

Fenton and Vanmarcke (1990) developed a procedure 
called Local Average Subdivision (LAS) which is an effi-
cient algorithm for generating spatially averaged random 
fields. One limitation of LAS is that it can be used only for 
equally spaced rectangular cells. Spatial averaging can also 
be performed in Fourier discretisation scheme with the flex-
ibility of dealing with non-rectangular cells (Jha and Ching 
2013). For the current study, spatial averaging with Fourier 
discretisation was used.

4.2.3  Random Field Modelling

For the present study, the random field is assumed as station-
ary which implies that mean 

(
�w

)
 and standard deviation 

(σw) of rock property in consideration do not change within 
distance (i.e., remains same throughout the slope) and there 

(12)ln(XGM) =
1

D

D

∫
0

ln(X(�))d�

Fig. 11  Contour of likelihood 
function evaluated for probable 
ranges of �

x
and �

z
 with δx in 

log scale
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are no irregular fluctuations. This assumption greatly facili-
tates in modelling the random field. The numerical analysis 
is performed in FLAC2D software with slope geometry as 
given in Fig. 7.

Zero mean stationary Gaussian random field is simulated 
first, and it is then converted to Gaussian field with mean of 
rock property. Further exponential of this stationary Gauss-
ian field is taken to obtain lognormal random field. Proce-
dure to simulate zero mean stationary Gaussian random field 
is given below.

wD(xe, ze) is the averaged rock property over the rectangu-
lar zone defined by [xe −

Δx

2
, xe +

Δx

2
] and [ze −

Δz

2
, ze +

Δz

2
] 

where xe and ze denote the centroid of the zone. Ching et al. 
(2011) derived an expression for obtaining wD(xe, ze)

where Lx and Lz are length and width of rectangular region 
in which random field is generated, Re is the real part of the 
complex number and amn and bmn are zero mean independ-
ent Gaussian random variables with variance σmn

2   obtained 
through Fourier series expansion with summation indices 
m, n and it depends on variance of random field σw

2 as

For a lognormal field q(x, z) having mean value μq and 
CV vq, the mean and standard deviation in logarithmic space 
would be

Now the random field log (q(x, z)) − μw will be a zero 
mean stationary Gaussian random field with standard devia-
tion as σw. These locally averaged value of rock property 
for each zone is calculated using Eq. 13, and it is con-
verted back to original space by performing the operation 
exp[μw + wD(xe, ze)]. From Eq. 11, it can be seen that this 
value would be geometric mean of lognormal random field.

4.2.4  MC Simulation and Evaluation of Reliability Index

In this section, the results of full nonlinear RFDM are eval-
uated. First step in RFDM is to generate locally averaged 

(13)

w
D

(
xe, ze

)
=

−L
x
L
z

ΔxΔz�2
Re

{
∞∑

m=−∞

∞∑
n=−∞

(
a
mn

+ ib
mn

mn

)

× exp

(
i2m�xe

L
x

+
i2n�ze

L
z

)
sin

(
m�Δx

L
x

)
sin

(
n�Δz

L
z

)}

(14)
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q
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�
log

�
1 + v2

q

�

values of rock mass properties and assigning them in respec-
tive zones in slope geometry. This analysis is repeated num-
ber of times as a part of MC simulations. Each realisation 
of MC simulation involves same mean, standard deviation 
and correlation length of input parameters, i.e., rock mass 
properties, but the spatial distribution of the properties will 
vary for different realisation as shown in Fig. 12. Numerical 
calculation has been carried out using FLAC2D for each 
MC simulation. The statistical characterisation of FOS is 
done after a sufficient number of MC simulations have been 
conducted. Pf can be computed after counting number of 
realisations leading to FOS less than one and dividing it by 
total number of realisations.

Since the slope geometry in this paper is large, it would 
not be computationally feasible to run these many MC sim-
ulations realisations. Therefore, MC simulations are per-
formed till the mean and standard deviation of FOS become 
approximately constant. As shown in Fig. 13a, b, the values 
of mean and standard deviation almost converged at 420 
realisations. A probabilistic distribution is fitted to the FOS 
data, and then the fitted distribution is used to predict fail-
ure probability (Fenton and Griffiths 2008). In this method, 
we assume that the fitted distribution continues to represent 
response of the system at the tails. Lognormal distribution 
is best fit to FOS data as shown in Fig. 14, and thus the reli-
ability index is computed according to Eq. 4.

Results are mentioned in Table 7. It was observed that 
mean FOS was much above the target FOS of 1.5. CV of 
FOS was as high as 21% but it is much smaller than tradi-
tional probabilistic method. Expected performance level was 
found to be High which shows that slope is stable, and even 
though the bench angles are high still the slope seems to be 
highly stable and no slope flattening is required.

5  Comparisons of Results

It can be observed from the analysis that the level of com-
putational complexity encountered increases as we move 
from deterministic to advanced probabilistic method. It must 
be noted that among all the methods used in the analysis, 
advanced probabilistic method represents the most realistic 
analysis of slope stability (Griffiths et al. 2007) and hence 
conservative/unconservative terms will be referred with 
respect to RFDM results.

It was observed that mean factors of safety obtained from 
all the analysis were more or less found to be the same. Slight 
difference was observed for factors of safety with maximum 
value observed for deterministic approach and minimum 
value for advanced probabilistic method. The percentage dif-
ferences in mean FOS for traditional and advanced probabil-
istic method were 2.5 and 8%, respectively, when compared 
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Fig. 12  Variation of spatial 
distribution of the rock mass 
properties for different Monte 
Carlo simulation realisation

Fig. 13  Convergence of different statistical parameters of FOS in advanced probabilistic method a mean FOS and b standard deviation of FOS
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to deterministic approach. However, the expected stability 
level or performance level of the slopes were different for 
different methods. The stability of slope for deterministic 
approach is determined on the basis of the comparison of 
estimated FOS with the target FOS, and it was observed 
that the slope is “highly stable” since the estimated FOS, 
i.e., 3.84, is much higher (more than double) than the target 
FOS, i.e., 1.5. However, predicting the stability of slope on 
the basis of mean FOS could be inappropriate if the rock 
mass properties variability is high in the slope. As the vari-
ability of rock mass was incorporated in the analysis using 
traditional probabilistic method, the expected performance 
level was found to be “Above Average”. The reason is the 
consideration of CV of FOS in the estimation of reliability 
index which is a criterion to estimate stability level of slope 
in probabilistic method instead of mean FOS in deterministic 
approach. This shows the difference in the expected level of 
stability of slope by ignoring and considering uncertainties 
in rock mass properties.

Another important factor is regarding the consideration 
of spatial variability of rock mass strength in the slope. 
Figure 15 shows a comparison between PDFs of FOS for 
both traditional and advanced probabilistic methods. It was 

observed that for the traditional probabilistic method, the 
mean FOS was very slight, i.e., 5% overestimated while the 
CV of FOS was highly overestimated, i.e., approximately 
37% as compared to advanced probabilistic method. This 
can be seen in Fig. 15 that both methods are showing almost 
same mean FOS while the spread in PDF was much higher 
for traditional method. This difference in the CV of FOS 
leads to the considerable underestimation of reliability 
index, i.e., approximately 34% by traditional probabilis-
tic method. This can be attributed to the fact that variance 
reduction takes place during local averaging in Gaussian 
fields. Adoption of lognormal random field reduces both 
mean and standard deviation during spatial averaging 
(Huang and Griffiths 2015) leading to decrease in Pf. It can 
be observed that PDF of random field analysis results is 
less spread out as compared to random variable analysis, 
which are in accordance with the results of rock foundation 
analysis of Al-Bittar and Soubra (2016), which states that 
as correlation length increases, CV of the output of system 
tends to a maximum constant value. This can be explained 
as each realisation of random variable is perfectly correlated 
(same value at all spatial locations of rock mass), it repre-
sents homogenous rock mass whose strength values vary 
from low to high according its PDF giving rise to highly 
variable output, i.e., FOS. For random field analysis, spatial 
correlation is introduced, which results in different strength 
values of rock mass at different spatial locations. A single 
realisation of random field generates weak and strong zones 
of rock mass whose position changes from one realisation to 
other. The extent of these weak and strong zones depends on 
correlation structure of the random field. This can be inter-
preted as different realisations of heterogeneous rock mass 

Fig. 14  Simulated data and best-fit probability distribution for FOS in 
advanced probability method

Table 7  Summary of the results obtained from advanced probabilistic 
method analysis

Mean FOS 3.52
COV of FOS (%) 21
Reliability index 5.95
Probability of failure, Pf ≈ 0
Expected performance level (U.S. Army Corps of Engineers 

1999)
High

Fig. 15  Probability density functions of factors of safety for the slope 
using both traditional probabilistic method and advanced probabilistic 
method
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Fig. 16  Different slip circles 
seeking the path of least resist-
ance in random field analysis
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(zones of strong and weak rock mass distributed throughout 
the slope). Analysis of such a slope reduces the FOS vari-
ability as compared to FOS variability resulting from tradi-
tional probabilistic analysis (realisations of weak and strong 
homogenous rock mass). The failure surface/slip surface 
seeks out the path of least resistance through heterogene-
ous rock mass as shown in Fig. 16 for different realisations 
of random field analysis of slope. As the correlation length 
further decreases, rock property will vary rapidly in nearby 
locations making the failure path become more and more 
tortuous and larger in length giving approximately similar 
values of FOS for each realisation which reduces the CV of 
the FOS (Griffiths et al. 2007; Al-Bittar and Soubra 2016).

6  Conclusions

Stability analysis of a large rock slope was performed using 
three methods—deterministic, traditional probabilistic and 
advanced probabilistic methods. Slope was found to be sta-
ble in all the approaches according to their defined criteria; 
however, the degree of stability predicted by all the methods 
was different. It was observed that it is better to evaluate the 
stability of slope in terms of reliability index and Pf along 
with FOS instead of FOS alone. While the mean FOS for 
the slope was more or less the same for all the approaches, 
expected stability level or performance level of slope was 
different for probabilistic approach as compared to deter-
ministic approach due to ignorance of uncertainty in rock 
mass strength properties in deterministic approach. It was 
observed that probabilistic method ignoring spatial vari-
ability in rock mass strength properties underestimated the 
reliability index and expected performance level of slope. 
Hence, it was concluded that although extensive geologi-
cal and laboratory investigation is required and method is 
computationally complex, advanced probabilistic method 
should be used as it is able to model actual failure mecha-
nism, i.e., slip surface seeking path of weakest link. It was 
also concluded that slope was stable despite its steep bench 
angles and no further flattening or external reinforcement 
is required.

7  Suggestions for Future Work

For the current study, the stability analysis of slope is car-
ried out using continuum approach which is valid when the 
rock mass is more moderately to heavily jointed and the 
rock mass strength is approximately isotropic. However, the 
approach described in the current study should not be used 
where the discontinuity spacing is large as compared to the 
dimensions of rock slope or stability is more governed by 
the shear strength of individual discontinuities. In this case, 

spatial variability of shear strength of discontinuity should 
be evaluated as performed by Sow et al. (2017). It is further 
suggested to generate a more realistic 3D random field by 
obtaining correlation length in all three directions for analy-
sis in 3D software in future research.

In this study, intact rock properties and GSI are treated 
as uncertain parameters. Rock mass parameters are derived 
from intact rock properties and GSI through empirical rela-
tionship provided by Hoek et al. (2002) and Hoek and Died-
erichs (2006). The transformation uncertainties associated 
with these empirical relationships are not considered in this 
study. Thus variability in rock mass parameters are under-
estimated by unknown amount and this issue can be taken 
up in future studies.

Appendix

Augmented Radial Basis Function

In conventional RBF-based models, the numerical (FEM/
FDM) model output g(X) is approximated by linear combi-
nation of radial functions.

where k is the no. of sampling points obtained using design 
of experiment (DOE) method, Zi is the input vector at ith 
sampling point, ψ is the radial basis function, ∥ Z − Zi ∥ is 
the Euclidean norm (distance) of vector Z from Zi and λi 
are coefficients for the ith basis function. RBFs have been 
explained in more detail in Krishnamurthy (2003).

For evaluating unknown constants λi, k vectors of input 
sample is evaluated to obtain k outputs and finally solving 
the matrix Equation.

where g output vector is obtained by solving numeri-
cal model at k input samples, Ai,j = �

(
∥ Zj − Zi ∥

)
 

i, j = 1, 2, 3,…,k and � is vector of coefficient to be deter-
mined. This RBF meta-model provides good accuracy if 
the performance function is highly nonlinear. A linear or 
quadratic polynomial is further added to this meta-model to 
enhance its performance in approximating both linear and 
non-linear response (Krishnamurthy 2003). This is known 
as augmented RBF model expressed as

where Pj(Z) are monomial terms of polynomial P(Z) and 
bj are l constants introduced. For a linear polynomial l = 

(16)g(Z) ≈ g(Z) =

k∑
i=1

�i�
(
∥ Z − Zi ∥

)

(17)gk×1 = Ak×k�k×1

(18)g(Z) ≈

k∑
i=1

�i�
(
∥ Z − Zi ∥

)
+

l∑
j=1

Pj(Z)bj
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d + 1 where d is the dimension of input vector. In Eq. 18, 
total numbers of unknowns are k + l which are more than 
the number of FDM model evaluations. To avoid additional 
sampling, orthogonality condition is imposed (Eq. 19)

From Eqs. (18) and (19) we get all the unknown coef-
ficients � and b by solving

where A and g are same vectors as in Eq. 17, 0m×m is zero 
matrix. While Bij = Pj

(
Zi
)
j = 1, 2,… , l and i = 1, 2,… , k 

where Zi is ith component of vector Z and Pj is jth term of 
the polynomial. There are many types of radial basis func-
tions, most widely used are linear, cubic, Gaussian, thin 
plate spline, multiquadratic, and compactly supported func-
tions (see Table 8). The compactly supported RBF used in 
this article were developed by Wu (1995). This generates 
very efficient response surfaces as A is sparse and positive 
definite. Compact support type II is used here

where t = r/r0 and r0 is the radius of domain of compact sup-
port and r is ∥ Z − Zi ∥.
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