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Abstract The dynamic behavior of filled joints is mostly

controlled by the filled medium. In addition to nonlinear

elastic behavior, viscoelastic behavior of filled joints is also

of great significance. Here, a theoretical study of stress

wave propagation through a filled rock joint with linear

viscoelastic deformation behavior has been carried out

using a modified time-domain recursive method (TDRM).

A displacement discontinuity model was extended to form

a displacement and stress discontinuity model, and the

differential constitutive relationship of viscoelastic model

was adopted to introduce the mass and viscoelastic

behavior of filled medium. A standard linear solid model,

which can be degenerated into the Kelvin and Maxwell

models, was adopted in deriving this method. Transmission

and reflection coefficients were adopted to verify this

method. Besides, the effects of some parameters on wave

propagation across a filled rock joint with linear vis-

coelastic deformation behavior were discussed. Then, a

comparison of the time-history curves calculated by the

present method with those by frequency-domain method

(FDM) was performed. The results indicated that change

tendencies of the transmission and reflection coefficients

for these viscoelastic models versus incident angle were the

same as each other but not frequency. The mass and

viscosity coupling of filled medium did not fundamentally

change wave propagation. The modified TDRM was found

to be more efficient than the FDM.

Keywords Wave propagation � Filled joint � Viscoelastic
model � Recursive method � Transmission and reflection

coefficients � Time-history curve

List of symbols

e Strain

x Angular frequency

r and s Normal and tangential stress, respectively

a and b Emergence angles of P- and SV-wave,

respectively

v Components of particle velocity

k and g The elastic stiffness of the spring and the

viscous stiffness of the dashpot, respectively

zp and zs Wave impedance of P- and SV-wave,

respectively

q and q0 Density of medium(e.g., rock) and filled

medium, respectively

cp and cs Velocity of P- and SV-wave, respectively

m and h Mass and thickness of filled medium,

respectively

C and v Velocity and incident angle of incident wave,

respectively

Cplate Plate velocity of filled medium

E0 and

t0

The Young’s modulus and the Poisson’s ratio

of the filled medium, respectively

mn and

ms

Effective mass of filled medium in the normal

and tangential direction, respectively

Tfr and

Rfr

Transmission coefficient and reflection

coefficient, respectively
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1 Introduction

Fractures commonly exist in geotechnical media, such as

rock joints, faults, and ground fractures. These fractures

make geotechnical media discontinuous and have significant

effects on wave propagation (Hudson et al. 1996; Gu et al.

1996a). Transmission and reflection appear at the fracture

interface, whose boundary is not uniform and homogeneous

(Miller 1978; Schoenberg 1983). The displacement discon-

tinuity model (DDM) treats the stress at the front and rear

interfaces as continuous but not the displacement. It is suit-

able for studying wave propagation through unfilled frac-

tures, while fracture thickness is sufficiently smaller than the

wavelength. Meanwhile, linear elastic, nonlinear elastic,

viscoelastic, and coulomb-slip behaviors have been applied

to describe the deformation behavior of fractures (Pyrak-

Nolte et al. 1990a, b; Gu et al. 1996b; Zhao and Cai 2001;

Zhao et al. 2006a, b; Li 2013). Many methods have been

established regarding the frequency or time domains in

investigations of stress wave propagation through unfilled

fractures (Miller 1977; Schoenberg 1980; Cai and Zhao

2000; Li and Ma 2010; Zhu et al. 2011b; Zhao et al. 2012).

Compared with unfilled fractures, filled fractures are

more common in nature. Considering the mass of filled

medium, the DDM is no longer appropriate for describing

the dynamic behavior of filled fractures (Zhu et al. 2011a).

Results of dynamic tests using a split Hopkinson pressure

bar have indicated that the displacement and stress dis-

continuity model (DSDM) is more suitable than DDM in

describing filled joint effects on wave propagation when up

to 10 mm in thickness (Wu et al. 2013). The physical

properties and the mass of filled medium both influence

wave propagation across filled fractures (Li and Ma 2009;

Zhu et al. 2011a, 2012). Li and Ma (2009) have studied

nonlinear elastic behaviors of filled rock joints using a

modified split Hopkinson pressure bar apparatus and

established a nonlinear elastic model different from the

Bandis–Barton (B–B) model. Fan and Wong (2013) have

investigated the influence of differences between loading

and unloading behaviors on wave propagation across filled

joints using the B–B model. Also, Wu et al. (2014), using

the method of characteristics (MC), have investigated the

effects of filling material on P-waves propagating normally

through fractures. Taking the thickness of fracture into

account, Li et al. (2013, 2014, 2015) have proposed a thin-

layer interface model (TLIM) and studied wave propaga-

tion obliquely through filled joints and shear wave propa-

gation across filled joints with interfacial shear strength.

In addition to nonlinear elastic behavior, viscoelastic

behavior of filled joints is also of great significance.

Dynamic behavior of filled joints is mostly controlled by

the filled medium (Li and Ma 2009; Zhu et al. 2012; Wu

et al. 2012, 2013). Natural joints are often filled with

weathered rock, saturated sand, or clay, which behave as

viscoelastic deformation behavior under dynamic loads

(Zhu et al. 2011a, 2012; Wu et al. 2013; Huang et al.

2015b). Additionally, liquid might also introduce viscous

coupling between the two fracture surfaces (Pyrak-Nolte

et al. 1990a). Myer et al. (1990) and Pyrak-Nolte et al.

(1990a) have provided closed-form solutions of wave

propagation, in the frequency domain, across fractures with

viscoelastic behavior. Considering filled medium mass,

Zhu et al. (2011a) have extended these closed-form solu-

tions to filled joints with viscoelastic deformational

behavior. Zhu et al. (2012) and Wu et al. (2012) have

studied normal wave propagation through parallel rock

joints filled with viscoelastic medium, adopting the DSDM

and modified recursive method (MRM) in the frequency

domain. The propagator matrix method (PMM) has also

been used to study stress wave propagation through a set of

viscoelastic joints (Huang et al. 2015a).

A time-domain recursive method (TDRM) has been

proposed based on the conservation of momentum at wave

fronts, which predicts the time-history curves of transmit-

ted and reflected waves in obliquely incident conditions (Li

and Ma 2010; Li et al. 2012; Chai et al. 2016). Coulomb-

slip and nonlinear elastic behaviors of joints have been

studied in TDRM with DDM (Li et al. 2011; Li 2013).

However, there has been to date no investigations regard-

ing TDRM that takes the mass or viscoelastic behavior of

the filled medium into account.

In the present study, the standard linear solid (SLS)model

(i.e., an auxiliary spring in series with a Kelvin model, as

shown in Fig. 1, where k represents the elastic stiffness of the

spring and g represents the viscous stiffness of the dashpot)

was adopted to derive modified time-domain recursive

method. It can be degenerated into a typical viscoelastic

model, such as the Kelvin or Maxwell models used by Zhu

et al. (2011a). The DDMwas then extended to the DSDM in

TDRM, and the differential constitutive relationship of the

SLSmodel was adopted to introduce the filled mediummass

and viscoelastic behavior. Then, verification by comparison

of this new method with the results of closed-form solutions

calculated by the frequency-domain method (FDM) was

Fig. 1 Standard linear solid (SLS) model
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conducted. Finally, the effects of the frequency, incident

waveform, and type of viscoelastic model on wave propa-

gation across filled joints were discussed as well as the

efficiency and adaptability of this method.

2 Theoretical Analysis

2.1 Viscoelastic Model

Filled medium might display viscoelastic properties when

seismic waves propagate across filled fractures (Pyrak-Nolte

et al. 1990a; Zhu et al. 2011a). The Kelvin model approxi-

mately describes creep behaviors of filled material but is not

suitable for describing stress relaxation behaviors. The

Maxwell model approximately describes stress relaxation

behaviors and just describes Newton’s viscous flow but

cannot describe complex creep behaviors. In comparison,

the SLS model with three parameters can describe creep and

stress relaxation behaviors and can degrade into the vis-

coelastic model with two parameters, i.e., the Kelvin and

Maxwell models. To obtain amore general solution, the SLS

deformation model was selected for theoretical derivation.

Mechanical properties of the viscoelastic model were

described in the frequency and time domains. As the ratio of

stress to strain, the complex modulus used in the frequency

domain was a constant form with different parameters for

different models. In the time domain, stress and strain were

related by linear differential equations that involve stress,

strain, and their derivatives with respect to time.

The differential constitutive relationship of the SLS

model can be expressed as:

p0rþ p1
or
ot

¼ q0eþ q1
oe
ot

ð1Þ

where r is the stress, e the strain, p0 = k1 ? k2, p1 = g,
q0 = k1�k2, and q1 = g�k2.

When an alternate strain was input (i.e., e tð Þ ¼
e0 cos xtð Þ � i sin xtð Þ½ � ¼ e0e�ixt), the complex modulus of

the SLS model can be written as:

k ixð Þ ¼ q0 � ixq1
p0 � ixp1

ð2Þ

where k(ix) denotes the complex modulus of the SLS

model, i the complex unit, and x the angular frequency.

For the Kelvin model, p0 = 1, p1 = 0, q0 = k1, and

q1 = g; for Maxwell model, p0 = k2, p1 = g, q0 = 0, and

q1 = g�k2.

2.2 Method Introduction

The theoretical basis of TDRM was the conservation of

momentum at wave fronts. As a function of particle

velocity, wave stress was obtained through the conserva-

tion of momentum at wave fronts, i.e., r = zv, where z is

the wave impedance of medium and v the particle velocity.

Combined with Snell’s law, the stress and particle velocity

at the front and rear interfaces was established (Li and Ma

2010). Then, expressions of transmitted and reflected

waves were deduced by substituting the stress and particle

velocities at the two sides of the interface considering the

boundary condition. The propagation of a stress wave

through a fracture is shown in Fig. 2, where a and b are the

angles of the P- and SV-waves, respectively.

2.3 Wave Propagation Equation

According to consideration of filled medium mass in the

frequency domain (Zhu et al. 2011a), stresses at the frac-

ture interface in the time domain satisfied the relation as

follows:

r� � rþ ¼ mna
2
n

s� � sþ ¼ msa
2
s

)
ð3Þ

where r and s are the normal and tangential wave stresses,

respectively, acceleration the first derivative of particle

velocity with the respect to time, i.e., ai ¼ vi�vi�1

Dt . Dt is a

small time interval between vi�1 and vi, and superscripts -

and ? refer to interfaces of the incidence and transmission

Fig. 2 Transmission and

reflection of obliquely incident

of P- and SV-wave across a

fracture
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half-space, respectively. The subscripts n and s refer to the

normal and tangential directions, respectively. The m is the

mass, where mn ¼ q0h, ms ¼ 1� Cplate

�
C

� �2
sin2 v

h i
mn,

q0 is the filled medium density, h the fracture thickness,

and C and v the wave velocity and incident angle of the

incident wave, respectively. Cplate is the plate velocity of

the filled medium, i.e., Cplate ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

�
q0 1� t20
� �� �q

, where

E0 and t0 are the Young’s modulus and Poisson’s ratio of

the filled medium, respectively (Zhu et al. 2011a; Rokhlin

and Wang 1991).

The DDM was an equivalent velocity discontinuity

model. For the differential constitutive relationship of a

viscoelastic model, velocity was determined as the

derivative of displacement with respect to time as

follows:

q0
o u� � uþð Þ

ot
þ q1

o v� � vþð Þ
ot

¼ p0
orþ

ot
þ p1

o2rþ

ot2
ð4Þ

where

v ¼ ou

ot
ð5Þ

The discontinuity assumption regarding displacement is

illustrated below by velocity and its derivative with respect

to time:

qn0 v�n ið Þ � vþn ið Þ

� 	
¼ pn0

orþ
ið Þ

ot
þ pn1

o2rþ
ið Þ

ot2
� qn1

o v�n ið Þ � vþ
n ið Þ

� 	
ot

qt0 v�t ið Þ � vþt ið Þ

� 	
¼ pt0

osþ
ið Þ

ot
þ pt1

o2sþ
ið Þ

ot2
� qt1

o v�t ið Þ � vþ
t ið Þ

� 	
ot

9>>>>>=
>>>>>;
ð6Þ

where

orþ
ið Þ

ot
¼

rþ
iþ1ð Þ � rþ

ið Þ
Dt

ð7Þ

o2rþ
ið Þ

ot2
¼

rþ
iþ1ð Þ � 2rþ

ið Þ þ rþ
i�1ð Þ

Dt2
ð8Þ

ov�n ið Þ
ot

¼
v�n iþ1ð Þ � v�n ið Þ

Dt
ð9Þ

For an incident P-wave, recursive formulas were obtained

by substituting the stress and particle velocities at each side

(Li and Ma 2010) into Eqs. (3) and (6), which are

expressed in matrix form as follows:

AvIðiÞ þ B
vRPðiÞ
vRSðiÞ


 �
þ C

vTPðiÞ
vTSðiÞ


 �
¼ D

vTPði�1Þ
vTSði�1Þ


 �
ð10Þ

EvIðiþ1Þ þ F
vRPðiþ1Þ
vRSðiþ1Þ


 �
þ G

vTPðiþ1Þ
vTSðiþ1Þ


 �

¼ HvIðiÞ þ I
vRPðiÞ
vRSðiÞ


 �
þ J

vTPðiÞ
vTSðiÞ


 �
þ K

vTPði�1Þ
vTSði�1Þ


 �
ð11Þ

where

A ¼ zp cos 2b
zp sin 2btgbctga


 �
ð12Þ

B ¼ zp cos 2b �zs sin 2b
�zp sin 2btgbctga �zs cos 2b


 �
ð13Þ

C ¼
�zp cos2b�

mn cosa
Dt

�zs sin2b�
mn sinb

Dt

�zp sin2btgbctga�
ms sina

Dt
zs cos 2bþ

ms cosb
Dt

2
64

3
75

ð14Þ

D ¼ 1

Dt
�mn cos a �mn sin b
�ms sin a ms cos b


 �
ð15Þ

E ¼ qn1 cos a
qs1 sin a


 �
ð16Þ

F ¼ �qn1 cos a qn1 sinb
qs1 sin a qs1 cos b


 �
ð17Þ

H ¼ qn1 � qn0Dtð Þ cos a
qs1 � qs0Dtð Þ sin a


 �
ð19Þ

I ¼ � qn1 � qn0Dtð Þ cos a qn1 � qn0Dtð Þ sin b
qs1 � qs0Dtð Þ sin a qs1 � qs0Dtð Þ cos b


 �
ð20Þ

G ¼
�qn1 cos a� zp cos 2b pn0 þ

pn1

Dt

� 	
�qn1 sinb� zs sin 2b pn0 þ

pn1

Dt

� 	
�qs1 sin a� zp sin 2btgbctga ps0 þ

ps1

Dt

� 	
qs1 cos bþ zs cos 2b ps0 þ

ps1

Dt

� 	
2
4

3
5 ð18Þ
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K ¼ 1

Dt
pn1zp cos 2b pn1zs sin 2b

ps1 sin 2btgbctga �ps1zs cos 2b


 �
ð22Þ

where v is the components of particle velocity, zp the

P-wave impedance of the rock solid, i.e., zp = qcp, where q
and cp denote the density and P-wave velocity of the rock

solid, respectively. I, T, and R mean incident, transmitted,

and reflected, and P and S refer to as P- and SV-waves,

respectively.

The recursive formulas for SV-wave incidence were

similar to P-wave incidence, with only the coefficient

matrices of the incident wave, i.e., A, E, and H, changed as

follows:

A ¼ zs sin 2b
�zs cos 2b


 �
ð23Þ

E ¼ qn1 sin b
qs1 cos b


 �
ð24Þ

H ¼ qn1 � qn0Dtð Þ sin b
qs1 � qs0Dtð Þ cos b


 �
ð25Þ

where zs = qcs, zs and cs are the SV-wave impedance and

the SV-wave velocity of the rock solid, respectively.

The transmission and reflection coefficients, i.e., Tfr and

Rfr, for an incident P- or SV-wave are determined as the

amplitude ratios of transmitted and reflected waves to the

incident wave. Where T and R refer to transmission and

reflection, respectively, the first subscript f refers to the

incident wave ( f = p or s), the second subscript r the

transmitted or reflected wave (r = p or s). In the initial

calculation, the initial value of the transmitted wave was

assumed to be zero (Li and Ma 2010).

3 Verification

Closed-form solutions for wave propagation across frac-

tures have been proposed in the frequency domain by

Pyrak-Nolte et al. (1990b) and Gu et al. (1996a). In the

present study, wave propagation was expressed by trend

changes of the transmission and reflection coefficients as a

function of the relative parameter. To verify the method

proposed in this paper, a comparison was performed

between the transmission and reflection coefficients from

the present method and closed-form solutions. The

parameters of a rock solid applied in this paper were the

same as those used in Zhu et al. (2011a). The joint elastic

stiffness K, defined as K = k/(zsx), and viscous stiffness

H defined as H = g/zs were adopted. It was also assumed

that a = 30�, b = 20�, and x = 100 rad/s, i.e., (100/

2p)Hz, and Kn1, Kn2, Hn and Ks1, Ks2, Hs taken as 1.0. The

filled medium mass was taken into account by assuming

d = xmn/zs in the closed-form solutions. This parameter

was adopted here, i.e., mn = dzs/x, and the value of d as-

sumed to be 0.0001.

The transmission and reflection coefficients of seismic

wave propagation through a filled viscoelastic joint with

the Maxwell and Kelvin models were studied in the fre-

quency domain (Zhu et al. 2011a). Substituting the com-

plex modulus of the SLS model into the matrix for a filled

viscoelastic joint, the closed-form solutions of the SLS

model were obtained (Zhu and Zhao. 2013). Here, cycle

sinusoidal waves were imported into the modified TDRM.

As a function of incident angle and incident wave fre-

quency, the transmission and reflection coefficients are

shown in Figs. 3 and 4.

It can be seen that calculations from the present method

agree very well with the FDM solutions and the variation

tendencies of the transmission and reflection coefficients

that varied with incident angle were similar to those of an

unfilled joint with linear elastic behavior (Li and Ma 2010).

4 Parametric Studies and Discussion

The influences of frequency and waveforms of incident

waves and the viscoelastic model on wave propagation

across a filled joint were investigated in this section. In

addition, the efficiency and adaptability of the present

method were compared and discussed with the FDM.

4.1 Frequency of Incident Wave

The transmission and reflection coefficients of P- and SV-

wave propagation through a filled joint with viscoelastic

behavior versus the frequency are shown in Figs. 3 and 4.

With frequency increasing, Tpp and Tss decreased and then

gradually stabilized. As frequency rose from 0 Hz, there

were small initial increases in both Tps and Tsp, which then

J ¼
� qn1 � qn0Dtð Þ cos�zp cos 2b pn0 þ

2pn1

Dt

� 
� qn1 � qn0Dtð Þ sin b� zs sin 2b pn0 þ

2pn1

Dt

� 

� qs1 � qs0Dtð Þ sin a� zp sin 2btgbctga ps0 þ
2ps1

Dt

� 
qs1 � qs0Dtð Þ cos bþ zs cos 2b ps0 þ

2ps1

Dt

� 
2
664

3
775 ð21Þ
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decreased slowly. For the Kelvin model, the range in which

Tpp decreased was smaller and value decreases less than

those of the Maxwell and SLS models. Reflection coeffi-

cients, i.e., Rpp, Rps, Rss, and Rsp, increased with increased

frequency and then gradually stabilized. When the fre-

quency was close to 0 Hz, the coefficient of a transmitted

P- or SV-wave (with P- and SV-wave incidence, respec-

tively) for the Kelvin and SLS models approached 1 and

the coefficients of other waves approached 0. In the Max-

well model, no coefficient approached 1 or 0 when the

frequency approached 0 Hz. The filled fracture described

by viscoelastic model was observed to have a similar effect

of low-pass filtering with an unfilled joint with linear

elastic behavior. For an elastic fracture, the cutoff fre-

quency was determined by the ratio of specific joint stiff-

ness to the rock solid’s wave impedance. However, for a

fracture with viscoelastic behavior, the effect of low-pass

filtering still existed, but the cutoff frequency became

frequency independent when the specific viscosity term

dominated the solution (Pyrak-Nolte et al. 1990b; Li and

Ma 2010).

4.2 Incident Waveforms

The time-history curves of transmitted and reflected waves

were calculated directly in the time domain. The effects of

waveform on wave propagation were estimated using two

different waveforms, half-cycle sinusoidal and rectangular,

with the same peak value.

Figure 5 illustrates the transmitted and reflected waves

with a half-cycle sinusoidal incident wave for these three

viscoelastic models. Wave propagation through these three

models was found to be similar to each other. Nevertheless,

different from the Kelvin and SLS models, the value of

each wave in the Maxwell model did not go to zero

gradually at the end of loading and the difference between

Fig. 3 Reflection–transmission coefficients of wave propagation across a filled joint with viscoelastic behavior of the Kelvin model. Incident

P-wave (a, b) and incident SV-wave (c, d)
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the SLS and Kelvin models was that the transmitted wave

phase delay in the SLS model was longer than that for the

Kelvin model.

Figure 6 illustrates the results of wave propagation with

a rectangular incident wave. As with the half-cycle sinu-

soidal incident wave, wave propagations in the Kelvin and

SLS models with a rectangular wave were similar to each

other. The amplitude of the transmitted P-wave gradually

approached that of the rectangular incident wave ampli-

tude. However, other waves basically have zero amplitude.

In the Maxwell model, transmitted and reflected wave

values did not change in the process of loading with a

rectangular wave.

4.3 Type of Viscoelastic Model

As can be seen in Figs. 3, 4, 5, and 6, wave propagations

for the Kelvin and SLS models were similar to each other

in most cases and the variation tendencies of transmission

and reflection coefficients versus the incident angle were

similar to those of an unfilled joint with elastic behavior (Li

and Ma 2010). The mass and coupling of viscosity of filled

medium did not fundamentally change the wave propaga-

tion of the solid model. With a rectangular wave incident in

a solid model, the value of the transmitted P-wave gradu-

ally became equal to the incident wave amplitude. This was

in good agreement with transmission and reflection coef-

ficient values when the frequency approached 0 Hz

(Figs. 3, 4). For the Maxwell model, values of each wave

remained the same in the process of loading with a rect-

angular wave and did not fit with transmission and reflec-

tion coefficient values when the frequency approached

0 Hz. The Kelvin and SLS models are viscoelastic solid

models. The Maxwell model is a fluid model without the

term of e in the differential constitutive relationship. Thus,

the mechanical behavior of the Maxwell model just

depends on the derivative of strain with respect to time. For

a filled joint with viscoelastic behavior described by the

Fig. 4 Reflection–transmission coefficients of P-wave propagation across a filled joint with viscoelastic behavior. Maxwell model (a, b) and
SLS model (c, d)
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Maxwell model, which can be thought as the fracture

viscosity, depends on the relative particle velocity change

between the front and rear sides of the fracture. Once the

relative particle velocity was constant, the stress wave did

not transmit through the fracture anymore, as shown in

Figs. 5b and 6b. Selection of a model for filled fractures

depends on the character of filled medium. For viscoelastic

behavior, the Kelvin model is the most commonly used

(Huang et al. 2015a).

4.4 Comparison Between the FDM and the Time-

Domain Method in Detail

Transmission and reflection coefficients are often used to

verify the accuracy of a time-domain method by comparing

them with those of the FDM. However, the phases and time

courses of transmitted and reflected waves calculated by

these two methods have never been compared. The effi-

ciency and adaptability of these two methods were

estimated and compared using transmitted waves in the

time domain with P-wave incidence through a filled joint.

Sinusoidal and practical seismic waves were selected as the

incident waves, with the sinusoidal wave frequency at 1 Hz

and the seismic wave from the first 10 s of the El-Centro

wave record. The Kelvin model was selected to describe

the viscoelastic properties of the filled medium, with the

model parameters taken as Kn1 = Ks1 = 1, Hn =

Hs = 0.01 and x = 1 rad/s. A transmitted wave calculated

by FDM was obtained by fast Fourier transform (FFT) and

inverse fast Fourier transform (IFFT). Although the trans-

mitted waveforms calculated by these two methods were

very similar (Fig. 7), there were still differences in the

initial stages of the process.

According to some existing literature, setting the value

of transmitted wave as 0 in the beginning was most rea-

sonable (Li and Ma 2009, 2010; Fan and Wong 2013; Cui

et al. 2016). The FDM, however, did not identify the

beginning of the time course. Phase and amplitude of the

Fig. 5 Transmitted and reflected waves with half-cycle sinusoidal incident P-wave. Kelvin (a), Maxwell (b), and SLS (c) models
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Fig. 6 Transmitted and reflected waves with rectangular incident P-wave. Kelvin (a), Maxwell (b), and SLS (c) models

Fig. 7 Transmitted waves for Kelvin model. Sinusoidal wave incidence (a) and seismic wave incidence (b)
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transmitted wave was only decided by solutions of fre-

quency-domain equations. To eliminate the aliasing effect

in processing of FFT, Huang et al. (2015a) have suggested

that the start time should has some delay rather than from

0 s, such that the unstable stage was blocked out (Fig. 8).

Avoiding the FFT and the delay of time, the time-do-

main method was more convenient and efficient than the

FDM. In addition, the FDM could only be used to study

conventional deformation behaviors that were described in

the frequency domain. However, the time-domain method

was also suitable for describing nonlinear deformation

behaviors of joints (Li 2013).

5 Conclusions

The propagation of a stress wave across a single filled joint

was studied using a modified TDRM proposed in this

study. In the modified method, the DDM was extended to

the DSDM and the differential constitutive relationship of a

viscoelastic model was adopted to consider the mass and

viscoelastic behavior of filled medium. The expression of

the transmitted and reflected waves can be easily deduced,

and the transmission and reflection coefficients can be

directly calculated in the time domain by using this

method. Compared with the FDM, the present method was

concluded to be more efficient to study wave propagation

across a filled rock joint. As a function of incident wave

angle, the change tendencies of the transmission and

reflection coefficients for viscoelastic models addressed

here were similar to each other. Wave propagations

through the Kelvin and SLS models were similar to those

of an unfilled joint with linear elastic behavior. The mass

and viscosity coupling of filled medium did not

fundamentally change wave propagation in a solid model.

The fracture viscosity was dependent on the particle

velocity change between the front and rear sides of a

fracture for the Maxwell model. The stress wave from a

rectangular incident wave did not transmit through a filled

joint described by the Maxwell model.
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