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List of symbols

Roman alphabet
AD  The representative area of a discontinuous 

spring bond
[C]  The damping matrix
cD  The cohesion of a discontinuous bond
cJ  The corresponding macroscopic joint 

parameters
E  The Young’s modulus
Ei  The Young’s modulus of particle i
Ej  The Young’s modulus of particle j∑

�
(t)

j
  The total force applied to the particle

f n  The normal spring force
F(t)  The external force vector
ft D  The tensional strength
g_level  The current gravity level
g_max  The maximum gravity level for the 

simulation
g(t)  The gravity increase function
inter_Loop  The number of iterations for the 

sub-calculation
Loop  The index of the current iteration
[K]  The stiffness matrix
kn  The normal spring stiffness
kn

D  The normal spring stiffness of a discontinu-
ous bond

kn
J  The macroscopic joint normal stiffness

ks  The shear spring stiffness
ks

D  The shear spring stiffness of a discontinuous 
bond

ks
J  The macroscopic joint shear stiffness

[M]  The mass matrix
diag([M])  The diagonal elements of the mass matrix

Abstract In this work, toppling failure of a jointed rock 
slope is studied by using the distinct lattice spring model 
(DLSM). The gravity increase method (GIM) with a sub-
step loading scheme is implemented in the DLSM to mimic 
the loading conditions of a centrifuge test. A classical cen-
trifuge test for a jointed rock slope, previously simulated by 
the finite element method and the discrete element model, is 
simulated by using the GIM-DLSM. Reasonable boundary 
conditions are obtained through detailed comparisons among 
existing numerical solutions with experimental records. 
With calibrated boundary conditions, the influences of the 
tensional strength of the rock block, cohesion and friction 
angles of the joints, as well as the spacing and inclination 
angles of the joints, on the flexural toppling failure of the 
jointed rock slope are investigated by using the GIM-DLSM, 
leading to some insight into evaluating the state of flexural 
toppling failure for a jointed slope and effectively preventing 
the flexural toppling failure of jointed rock slopes.
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max_Loop  The maximum loop for the simulation
mp  The mass of a particle
nTC  The total number of spring bonds cut by the 

same triangle
ST  The area of the triangle
∆t  The time step
u  The vector of particle displacement
uD

n  The discontinuous spring’s normal deforma-
tion vector

uD
s  The discontinuous spring’s shear deforma-

tion vector
un  The spring’s normal deformation
�̇
(t+Δt∕2)

i
  The particle velocity at t + ∆t/2

�̇
(t−Δt∕2)

i
  The particle velocity at t − ∆t/2

ui
(t+Δt)  The displacement at t + ∆t

ui
(t)  The displacement at t

ut
*  The ultimate tensional deformation of the 

spring
ν  The Poisson’s ratio
νi  The Poisson’s ratio at particle i
νj  The Poisson’s ratio at particle j
V  The volume of the geometry model

Greek symbols
α3D  The lattice coefficient of a computational 

model
ϕD  The internal friction angle of the discontinu-

ous spring bond
ϕt

J  The macroscopic joint friction angle

1 Introduction

Rock slope failure has been observed in a wide range of engi-
neering activities, resulting in the loss of lives and property. 
Many factors can trigger rock slope failure, such as earth-
quakes, excessive rainfall, drought, and excavation, as well as 
tree clearing and deforestation. In general, rock slope stability 
is controlled by many complex surrounding and internal fac-
tors. Most rock slope failures can be categorised into planar 
failures, wedge failures, toppling failures, and circular failures, 
of which toppling failures are commonly observed (Adhikary 
et al. 1997), and some research has been conducted to study 
their mechanism (e.g. Goodman and Bray 1976; Adhikary and 
Guo 2002; Alzoubi et al. 2010; Zhang et al. 2010).

An analytical study and an experimental study are two 
common approaches to practically studying toppling failure 
of jointed rock slopes. For example, in a classical approach 
for slope stability analysis, the limit equilibrium (LE) 
method was extended to study flexural toppling (e.g. Aydan 
and Kawamoto 1992; Adhikary et al. 1997); however, it was 

unable to provide the actual failure surface and mechanism 
of the flexural toppling. To explore the underlying mecha-
nism of the flexural toppling, small-scale physical tests were 
conducted using centrifuge tests (e.g. Adhikary et al. 1997; 
Zhang et al. 2007). The main advantages of these centri-
fuge tests are that (1) the parameters for the model geom-
etry and mechanical response can be partially controlled and 
(2) deformation and failure patterns can be easily obtained. 
However, these requirements are difficult to fully satisfy for 
natural rock slopes. Meanwhile, centrifuge tests have some 
shortcomings as well, e.g. the mechanical parameters are 
difficult and sometimes impossible to precisely control (the 
friction angle of rock joints cannot reach zero). Furthermore, 
centrifuge tests are as economically costly and time-consum-
ing as other physical tests.

In recent years, computational methods have been demon-
strated as promising approaches to studying rock slope fail-
ures (Chen et al. 2015), and they can be generally divided into 
continuum-based methods and discontinuum-based methods. 
Finite element methods (FEMs) are the most representative 
continuum-based methods for analysing slope stability, such 
as the shear strength reduction method (SSRM) (Zienkiewicz 
et al. 1975) and the gravity increase method (GIM) (Swan and 
Seo 1999; Li et al. 2009). The SSRM and GIM are defined 
as gradually increasing/decreasing the gravity/strength of the 
computational model until failure, and the factor of safety 
(FOS) is defined as the ratio of the input gravitational accel-
eration (or strength) at slope failure to the actual gravitational 
acceleration (or strength) of the slope. For jointed rock slopes, 
mechanical behaviours are mostly controlled by rock joints, 
and the discontinuum-based methods, e.g. the distinct element 
method (DEM) (Cundall 1971) and discontinuous deforma-
tion analysis (DDA) (Shi and Goodman 1985), are suitable 
candidates. Meanwhile, the SSRM and GIM are applicable 
as discontinuum-based methods as well. In fact, the GIM can 
be regarded as a numerical centrifuge test (e.g. Alzoubi et al. 
2010). Difficulty in selecting suitable mechanical parameters 
of the discontinuum-based numerical methods prohibits their 
full practical application to the analysis of the stability of 
jointed rock slopes. Generally, the numerical simulation must 
be calibrated with a physical test. For example, the centrifuge 
test conducted by Adhikary et al. (1997) has been adopted to 
calibrate the DEM model of Alzoubi et al. (2010) and verify 
the FEM model of Adhikary and Guo (2002). However, when 
setting up the corresponding numerical model, many assump-
tions must be made, and inconsistencies might occur during 
this procedure. For example, Adhikary and Guo (2002) used 
a computational model with the width of 650 mm, whereas 
Alzoubi et al. (2010) adopted a width of 454 mm. Whether 
the fixed boundary conditions of these models affect the cor-
responding results or not is still unclear. In addition, most of 
the research is mainly focused on parameter study and hardly 
refers to the toppling failure mechanism of a jointed rock slope 
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(the different mechanism results between failure patterns and 
deformations).

In this work, flexural toppling failure of a jointed rock 
slope is further studied using the distinct lattice spring model 
(DLSM) (Zhao et al. 2011; Zhao 2017). First, the gravity 
increase method (GIM) is implemented in the DLSM. Next, 
a computational model using the GIM-DLSM is developed 
to simulate the centrifuge test conducted by Adhikary et al. 
(1997) for small-scale model tests of a jointed rock slope. A 
numerical study on selecting the boundary conditions and 
material parameters was then conducted, and the results 
indicate that the GIM-DLSM can reproduce a closer fit to 
the experimental data on deformation and provide a realistic 
fracture pattern for the jointed rock slope. The simple failure 
mechanism adopted by the DLSM provides an alternative 
explanation for flexural toppling failure of the jointed rock 
slope. Finally, the influences of the friction angle, cohesion, 
joint spacing, and joint angle of rock joints on the flexural 
toppling failure are studied with the GIM-DLSM.

2  The Model

2.1  Gravity Increase Method (GIM)‑DLSM

Rock is symbolised as a group of particles with different 
sizes in the DLSM (Zhao et al. 2011). Similar to the GIM, 
it is implemented straightforwardly in a FEM (e.g. Li et al. 
2009), and a similar procedure can be used for the DLSM. 
However, some modifications are required for solving this 
procedure. In this work, when we define the gravity increase 
function as g(t), the vector of the particle displacement as 
u, and the external force vector as F(t), the equation for the 
motion of the GIM-DLSM can be expressed as

where [K] represents the stiffness matrix, [C] the damping 
matrix, [M] the diagonal mass matrix, and diag ([M]) the 
diagonal elements. The dynamic relaxation method is used 
to solve Eq. (1). Different from the implicit FEM, where 
the solution can be obtained from a single calculation at a 
given gravity level, artificial damping must be used for a 
sub-iteration at a given level of gravity loading. Let us define 
max_Loop as the maximum loop for the simulation, g_level 
as the current gravity level, g_max as the maximum gravity 
level for the simulation, Loop as the index of the current 
iteration, and inter_Loop as the number of iterations for the 
sub-calculation. To execute this procedure, we define the 
current gravity level by using the following equation:

where Mod() is the remainder operator.

(1)[𝐊]𝐮+[𝐂]�̇�+[𝐌](�̈�) = 𝐅(t) + g(t)diag([𝐌])

(2)g_level = 1 +
g_max − 1(
max_Loop
inter_Loop

)Mod(Loop, inter_Loop)

A calculation cycle in the DLSM is performed as follows:

(a) As particle displacements from the initial position or 
the previous time step are given, new contacts and bro-
ken bonds are formed;

(b) Contact and spring forces are calculated by using the 
equivalent constitutive model of spring bonds;

(c) The individual particle velocity is expressed as

where �̇(t+Δt∕2)
i

 and �̇(t−Δt∕2)
i

 are the particle velocities at 
t + Δt/2 and t − Δt/2, respectively, 

∑
�
(t)

j
 is the total 

force applied to particle j, mp is the particle mass, and 
Δt is the time step.

Therefore, a new particle displacement is obtained as

where �(t+Δt)
i

 and �(t)
i

 are the displacements at t + Δt and t, 
respectively. Figure 1 shows the flow chart of the DLSM 
with the GIM implemented. The procedures in the grey areas 
are modified for the GIM-DLSM.

2.2  Constitutive Models for Jointed Rock Masses

To model jointed rock masses, two types of spring bonds are 
required, called the continuous spring bond and discontinu-
ous spring bond. The continuous spring bond is used to rep-
resent the rock block, whereas the discontinuous spring bond 
is adopted for the rock joints. The most distinctive feature of 
the DLSM is the introduction of a multi-body shear spring 
to overcome the Poisson’s limitation of the classical LSM, 
and the DLSM evaluates the shear deformation from the 
local strain rather than the particle displacements. Another 
distinct feature of the DLSM is that the input parameters 
are macroscopic material constants. For example, spring 
parameters kn and ks in the DLSM are automatically obtained 
based on the Young’s modulus E and the Poisson’s ratio ν 
using the following equations:

(3)�̇
(t+Δt∕2)

i
= �̇

(t−Δt∕2)

i
+

∑
�
(t)

j

mp

Δt

(4)�
(t+Δt)

i
= �

(t)

i
+ �̇

(
t+

Δt

2

)

i
Δt

(5)kn =
3

2�3D

(
Ei

1 − 2vi
+

Ej

1 − 2vj

)

(6)ks =
3

2�3D

(
(1 − 4vi)Ei

(1 + vi)(1 − 2vi)
+

(1 − 4vj)Ej

(1 + vj)(1 − 2vj)

)
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where Ei and Ej are the Young’s moduli of the linked par-
ticles, and νi and νj are the Poisson’s ratios. α3D is a micro-
structure coefficient of the lattice structure, and it is given as

(7)�3D =

∑
l2
i

V

where V is the volume of the geometry model and li is the 
length of the ith bond. The constitutive model of the continu-
ous spring bond is represented as

(8)f n =

{
kn ⋅ u

n, un < u∗
t

0, else

Start

Output data 
file?

Loop >= max_Loop?

End

Output data
Yes

No

Update the contact and bond list

Yes

Calculate strain of 
particles

Calculate unbalanced 
force from continuous 

and discontinuous bonds

Update model information 
(displacement, position, etc.)

Apply boundary conditions (force, 
displacement, velocity, etc.)

Input max iteration : max_Loop,
current gravity level: g_level (default 1), 
maximum gravity level: g_max, and  sub 
iteration: inter_Loop.

Neighbor 
search?

Calculate current g_level

Yes

No

sF

suD*
su

sk

D* tan D
D nc A F φ+

tan D
nF φ

D* tan D
D nc A F φ− +

tan D
nF φ−

D*
su−

Shear

Fig. 1  Flow chart of the DLSM with the gravity increase method (GIM)
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Fig. 2  Influence of the damping coefficient of the GIM-DLSM. a Computational model, b numerical results and analytical solution
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Fig. 3  Modelling a progressive failure problem by using the GIM-DLSM. a Computational model, b g_level = 1, c g_level = 2400, d g_level = 
2700, e g_level = 3300, f g_level = 4200, g g_level = 4800, h g_level = 6000
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in which fn is the normal spring force, un is the normal defor-
mation, and ut

* is the ultimate tensional deformation of the 
spring. A simple brittle model is adopted in this work, and 
it is capable of simulating the dynamic cracking of poly 
(methyl methacrylate) (PMMA) (Kazerani et al. 2010), the 
dynamic fracturing of coal (Zhao et al. 2014b), and the ten-
sile failure of sandstone (Zhao et al. 2014a). This constitu-
tive model provides a simple and fundamental assumption 
for the mesoscopic failure of the simulated rock block. The 
advantage of using the DLSM is its ability to set up a com-
plex macroscopic failure phenomenon from simple micro-
scopic events.

To model the jointed rock, discontinuous spring bonds 
were required (Zhao 2015). They were developed from 
continuous spring bonds cut by triangles (geometrically 
represented joints). The Mohr–Coulomb model was 
adopted for the discontinuous spring bonds, and the force 
and displacement relationships are given as (Zhao 2015)

where ks
D and kn

D are normal and shear spring stiffness, 
respectively, and uD

n and uD
s are spring deformations. The 

(9)�
n =

{
kD
n
⋅ �

n
D
, kD

n
(�n ⋅ �) < 𝜎J

t
AD

0, else

(10)

�
s =

⎧
⎪⎨⎪⎩

kD
s
⋅ �

s
D
, kD

s

����sD
��� < cJAD + (�n ⋅ �) ⋅ tan𝜙

J

(�n ⋅ �) ⋅ tan𝜙
J�

s
D

�����sD
���, else

mechanical parameters of bonds are calculated using the 
following equations:

where kn
D is the normal spring stiffness, ks

D is the shear spring 
stiffness, ft

D is the tensional strength, cD is the cohesion, ϕD is 
the internal friction angle of the discontinuous spring bond, 
and kn

J, ks
J, cJ, and ϕt

J are the corresponding macroscopic joint 
parameters. Moreover, AD represents the area of a discon-
tinuous spring bond and can be determined as follows

where ST is the area of the triangle and nTC is the total num-
ber of spring bonds cut by the same triangle.

2.3  Long‑time Simulation for the Centrifuge Test

Although g(t) can be directly input as the boundary con-
dition in an implicit scheme, in an explicit scheme such 
as the DLSM, the time step used in an explicit solution is 
usually very small, and running a full-time simulation for a 

(11)kD
n
= kJ

n
AD

(12)kD
s
= kJ

s
AD

(13)f D
t
= �J

t
AD

(14)cD = cJAD

(15)�D = �J

(16)AD =
ST

nTC

Joints Joints

Discontinuity

(a) (b)

Fig. 5  Two joint settings for representing different boundary conditions of the physical test. a Joint setting case A, b joint setting case B
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centrifuge test is computationally time prohibitive. To solve 
this contradiction, a different time line in the numerical sim-
ulation from that in the centrifuge test is considered. In the 
GIM-DLSM, when the mechanical damping is applied, the 
final solution is regarded as a quasi-static solution, and the 
time step loses its physical meaning. To utilise this feature 
of the DLSM for a long-time simulation, the time line is 
replaced by a gravity curve with a staircase at the beginning. 
Then, for each stair, a quasi-static calculation is adopted 
to obtain the equilibrium state of the model under a given 
level of gravity. Finally, the numerical centrifuge test can 
be transferred into a sequence of loadings under given grav-
ity points (taken from the recorded gravity history in the 
centrifuge test).

To examine the idea above, a cube is loaded with a given 
gravity function (see Fig. 2), and the reaction force applied 

to the bottom is recorded during the simulation process. 
The results predicted by the GIM-DLSM are illustrated in 
Fig. 2. It can be seen that the prediction of the GIM-DLSM 
reasonably fits the corresponding analytical solution, and 
the damping affects the vibration of the solution. Here the 
local damping (adopted in the DEM by Dr. Cundall as well) 
is used. It is a dimensionless coefficient and represents the 
ability of the kinematic energy absorption. When the damp-
ing is 0.4, equilibrium can be achieved in each sub-step. 
However, the vibration does not propagate (become larger) 
during calculation, which indicates that the error caused by 
time scaling (number of steps used in each sub-step) can 
be localised. Therefore, a long-time simulation can be well 
handled by using the DLSM with a staircase gravity curve.

Although the implementation of the GIM-DLSM is 
straightforward, the effect is very impressive. Figure 3 shows 

Approximate experimental rupture 
surface (Alzoubi et al. 2010)

Cosserat FEM (Adhikary and Guo 2002)

Approximate experimental 
rupture surface (Alzoubi et 
al. 2010)

UDEC-DM (Alzoubi
et al. 2010) 

UDEC (Alzoubi et al. 2010)

Approximate experimental 
rupture surface (Alzoubi et 
al. 2010)

UDEC-DM (Alzoubi et 
al. 2010) 

UDEC (Alzoubi et al. 2010)

(a) (b)

(c)

Fig. 6  Comparison among the failure patterns predicted by the GIM-
DLSM with different boundary conditions (model I refers to the 
computational model shown in Fig. 4d; model III refers to the com-

putational model of Fig.  4d with the boundary conditions shown in 
Fig. 5b; model II refers to the computational model shown in Fig. 4e). 
a Model I, b Model III, c Model II
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a numerical centrifuge test of a model composed of more 
than a half million particles. To obtain an intensive collapse, 
the maximum gravity level is set as 6000 g. As g_level is 
increased to 2700, only slight damage and deformation are 
observed in Fig. 3b–d, whereas extremely large damage 
and deformation are indicated in Fig. 3e–h. This phenom-
enon occurs due to the travelling distance of a free particle 
being longer with higher g_level, which results in a longer 
simulated time under higher gravity. In this work, we will 
adopt the GIM-DLSM for the stability analysis of toppling 
failure of jointed rock slopes. It should be mentioned that 
the jointed DLSM (Zhao 2015) still cannot solve the large 
deformation problems, due to the reason that the constitutive 
model of joints (Eqs. 9 and 10) did not include the influence 

of the large rigid body rotation. Therefore, our simulations 
only focus on fractures of the jointed rock slope under small 
deformations.

3  Calibration

Flexural toppling failure of jointed rock slopes commonly 
occurs in the field (see Fig. 4a), where large deformation and 
an apparent failure surface can occur even though the slope 
is stable. Fracture and deformation of a slope would make 
people scared to fully utilise its surrounding infrastructure, 
i.e. the flexural toppling of a reservoir slope in a hydraulic 
power station could result in not fully filling the reservoir 
and generating electricity normally.

To study flexural toppling failure of jointed rock slopes, 
seven small-scale model tests of jointed rock slopes were 
conducted using the geotechnical centrifuge of the Univer-
sity of Western Australia (Adhikary et al. 1997). With the 
purpose of confirming data completeness, one centrifuge 
test, originally simulated using the FEM (Adhikary and Guo 
2002) and the DEM (Alzoubi et al. 2010), is further utilised 
for calibration of the GIM-DLSM.

Figure 4 shows the physical model and corresponding 
computational models, and their parameters are as fol-
lows: slope height 330 mm, slope dip angle 61°, joint spac-
ing 10 mm, joint dip angle 80°, and particle radius 1 mm. 
Two computational models with different widths are used 
to examine the difference between the geometrical models 
used by Adhikary and Guo (2002) and Alzoubi et al. (2010). 
Figure 4b, d represents the model configuration and the 
failure pattern of Alzoubi et al. (2010) (114,600 particles), 
and Fig. 4e refers to the computational model of Adhikary 
and Guo (2002) (212,100 particles). When conducting the 
numerical test, we used a wider model of Adhikary and Guo 
(2002) to eliminate the influence of the fixed boundary con-
ditions applied for the left boundary.

As shown in Fig. 5, to further explore the influence of the 
left boundary condition, two different settings were adopted 
for the model in Fig. 4d. The main difference is that a verti-
cal discontinuity with a tensional strength of zero was used 
for the model, and it reproduced a boundary condition that 
could barely withstand compression loading from the model 
to mimic the model’s framework effect (see Fig. 4b). The 
material parameters for the block in the research of Adhi-
kary et al. (1997) were recorded as follows: elastic modulus 
2.2–2.6 GPa, Poisson’s ratio 0.16, and density 2380 kg/m3. 
These parameters are directly used in our modelling (the 
elastic modulus adopted is 2.4 GPa). For the joints, there 
are five parameters, the normal stiffness, the shear stiffness, 
the friction, the cohesion, and the tensile strength, of which 
the friction is given (reported from 22° to 26°), and the rest 
of the parameters need to be calibrated via a comparison 
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between the displacements predicted by the numerical sim-
ulation and the corresponding experimental results of the 
centrifuge test. Since the Universal Distinct Element Code 
(UDEC) modelling (Alzoubi et al. 2010) was conducted to 
calibrate these joint parameters, the DLSM could use the 
macroscopic joint parameters directly. In this work, the same 
parameters can be adopted, and the only adjustable param-
eter is the tensile strength of the rock block. Since the cali-
bration process is complex and time-consuming, a parallel 
DLSM solver (Zhao et al. 2013) is adopted. To reproduce 
experimental displacements, all the parameters used in the 
GIM-DLSM are as follows: the normal stiffness and shear 
stiffness of joints 400 GPa/m, the friction angle 24 degrees, 
the tensile strength of the joints 0 kPa, the cohesion of the 
joints 5 kPa, the tensile limit of the normal spring for the 
rock block 5e−4 mm, the time step 1.5e−6 s, and the local 
damping coefficient 0.40. The cubic-II lattice structure is 
adopted for all the simulations in this work, which means 

that the average number of the lattice per particle is about 
18.

Figure 6 shows the failure patterns of these models using 
the same set of calibrated parameters. The results show 
that the GIM-DLSM reproduces the closest fitting with the 
experimental results, and these three computational models 
reproduce similar failure patterns. To realise a comparison 
in quantity, the displacements at two measuring points of 
these models and the experimental tests are plotted together 
in Fig. 7. It should be mentioned that although small differ-
ences were observed between these computational models in 
Fig. 4, significant differences might be caused by changing 
the configurations of the model, e.g. changing the joint angle 
to 0. Computational model III is the closest to the actual 
physical test, and it is adopted as the model configuration in 
the other parts of this work.

Fig. 9  Failure patterns of the jointed rock slope under g_level Point A (the unit of Un
* is mm, red refers to the failure particles with opening, and 

green refers to failure with closure). a Un
* = 1e−4, b Un

* = 1.8e−4, c Un
* = 3e−4, d Un

* = 8e−4
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4  Discussion

In this section, the influences of mechanical and geometrical 
parameters on the failure patterns and deformations of flex-
ural toppling failure of a jointed rock slope are investigated 
using the GIM-DLSM.

4.1  Tensional Strength of the Rock Block

Figure 8 shows the simulation results for measuring point 
A, which are based on different tensional strengths of the 
rock block. It reveals the mechanism of the deformation and 
fracturing of the jointed rock slope caused by microscopic 
failure of the rock block. When g_level is low (see Fig. 8), 
two groups are derived from deformation. The first group is 
the model with the tensional strength of 1e−4 mm, and the 
other group is the one with higher tensile strengths. When 
looking at the failure patterns of these models (see Fig. 9), 

we can find that the first group produces an apparent failure 
surface, which indicates that the deformation of the flexural 
toppling failure mainly arises from the microscopic tensile 
failure of the rock block. As g_level increases to level B 
(see Fig. 8), the second model (with the tensile strength of 
1.8e−4 mm) moves upward to the first group, which can be 
reflected in the failure patterns of these models (see Fig. 10) 
as well.

Comparing the damage degree with the induced deforma-
tion, multiple fractures do not seem to influence the defor-
mation, and a nonlinear relationship exists between the frac-
ture degree and the induced deformation. This conclusion 
is further confirmed by the deformation and failure pattern 
shown at the g_level of C in Fig. 11, where the model with 
the tensile strength of 3e−4 mm moves to the first group. 
When the slope is severely damaged, a large jump might 
occur in the model with the tensile strength of 1.8e−4 mm 
at the g_level of D, as shown in Fig. 12.

Fig. 10  Failure patterns of the jointed rock slope under g_level Point B (the unit of Un
* is mm). a Un

* = 1e−4, b Un
* = 1.8e−4, c Un

* = 3e−4, d Un
* 

= 8e−4
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Therefore, it could be concluded that the deformation of a 
jointed rock slope is controlled by both g_level and the frac-
ture surface. However, the failure pattern of a slope is not 
influenced by the tensional strength of the rock block, which 
indicates that the deformation history of measuring points, 
rather than the fracture pattern, is a suitable candidate for 
calibrating the tensional strength of the jointed rock slope.

4.2  Joint Cohesion

The joint cohesion is set to 0, 10, and 15 kPa (other param-
eters for the model are the same as in the above section), 
and the simulation results of displacements at measuring 
points are shown in Fig. 13. When cohesion increases, the 
deformation will decrease, and when g_level is greater than 
40, the result at measuring point A shows a greater fluctua-
tion than that at measuring point B. In fact, measuring point 
A is at the top of the slope. As the toppling occurs, a greater 

disturbance is expected (due to the principle of leverage, 
see Fig. 4). This implies that the measured displacement at 
the post-failure stage could be used for calibrating the joint 
cohesion. To further explore the mechanism, the failure sur-
faces of these models are plotted in Fig. 14. It can be seen 
that the failure angle of the jointed rock slope enlarges as the 
cohesion increases, but the variations are small. Therefore, 
the rupture pattern of the toppling failure cannot be used to 
calibrate the joint cohesion. In addition, it is concluded that 
the flexural toppling of a jointed rock slope is only slightly 
influenced by the joint cohesion.

4.3  Joint Friction Angle

Figure 15 shows the displacements of the model with differ-
ent friction angles, and the joint friction angles significantly 
influence displacements at two measuring points. In general, 
the results of the joint friction angle are quite different from 

Fig. 11  Failure patterns of the jointed rock slope under g_level Point C (the unit of Un
* is mm). a Un

* = 1e−4, b Un
* = 1.8e−4, c Un

* = 3e−4, d Un
* 

= 8e−4
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those of the cohesion. When the joint angle is large (40°), 
the deformation of the measuring points is quite small. In 
addition, the difference between measuring points A and B 
is nearly negligible, which indicates that the displacement 
of these two points mainly arise from the deformation of 
the rock block rather than the slip of joints. As the joint 
friction angle is reduced to 10°, the displacement of these 
two measuring points increases, and the difference between 
these two measuring points enlarges. However, when the 
friction angle continues to decrease to 0°, there is no change 
in the difference between the displacement of measuring 
points A and B. This implies that there is an upper limit for 
the influence of the joint friction on the deformation of the 
jointed rock slope.

Figure 16 shows the failure patterns of a jointed rock 
slope with different joint friction angles for further explora-
tion. It can be seen that the failure surface angle increases 
and the displacement decreases as the friction angle 

increases. When looking locally at the cracks in the rock 
block, we discover that these cracks tend to be perpendicular 
to the joint surface, whereas the direction of the macroscopic 
fracture surface formed by these tiny cracks is not perpen-
dicular to the joint surface and is significantly influenced by 
the joint friction angle.

4.4  Joint Spacing

Models with different joint spacings are further calcu-
lated by using the GIM-DLSM, and the displacements at 
the measuring points are shown in Fig. 17. It can be seen 
that an overall decrease in the displacement of the jointed 
slope could be obtained by increasing the joint spacing, 
and the effect of joint spacing at point B is greater than 
that at point A. The reason for this result may be that the 
displacement at point A is mainly caused by the rotation 
of the failure zone. The main decisive factor is the distance 

Fig. 12  Failure patterns of the jointed rock slope under g_level Point D (the unit of Un
* is mm). a Un

* = 1e−4, b Un
* = 1.8e−4, c Un

* = 3e−4, d Un
* 

= 8e−4
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from the rupture surface, and different joint spacings do 
not cause significant diversity in terms of rigid body rota-
tion of the failure zone. However, the displacement at point 
B is more affected by the translation, and this translation 
is caused by the deformation of the damaged zone, which 
is more affected by the joint spacing. This explanation is 
further confirmed by the failure patterns in Fig. 18. The 
failure surfaces of these models are only slightly different, 
and the fracture angle and failure location are close to each 
other. The difference between rupture patterns caused by 
the joint spacing is the local failure around the foot area. 
Specifically, when the joints are very dense or very sparse, 
the fracture surfaces have certain curvatures; however, the 
curvatures of the fracture surfaces are more or less straight 
at the joint spacing of 30 m. It is implied that the jointed 
rock slope fracturing behaviours are close to that of the 
continuum medium when there are too many or only a 
few joints.
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Fig. 13  Deformation at two measuring points under different joint 
cohesions
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Fig. 14  Fracture surface of the jointed rock slope under different joint cohesions. a c = 0 kPa, b c = 10 kPa, c c = 15 kPa, d comparison
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4.5  Joint Angle

The measured displacement of the joint angle has a feature 
of first increasing and then decreasing (Fig. 19), and the 
deformation is largest when the joint angle is 70°. Fig-
ure 20 shows the fracture surfaces of the rock slope with 
different joint angles. The rupture angles, as well as the 
angle between the fracture surface and the horizontal line, 
are approximately 5°, 20° and 50° when the joint angles 
are 85°, 70° and 40°, which indicates that the rupture 
direction is perpendicular to the joint. The results indicate 
that the joint angle is also a decisive factor for the toppling 
failure of the rock slope.
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Fig. 16  Fracture surface of the jointed rock slope under different joint internal friction angles. a ϕ = 0°, b ϕ = 10°, c ϕ = 40°, d comparison
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5  Conclusions

The GIM-DLSM has been successfully implemented for the 
analysis of flexural toppling failure of jointed rock slopes. 
Both displacements and fracture patterns were reasonably 
captured using the GIM-DLSM with a set of calibrated 
parameters and boundary conditions. In addition, an analysis 
of parameters was conducted to study the influences of the 
cohesion, the strength of the rock block, the friction angle, 
the joint spacing and the joint angle on the flexural toppling 
failure of the jointed rock slope.

Based on the numerical simulation of the GIM-DLSM, it 
is concluded that the flexural toppling failure of the jointed 
slope is slightly influenced by joint cohesion and joint spac-
ing, whereas both failure patterns and deformation are sig-
nificantly influenced by the friction angle and the joint angle. 
The toppling rupture pattern of the jointed rock slope is not 
mainly controlled by the strength of the rock block, whereas 
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Fig. 18  Fracture surface of the jointed rock slope under different joint spacings. a Js = 15 mm, b Js = 30 mm, c Js = 40 mm, d comparison
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the block strength influences the deformation of the jointed 
rock slope.

Therefore, to evaluate the safety situations of jointed 
rock slopes in terms of flexural toppling failure in practice, 
obtaining reasonable block strengths, friction angles of the 
joints and joint angles is essential. Moreover, this conclu-
sion can also be used in a reverse way, meaning that the joint 
friction can be back-calculated from the actual slope failure 
pattern when the geometry information of the joint is given. 
After that, the strength of the rock block can be further cal-
ibrated using the deformation records of the jointed rock 
slope. Based on our simulation results, it can be concluded 
that the most efficient way to prevent flexural toppling failure 
(too large deformation) is to enrich the friction angle of the 
joint, e.g. by grouting concrete into the rock joints.
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