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Abstract One of the most significant characteristics of

unconventional petroleum bearing formations is their

heterogeneity, which affects the stress distribution,

hydraulic fracture propagation and also fluid flow. This

study focuses on the stress and pore pressure redistributions

during hydraulic stimulation in a heterogeneous poroelastic

rock. Lognormal random distributions of Young’s modulus

and permeability are generated to simulate the heteroge-

neous distributions of material properties. A 3D fully

coupled poroelastic model based on the finite element

method is presented utilizing a displacement–pressure

formulation. In order to verify the model, numerical results

are compared with analytical solutions showing excellent

agreements. The effects of heterogeneities on stress and

pore pressure distributions around a penny-shaped fracture

in poroelastic rock are then analyzed. Results indicate that

the stress and pore pressure distributions are more complex

in a heterogeneous reservoir than in a homogeneous one.

The spatial extent of stress reorientation during hydraulic

stimulations is a function of time and is continuously

changing due to the diffusion of pore pressure in the

heterogeneous system. In contrast to the stress distributions

in homogeneous media, irregular distributions of stresses

and pore pressure are observed. Due to the change of

material properties, shear stresses and nonuniform defor-

mations are generated. The induced shear stresses in

heterogeneous rock cause the initial horizontal principal

stresses to rotate out of horizontal planes.

Keywords Hydraulic fracturing � Heterogeneous porous
media � Poroelasticity � Refac � Stress reversal � Stress
shadow

1 Introduction

Hydraulic fracturing is an essential technology to achieve

economic production in unconventional hydrocarbon

reservoirs; these include tight gas sands, shale gas and

coalbed methane. One of the most significant characteris-

tics of shale source rock is the heterogeneity of reservoir

properties, which affect the stress distribution, hydraulic

fracture propagation and also fluid flow. However, to our

knowledge the impact of heterogeneities on stress and pore

pressure distribution around a hydraulic fracture has not

been studied. In contrast, the induced stresses around

pressurized fractures in an elastic or poroelastic homoge-

neous medium are well described in the literature (Kumar

and Ghassemi 2015; Rawal and Ghassemi 2011; Sesetty

and Ghassemi 2015; Warpinski and Branagan 1989).

Vandamme et al. (1989) and Ghassemi and Roegiers

(1996) studied 2D and 3D poroelastic effects on hydraulic

fracturing. Gordeyev (1993) derived analytical expression

for the width of a 3D fracture in homogeneous poroelastic

media. Zhou and Ghassemi (2011) used a fully coupled

poroelastic displacement discontinuity (DD) method to

study the response of a natural fracture in poroelastic

media, while Ghassemi and Zhou (2011) investigated the

impact of thermo-poroelastic effects on fracture width and

injection pressure. The transient response of a uniformly

pressurized fracture has been quantified by considering a

pressurized Griffith crack in poroelastic and thermo-

poroelastic media (Detournay and Cheng 1991; Ghassemi

and Zhang 2006). Ge and Ghassemi (2008) calculated the
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injection-induced stress using a thermo-poroelastic model.

The potential failure regions around the pressurized frac-

ture were evaluated.

Although extensive work, both theoretical and experi-

mental, has been carried out on fluid flow in heterogeneous

porous media (Durlofsky 1991; Guerillot et al. 1990;

Warren and Price 1961), analysis of stress and pore pres-

sure distributions in a heterogeneous poroelastic rock is

rarely available. Hydraulic fracturing inevitably alters the

stress distribution and fluid flow paths. Investigation of

stress redistribution and fluid migration during hydraulic

fracturing under heterogeneous reservoir conditions with

natural fractures (Safari and Ghassemi 2015; Wang and

Ghassemi 2012) will improve our understanding and will

help technology development to optimize stimulation

design.

The purpose of this study is to provide insight into the

influence of heterogeneities in reservoir rock properties on

the stress and pore pressure distributions during hydraulic

fracturing. Sensitivity analyses are performed through

variations of material properties which are used to char-

acterize a poroelastic rock, e.g., Biot’s effective stress

coefficient, Young’s modulus, drained and undrained

Poisson’s ratios. The drained and undrained material

properties reflect two limiting behaviors of poroelastic

rocks. The situation where the applied loads and defor-

mations are slow relative to the time scale of fluid diffusion

is called a drained response. The undrained response occurs

when the fluid diffusion timescale is too short to allow

alterations in the fluid mass content (Rice and Cleary

1976). The drained and undrained Poisson’s ratios are

evaluated under drained and undrained experimental con-

ditions, respectively.

A 3D numerical model based on the finite element

method (FEM) is developed and utilized. Numerical solu-

tions are compared with analytical ones developed by

Sneddon (1946) for a penny-shaped crack in an infinite, 3D

elastic medium. The stress and pore pressure distributions

are illustrated for both homogenous and heterogeneous

scenarios. Also, zones of stress reorientation, i.e., areas

where the principal stresses have rotated, are determined

for both homogenous and heterogeneous cases, and zones

of stress reversal (where the induced stresses change the

principal stress magnitudes such that the minimum is now

the maximum, i.e., a complete reversal) are shown.

2 Problem Description and Methodology

2.1 Problem Description

Usually, the information about subsurface rock properties

is incomplete. One of the most important problems

associated with reservoir characterization is that of deter-

mining the nature of heterogeneities that inevitably occur

in formations. Theoretical and experimental investigations

have provided reasonable descriptions of the physical

processes that are involved in hydraulic fracturing. How-

ever, the uncertainty about the distributions of natural

fractures, in situ stresses and formation properties, such as

Young’s modulus and permeability, leads to uncertainty in

estimating or predicting the stress redistribution and the

fluid flow during hydraulic fracturing. In this paper, we

investigate the influence of heterogeneous distributions of

Young’s modulus and permeability on the reservoir rock

during hydraulic fracturing. Intact rocks have higher

Young’s moduli than the rock masses consisting of the

same intact materials but with discontinuities such as nat-

ural fractures. Also, the permeability of intact rocks is

generally much smaller than that of rock masses. Young’s

modulus and permeability are both affected by the presence

of discontinuities, and one could establish correlations

between the two parameters; however, we consider them as

independent.

A challenging aspect of dealing with reservoir hetero-

geneity is that it is possible to compute behaviors based on

specific reservoir heterogeneity and physical models, but it

is not possible to specify the in situ distribution of reservoir

heterogeneity (Warren and Price 1961). A simple way to

investigate the behavior of hydraulic fracturing in hetero-

geneous reservoirs is to perform stochastic (Monte Carlo)

simulations (Fenton and Griffiths 2008). In this work, we

first discuss the generation of random fields of Young’s

modulus and permeability. Then, the response of each

geostatistical realization is simulated using a coupled fluid

flow and geomechanical model. A realization of a random

variable is the value generated from a stochastic simula-

tion. Synthetic examples are studied to analyze the linkage

between the degree of heterogeneity and the corresponding

rock responses in terms of pore pressure and stress

distributions.

2.2 Generation of Random Fields

The normal (or Gaussian) distribution is a widely used

continuous probability distribution. Its probability density

function can be characterized by a mean value l and a

variance r2. When the normal distribution is utilized to

represent material properties, negative values may be

generated (Fenton and Griffiths 2008), which do not have

physical meaning. A simple way, commonly adopted in

practice, is to use the lognormal distribution.

In our current study, only the Young’s modulus and

permeability are considered to be spatially random prop-

erties and are assumed to follow a lognormal distribution.

An exponential semivariogram function c(L) is used to
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specify the spatial correlation in observations measured at

sample locations (Deutsch and Journel 1992),

cðLÞ ¼ C0 1� exp
�3L

a

� �� �
ð1Þ

where L = lag distance, a = effective range of the vari-

ogram, and C0 = sill value. Also, several methods for

generating a Gaussian random field, which is completely

characterized by the mean and covariance values, can be

found in Fenton and Griffiths (2008). To simplify the

problem, the heterogeneous fields are assumed to be iso-

tropic, that is, the correlation structure in both the hori-

zontal and vertical directions is assumed to be the same.

The assumption of isotropy admittedly has its limitations.

Reservoirs often exhibit anisotropic characteristics, but in

this study we focus on heterogeneous distributions of

material properties. The role of anisotropy in stimulation

has been considered by Sesetty and Ghassemi (2016).

The unconditional Gaussian random field is commonly

referred to as spatially correlated random field. A random

field that preserves certain known data at specific points is

called a conditional random field (Fenton and Griffiths

2008). For unconditional simulations, the mean values of

Young’s modulus and permeability are constant. The

standard deviations are varied to evaluate the effects of

input variability on the physical responses of a reservoir.

The parameters of the transformed log normal Gaussian

random filed are obtained from the following equation

(Fenton and Griffiths 2008):

r2ln ¼ ln 1þ r
l

� �2
 !

ð2Þ

lln ¼ lnðlÞ � 1

2
r2 ð3Þ

where r and l are variance and mean of the normal dis-

tribution, rln and lln are variance and mean for the log-

normal distribution.

The actual values are transformed by scaling with

respect to the unit-variance Gaussian random field G(x)

according to

f ðxÞ ¼ expðlln þ rlnGiÞ ð4Þ

where Gi is the value at the ith element of a zero mean,

unit-variance Gaussian random field G(x).

2.3 Poroelastic Model

The coupled deformation/diffusion processes are charac-

terized by the theory of poroelasticity introduced by Biot

(1941). Rice and Cleary (1976) have recast Biot’s theory in

terms of physical concepts. The equations governing the

responses of fluid-infiltrated porous solids are expressed as:

2Geij ¼ rij �
v

1þ v
rkkdij þ

að1� 2vÞ
1þ v

pdij

2Gf ¼ að1� 2vÞ
1þ v

rkk þ
3

B
p

� � ð5Þ

where the indices take the values 1, 2 and 3 and repeated

indices imply summation. The constitutive equations are

expressed in terms of the total stress rij, the pore pressure

p, and their respective conjugate quantities, the solid strain

eij and variation of fluid volume per unit reference pore

volume f. The basic material constants are the shear

modulus G, the drained and undrained Poisson’s ratios v

and vu and the Biot’s effective stress coefficient a. B is the

Skempton’s pore pressure coefficient:

B ¼ 3ðvu � vÞ
að1� 2vÞð1þ vuÞ

ð6Þ

Linear poroelastic processes are described by the

constitutive equations, Darcy’s law, the equilibrium

equations and the continuity equations. A set of five

material constants, G, m, mu, a and j, are needed to fully

characterize a linear isotropic poroelastic system. These

equations are combined into field equations in terms of ui
and p which consist of an elasticity equation with a fluid

coupling term,

Gr2ui þ
G

1� 2v
uk;ki � ap;i ¼ �Fi ð7Þ

and a diffusion equation with a solid coupling term,

op

ot
� jMr2p ¼ �aM

oekk
ot

þMðu� jfi;iÞ ð8Þ

where j is the permeability coefficient, which is equal to k/

l, k is the intrinsic permeability, and l is the fluid dynamic

viscosity, u is the source density (the rate of injected fluid

volume per unit volume of the porous solid), fi = qfgi is the
body force per unit volume of fluid, Fi is the body force per

unit volume of the bulk material, and M is Biot’s Modulus:

M ¼ 2Gðvu � vÞ
a2ð1� 2vuÞð1� 2vÞ ð9Þ

The diffusion of pore pressure is coupled with the rate of

change of the volumetric strain.

The response of a pressurized fracture can be obtained

by superposition of two transient solutions corresponding

to two nonzero boundary conditions on the fracture surface

(Carter and Booker 1982). These two fundamental loading

modes are

Mode 1

rnðx; y; z; tÞ ¼ �HðtÞ;
pðx; y; z; tÞ ¼ 0;

ð10Þ

Mode 2
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rnðx; y; z; tÞ ¼ 0;

pðx; y; z; tÞ ¼ HðtÞ:
ð11Þ

where x, y, z correspond to the coordinates of the surface of

the pressurized fracture, H(t) denotes the heaviside step

function. The initial conditions for both modes are stress

free and zero pore pressure everywhere. Figure 1 illustrates

the decomposed boundary conditions.

The responses of the model such as stress distribution,

pore pressure distribution and aperture opening can be

obtained in terms of response functions F1 and F2 for

modes 1 and 2, respectively (Carter and Booker 1982;

Detournay and Cheng 1991). Considering the existence of

far-field stress S0 normal to the fracture surface and pore

pressure p0 (Fig. 2), the response due to applied constant

hydraulic pressure pf can be found by superposition of the

responses of mode 1 and mode 2:

F ¼ ðpf � S0ÞF1 þ ðpf � p0ÞF2 ð12Þ

Following the Galerkin procedure and neglecting the

existence of body forces, Eqs. (7) and (8) lead to the pair of

equilibrium and continuity equations:

½km�fug þ ½c�fpwg ¼ ffg

½c�T ou

ot

� �
� ½kc�fpwg � ½s� opw

ot

� �
¼ Q

ð13Þ

Linear interpolation in time using the Crank–Nicolson

approximation yields:

km c
cT �ðsþ hDtkcÞ

� �
Du
Dp

� �
¼ Df

DQþ Dtkcptn�1

� �

ð14Þ

where u and p are the vectors of the nodal displacements

and nodal pore pressure. h is the Crank–Nicolson approx-

imation parameter, which is set to be 1 in this study so that

the discretized equations are unconditional stable and

numerical oscillations can be smoothed out (Smith and

Griffiths 2004). Dt is the time step. Df is the applied

external force on nodes. DQ is the source/sink term. ptn�1
is

the nodal pore pressure component from the previous time

step. Other matrices are presented as follows:

km ¼
Z

BTDBdV

c ¼
Z

BTamNpdV

s ¼
Z

NT
p

1

M
NpdV

kc ¼
Z

ðrNpÞTjðrNpÞdV

ð15Þ
Fig. 1 Load decomposition for a pressurized fracture in a poroelastic

rock: mode 1 (stress loading) is represented by a unit normal stress,

rn, applied on the fracture surface; mode 2 (pore pressure loading) is

represented by a unit pore pressure, p, (equal to rn) applied on the

fracture surface

(a) (b) sv

shmin shmin

pf - Shmin

p0

pf – p0

sv

Fig. 2 A 3D mesh for the numerical simulation domain: a side view of the domain interior showing the circular fracture in red; b boundary

conditions for the pressurized fracture in a showing a vertical section in the yz-plane (color figure online)
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where [D] is the material elastic matrix, [B] is the strain–

displacement matrix, m = [1,1,1,0,0,0]T, and [Np] is the

shape function for pore pressure.

3 Model Verification

A penny-shaped fracture under uniform pressurization in

3D domain is considered (Fig. 2). With appropriate change

of the minor-to-major-axis ratio, an elliptic fracture or

Griffith crack can be modeled. A uniform compressive

stress and pore pressure field are initially assumed in the

entire poroelastic domain. The initial minimum horizontal

stress Shmin is normal to the fracture surface. The initial

pore pressure is p0. At time t = 0, a constant pressure pf is

applied on the surface of fracture with a magnitude larger

than Shmin. The pressurized boundary of the fracture wall is

decomposed into two nonzero boundary conditions as

mentioned before.

To verify the poroelastic model, a fully loaded mode 1

penny-shaped fracture is modeled. The short- and long-

term asymptotic profiles of the fracture aperture can be

obtained according to the elastic solution (Sneddon 1946):

wðrÞ ¼ 2pnetð1� vÞR
pG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

	 
2r
ð16Þ

where pnet is the net pressure, which is defined as the

treatment pressure minus the in situ minimum principal

stress, equal to pf - Shmin, R the radius of the fracture,

v Poisson’s ratio, G shear modulus, w(r) fracture half width

and r radial coordinate. Substituting undrained and drained

Poisson’s ratio into the above equation, the short- and long-

term aperture profiles can be found. The short- and long-

term responses give the bounding limits of the transient

responses of the pressurized fracture (Rice and Cleary

1976). For the short-term (t & 0) response, a poroelastic

medium behaves as an elastic material with the same shear

modulus G and undrained Poisson’s ratio mu. The long-term
(t = ?) response is represented by an elastic response with

the drained Poisson’s ratio m.
Figure 3 shows the mode 1 (stress loading) transient

fracture opening profiles. Dimensionless time t* = ct/R2 is

used for transient evolution of the fracture profile. For

comparison, an elastic FEM simulation using a drained

Poisson’s ratio is also included. As illustrated in the figure,

the FEM poroelastic results approach these asymptotic

limits (short- and long-term responses). The long-term

poroelastic results overlap with the elastic solution using

drained Poisson’s ratio. A single curve is formed when

each of the fracture profiles is normalized by their maxi-

mum values (Fig. 4). The transient poroelastic responses of

the pressurized fracture agree well with the asymptotic

solutions calculated based on Eq. (16), which verifies the

applicability of the presented poroelastic model and its

corresponding FEM implementation.

4 Numerical Simulations

In the following sections, the total response of the poroe-

lastic model is found by a linear combination of the

responses of mode 1 (stress loading) and mode 2 (pore

pressure loading) according to Eq. (12). Homogeneous

elastic properties are first considered. Then the analysis is

extended to more general heterogeneous scenarios.

4.1 Homogeneous Case

The opening of the fracture and the poroelastic effects

during hydraulic stimulation induce stresses around the
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Fig. 3 Fracture width versus radial distance for a penny-shaped

fracture under mode 1 (or stress) loading. Comparison of numerical

and analytical results for elastic and poroelastic cases. The very short-

time poroelastic results correspond to undrained rock response. The

long-term poroelastic results correspond to drained response which

equal that of a purely elastic rock
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Fig. 4 Normalized mode 1 fracture width versus radial distance for a

penny-shaped fracture. The profile of the normalized fracture aperture

is independent of time and material properties

Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock 3161

123



stimulated region (Ghassemi et al. 2013; Rawal and

Ghassemi 2011; Safari and Ghassemi 2015). Consider that

a penny-shaped fracture in a rock with mechanical prop-

erties of Weber sandstone (Rice and Cleary 1976) is uni-

formly pressurized. The radius of the fracture is 80 m, and

the basic input parameters for the homogeneous case are

listed in Table 1. We assume the stress gradients are 1.0

psi/ft for Sv, 0.8 psi/ft for SHmax, 0.7 psi/ft for Shmin, and the

fluid pressure gradient is 0.433 psi/ft, yielding the values

listed in Table 1 for a depth of 6000 ft.

Figure 5 illustrates the induced total stress and pore

pressure distributions along a line (OA) perpendicular to

the fracture surface passing through the center of the

fracture. On the fracture surface, the fluid pressure (Pf) is

kept at 36 MPa; the induced fluid pressure (DP = Pf - P0)

is 18 MPa, based on the assumption that Pf = Pnet ? Shmin

on the fracture surface; the induced minimum horizontal

stress (DSyy) is maintained at 7 MPa, which is equal to the

applied net pressure. At the beginning of pressurization

(t = 0.02 s and t = 7 min), the induced pore pressure

(DP) is larger than the induced horizontal and vertical

stresses (DSxx, DSyy and DSzz) on the fracture surface; the

induced pore pressure (DP) is less than the induced mini-

mum horizontal stress (DSyy) from where L/R[ 0.4. As

time goes by, the pore pressure gradually diffuses further

into the formation. When t = 24 h, the induced pore

pressure is larger than the induced horizontal and vertical

stresses (DSxx, DSyy and DSzz) in the entire numerical

domain.

The shear stresses are shown in Fig. 6 and are close to

zero in the homogeneous poroelastic rock during the entire

process of pressurization. The oscillations in Fig. 6b, c are

of the magnitude of 10-13 MPa and can be considered as

numerical error.

Figure 7 illustrates the orientations of the minimum

principal stresses at t = 7 min and t = 24 h. Black lines

indicate the directions of the minimum principal stress at

Table 1 Basic input parameters

for the homogeneous case
Geometry of models 640 9 800 9 640 m (length/width/height)

Poisson’s ratio, v 0.15

Undrained Poisson’s ratio, vu 0.29

Biot’s effective stress coefficient, a 0.7

Young’s modulus, E (homogeneous case) 2.76 9 1010 Pa

Permeability (homogeneous case), k 5.0 md

Fluid dynamic viscosity, l 2.0 9 10-4 Pa s

Initial stress state

Vertical stress, Sv 41 MPa

Max. hori. stress, SHmax 33 MPa

Min. hori. stress, Shmin 29 MPa

Initial pore pressure, P0 18 MPa

Net pressure, Pf - Shmin 7 MPa

Fig. 5 Induced total (sum of mode 1 and mode 2) stresses and pore

pressure along a line (OA) (top figure) perpendicular to the fracture

surface, passing through the center of the fracture: a t = 0.02 s;

b t = 7 min; c t = 24 h
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points within the domain. The color contour represents the

rotation angle of the minimum principal stresses from their

original orientations and is symmetric to the pressurized

fracture (due to the symmetric boundary conditions adop-

ted here). As can be seen, stress-reversal regions develop,

where the minimum principal stresses rotate 90�, exist at
t = 7 min in the areas extended away from the fracture

surface. This phenomenon is consistent with Fig. 5b and

will be analyzed in the Discussion section. After 24 h of

pressurization, no stress-reversal regions exist. The maxi-

mum rotation angle is around 30�. The regions with rela-

tively a large rotation angle are close to the fracture tips

where the stress singularity exists.

As can be seen from Fig. 5, the induced stress compo-

nent in the y-direction (direction of the initial minimum

horizontal stress) is always larger than the component in

the x-direction (direction of the initial maximum horizontal

stress) and the extent of the region of stress reorientation

and stress reversal (stress reversal indicates that the prin-

cipal stresses rotate 90�) largely depends on the initial

in situ stress contrast and the applied net pressure. When

the initial in situ stress contrast (Sxx - Syy) is larger than

the generated stress contrast (DSyy - DSxx), which is a

function of net pressure, the minimum principal stress is

still in the y-direction and there is no stress reversal in the

vicinity of the fracture surfaces. However, a reoriented

Fig. 6 Induced (total) shear stresses along the line OA (see Fig. 5a)

perpendicular to the fracture surface passing through the center of the

fracture: a DSxy; b DSyz; c DSzx

Fig. 7 Symmetrical distributions of reorientation angle (R-angle) of

the minimum principal stress in a plane cut through the center of the

fracture (the central plane parallel to the XY plane in Fig. 2):

a t = 7 min; b t = 24 h. The small dashes indicate the orientation of

the minimum principal stress at those locations (color figure online)
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stress region exists around the fracture tips. The generated

stress contrast (DSyy - DSxx) is shown in Fig. 8. The red

dashed line in Fig. 8 indicates the initial in situ stress

contrast (Sxx - Syy). At t = 0.02 s and 7 min, we have

(DSyy - DSxx)[ (Sxx - Syy), so stress-reversal regions

exist in areas extending away from the fracture surface

(Fig. 7a). At t = 24 h, there are no stress-reversal regions

((DSyy - DSxx)\ (Sxx - Syy)) as pore pressure diffuses

further into the formation. The stress-reversal phenomenon

is discussed further in the Discussion section.

4.2 Heterogeneous Case

As mentioned before, five material constants are needed to

fully characterize a linear isotropic poroelastic system. In

this work, we use E, m, mu, a and j for this purpose. Each of

these parameters and their combinations can be considered

as randomly distributed variables in the poroelastic model.

As we know, flooding a porous rock will cause it to

expand. When the expansion is constrained, a confining

pressure is generated as a function of a and m (Cheng et al.

1993). Thus, nonuniform distributions of a and m can

generate heterogeneous stress fields. Also, the variation of

Young’s modulus alters the stiffness matrix in stress–strain

relationship so the calculated stresses also experience

alterations. The long-time response (t = ?) of a poroe-

lastic rock is similar to the response of an elastic material

with drained Young’s modulus and Poisson’s ratio. The

undrained moduli control the rock behavior during short

times (t & 0).

To illustrate the influence of heterogeneity, example

simulations using Young’s modulus and permeability as

random variables are presented and discussed in detail. The

same procedure could be used with other parameters trea-

ted as random variables. Lognormal distribution is adopted

here. Statistical values for the assumed random variables

are presented in Table 2. Figures 9 and 10 show the 3D

random distributions of the Young’s modulus and perme-

ability, respectively.

Figure 11 illustrates the induced total stresses and

pore pressure along a line perpendicular to the fracture

surface, passing through the center of the fracture.

Comparison with Fig. 5 shows that the normal stresses in

heterogeneous rock (Young’s modulus and permeability

heterogeneity) have almost the same distributions as

those in homogeneous rock. The shear stresses are given

in Fig. 12. As can be seen, they are one order of mag-

nitude larger than those in the homogeneous case. When

the shear stress components (Sxy, Syz, Szx) are negligible

compared to normal stresses components (Sxx, Syy, Szz),

the normal stresses are also principal stresses. In the

heterogeneous case, the induced shear stresses cause the

directions of local principal stresses to become hetero-

geneous [see the reorientation of the minimum principal

Fig. 8 Generated stress contrast (DSyy - DSxx) at different pressur-
ization time along the line OA (see the top of Fig. 5) through the

center of the fracture and perpendicular to it (homogeneous rock

scenario)

Table 2 Statistical values for the assumed random variables

Young’s modulus (Pa) Permeability (md)

Input data

Mean value 2.76E?10 5.00

Variation value 5.52E?09 1.00

Output data

Arithmetic average 2.74E?10 4.95

Geometric average 2.71E?10 4.90

Harmonic average 2.67E?10 4.84

Max. value 4.87E?10 8.83

Min. value 1.42E?10 2.57

Fig. 9 Random distribution of Young’s modulus (Pa)
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stress (Fig. 13)]. In the homogeneous case, the defor-

mation of the model is uniform so no shear stresses (or

very small shear stresses) are generated. The shear

stresses are generated primarily where different materials

come into contact (material interfaces). The higher the

contrast of material properties along the interface, the

larger the generated shear stresses. We will discuss these

phenomena in the following section. In addition, the

fluctuation of shear stresses is a function of time and is

thus related to the diffusion of pore pressure. This is

shown in Fig. 12 for shear stresses at t = 0.02 s,

t = 7 min and t = 24 h, respectively.

Initially, the minimum principal stress is the horizontal

stress (Syy). The black lines in Fig. 13 show the directions

of the minimum principal stresses located in a horizontal

plane. After applying hydraulic pressure to the fracture

surfaces, we can observe that some regions of the hori-

zontal plane do not have black lines. This indicates that in

certain areas the minimum principal stresses are no longer

horizontal. In the homogeneous case, the minimum prin-

cipal stresses remain in the horizontal direction every-

where, although they rotate by a certain angle depending

on the position with respect to the pressurized fracture

(Fig. 7). The contours in Fig. 13 illustrate the rotation

angle of minimum principal stresses in the horizontal

plane. The value of the rotation angle has a complex

distribution and is not symmetric with respect to the

pressurized fracture. The rotation angle gradually

decreases as time elapses, due to the diffusion of pore

pressure into the formation, which causes the induced

stress contrast (DSyy - DSxx) to gradually decrease as

shown in Fig. 8.

5 Discussion

The importance of understanding stress redistributions

during hydraulic stimulation lies in the fact that stresses

predominantly control the fracture propagation. Much

effort has been devoted to the analyses of stress redistri-

bution around a hydraulic fracture based on the assumption

of homogeneous rock properties, ignoring the inherently

heterogeneous nature of unconventional reservoirs. As has

been demonstrated in previous sections, stress redistribu-

tions (magnitude and direction) in heterogeneous poroe-

lastic rocks are much different from those in homogeneous

systems. Although the normal stress components in the two

different cases are nearly the same, the shear stresses are

larger and are nonuniformly distributed in the

Fig. 10 Random distribution of permeability (md)

Fig. 11 Induced total stresses and pore pressure along the line OA

(see Fig. 5a) perpendicular to the fracture surface, passing through the

center of the fracture, for the heterogeneous case: a t = 0.02 s;

b t = 7 min; c t = 24 h
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heterogeneous case (Fig. 12). The reasons for the observed

trends can be explained using relatively simple simulations

as described below.

5.1 Influence of Young’s Modulus

Consider a 1.2 m 9 1.2 m 9 1.2 m cube of rock as shown

in Fig. 14. An interior cubical subregion of size

0.6 m 9 0.4 m 9 0.6 m (interior zone) is considered to

have poroelastic properties different from the rest of the

larger cube (exterior zone). Then, the left side of the cube

is subjected to a fluid pressure of 36 MPa with the traction

acting in the y-direction (Fig. 14b). The solid and fluid

displacements are set to zero on all other boundaries. The

whole simulation domain is divided into cubic elements of

size 0.1 m (Fig. 14). The material properties used for the

exterior elements are the same as those used in the

homogeneous case (Table 1), while the properties of the

interior zone are varied and the resulting stress and pore

pressure distributions are simulated. To evaluate the

influence of Young’s modulus on the resulting stresses, we

lower the elastic properties of the interior cubical subregion

during different simulation runs such that the Young’s

modulus ranges from an initial base case value of

Fig. 12 Variation of induced shear stresses along the line OA (see

Fig. 5a) perpendicular to the fracture surface, passing through the

center of the fracture, for the heterogeneous case: a Sxy; b Syz; c Szx

Fig. 13 Unsymmetrical distributions of reorientation angle (R-angle)

of the minimum principal stress for the heterogeneous medium from a

top view slice cutting through the center of the fracture: a t = 7 min;

b t = 24 h
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2.76 9 1010 Pa to 90, 70, 50, 30 and 10% of the base case

value. For the elements in the exterior zone, the Young’s

modulus is kept at the initial value.

The following results are obtained at t = 7 min (the

small model reaches steady state after 7 min of pressur-

ization with a uniform pore pressure of 36 MPa). Figure 15

shows the displacements in the x- and y-direction on the

central horizontal plane. In the case shown, the Young’s

modulus of the elements in the central part (marked by the

red dashed lines) is 50% of that for the surrounding ele-

ments providing for a larger mode 2 response (dilation) in

the interior zone. As expected, the displacement field (and

strain) is not uniform. The elements with a lower Young’s

modulus tend to contract more in the x-direction (due to the

system dilation in the y-direction in response to the pore

pressure increase). The same phenomenon exists for dis-

placement in the xz-plane because the material properties

are symmetrically distributed (with respect to the y-axis).

Figure 16 shows the distribution of induced shear

stresses DSxy on two orthogonal planes. Induced shear

stresses, DSxy, are observed at the interface separating

zones with different Young’s modulus.

Sensitivity analyses on the effects of Young’s modulus

are presented next. Six different scenarios are considered.

In the base case, the same Young’s modulus values are

assigned to the exterior and interior zones. In the other

five scenarios, the interior zone has a Young’s modulus

equal to 10, 30, 50, 70 and 90% of the base case. The

induced total normal and shear stresses along the line yy0

(illustrated in Fig. 16) are presented in Figs. 17 and 18,

respectively.

Pf - Shmin

Pf - Pinitial

Y

Z

1.2 m

(a)

(b)

Fig. 14 a A 3D model of a simple heterogeneous system showing a

cube or rock with an interior zone having different properties than the

rest of the body. Elements with different Young’s modulus are shown

in purple (interior zone). Red color indicates the exterior zone; b a

section of the 3D model showing the central section parallel to the yz-

plane and the boundary conditions (color figure online)

X

Y
Z

3.0E-06
2.3E-06
1.7E-06
1.0E-06
3.3E-07
-3.3E-07
-1.0E-06
-1.7E-06
-2.3E-06
-3.0E-06

X

Y
Z

-2.0E-05
Uy

Ux

-4.4E-05
-6.9E-05
-9.3E-05
-1.2E-04
-1.4E-04
-1.7E-04
-1.9E-04
-2.2E-04
-2.4E-04

y

y'

(a)

(b)

1.2 m

1.2 m

Fig. 15 Displacements in x- and y-direction on a central horizontal

plane: a displacement in x-direction; b displacement in y-direction

(area encircled by red dash lines has 50% of initial Young’s module.)

(unit: m) (color figure online)
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The elements with smaller Young’s moduli are located

from 0.4 to 0.8 m along the line yy0. The induced stress

components DSxx, DSyy and DSzz show variations between

y = 0.4 and 0.8 m. The maximum variations for DSxx, DSyy
and DSzz are 0.7, 0.6 and 1 MPa, respectively. Because of

the change of Young’s modulus at these locations, the

deformation is nonuniform (Figs. 15, 19). The magnitudes

of the variations are usually less than 1 MPa, even for the

extreme scenario (Eweak/Eoriginal = 0.1), which are rather

small when compared with their values in the base case.

The magnitude of the induced shear stress, DSxy, varies
in the range of 0.5–2 MPa between y = 0.4 m and

y = 0.8 m. For Syz and Szx, the variations are close to zero.

Due to the symmetric distribution of material properties

with respect to the y-axis, the stress distributions along

lines parallel to the y-direction exhibit the same patterns.

From Fig. 19, it is observed that displacements in the x-

direction along the line yy0 are negative except at

y = 0.4 m and y = 0.8 m, where the two corners of the

weak zone (Fig. 15) are located. However, as can be seen

from Fig. 15a, the x-displacements in the weak zone are in

the positive x-direction beyond the line yy0 and the weak

zone is contracting during pressurization. The net response

(mode 1 plus mode 2) is a contraction because of the rel-

atively larger dilation in the y-direction toward the loaded

surface due to pore pressure increase.

The distributions of the induced total stress DSyy on a

central horizontal plane are presented in Fig. 20 for mode

1, mode 2 and mode 1 ? 2. The interior weak zone

encircled by the red dashed lines has a Young’s modulus

equal to 50% of the surrounding elements. For the homo-

geneous distribution of Young’s modulus, the induced

stresses are distributed uniformly in the entire domain, as

illustrated in Figs. 17, 18 and 19 for the case with uniform

E. In the heterogeneous case, mode 1 loading generates

smaller induced total stress component DSyy in the weak

zone compared with the induced stresses in exterior ele-

ments; mode 2 has larger DSyy in the weak zone. Com-

bining mode 1 and mode 2, we observe from Fig. 20c that

the interior weak zone has a larger DSyy. We notice from

Fig. 15 that the weak zone is under contraction in the x-

direction during pressurization. These behaviors are dif-

ferent from those of an elastic (in contract to poroelastic)

medium, which only act like mode 1 loading.

Because of the spatial variation of Young’s modulus,

nonuniform deformations and shear stresses are generated

at material interfaces. In addition to the change of

mechanical properties, such as Young’s modulus,

Fig. 16 Distribution of DSxy on two orthogonal slices (unit: Pa)

Fig. 17 Induced normal stresses along the line yy0 for cases with

different Young’s modulus between y = 0.4 m and y = 0.8 m:

a DSxx; b DSyy; c DSzz
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discontinuities (e.g., natural fractures) can also induce

heterogeneous stress redistributions when their mechanical

properties are different from their surrounding materials.

This simple example illustrates some underlying physical

processes that lead to the complex stress response observed

in the stress field around a pressurized crack considered in

the previous section.

5.2 Influence of Biot’s Effective Stress Coefficient

Instead of altering the Young’s modulus, consider gradu-

ally changing Biot’s effective stress coefficient, a, from 0.1

to 0.9 for the elements in the central region while keeping

that of the surrounding elements equal to 0.5. Figure 21

illustrates the total normal stresses along the line yy0. The
value in the legend indicates a for the elements in the

central zone. As can be seen, the normal stresses are

increased for larger a and decreased for smaller a. The
variations of DSxx, DSyy and DSzz are in the range of 1.5–3,

0.5–0.8 and 1–2 MPa, respectively. Injection into a porous

medium causes it to dilate (Cheng et al. 1993). When the

expansion is constrained, confining stresses will be gener-

ated as a function of Biot’s effective stress coefficient:

DSxx þ DSyy þ DSzz ¼ � 2að1� vÞ
1� v

Dp ð17Þ

The induced stresses vary in different zones when a
changes from one zone to another.

In addition to the induced stress variations, the induced

displacements also vary in different zones and at the

interfaces of the materials with different a. The displace-

ment component in the x-direction along the line yy0 is

plotted in Fig. 22; it can be seen that it has a uniform

distribution when a = 0.5. When a[ 0.5 for elements in

the central zone, it tends to expand; when a\ 0.5, it tends

to contract. These are consistent with the changes of nor-

mal stresses. Figure 23 shows the shear stress distributions

along the line yy0. Shear stresses in the range of

1 MPa * 2 MPa develop along the interfaces of materials

with different a.

5.3 Influence of Drained and Undrained Poisson’s

Ratio

According to Eq. (17), the induced normal stresses are also a

function of drained Poisson’s ratio, m. The range for m is

0 B m B mu. If we assume m = 0.25 for the elements in the

central part of the model and m = 0.15 for the surrounding

elements, the maximum variations of normal and shear

stresses are 0.3 MPa and 0.2 MPa, respectively. When the

diffusion of fluid pressure reaches a steady state in a

Fig. 18 Induced shear stresses along the line yy0 for cases with

different Young’s modulus between y = 0.4 m and y = 0.8 m:

a DSxy; b DSyz; c DSzx

Fig. 19 Displacement in x-direction along the line yy0
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poroelastic rock, the rock’s mechanical response is the same

as that of an elastic material with the same drained Poisson’s

ratio. The undrained Poisson’s ratio influences the poroe-

lastic behavior in transient states. The range of undrained

Poisson’s ratio values is relatively small. Assuming mu = 0.4

for the elements in the central zone of the model and

mu = 0.29 for the surrounding elements, the maximum per-

turbations of normal and shear stresses at t = 0.02 s are 0.6

and 0.2 MPa, respectively, so that the difference in the

induced stresses at material interfaces are small.

An interesting phenomenon is illustrated in Fig. 8. The

induced stress contrast (DSyy - DSxx) due to pressurization

of the fracture is less than the original in situ horizontal

stress difference in a region close to the fracture surface (in

this case L/R\ 0.3). This indicates that the maximum

horizontal stress, Sxx, will always be larger than the mini-

mum horizontal stress, Syy; there will be no stress reversal

in regions close to the fracture surface. This is in contrast to

predictions that are based on an elastic formulation without

consideration of the pore pressure diffusion effects on rock

deformation (and stresses). In an elastic solution to the

problem, DSxx is always less than DSyy, so that (DSyy -
DSxx)[ 0 causing the principal stresses to rotate by 90�

provided that the induced stress contrast is larger than the

background in situ stress contrast, Sxx - Syy.

The induced stress contrast, DSyy - DSxx, on fracture

surface in a poroelastic rock can also be estimated from the

solution to the 1D problem (Fig. 24) of fluid pressure

loading of an infinite half-space (Cheng 2016). The pres-

sure loading condition can also be decomposed into modes

1 and 2. Using the analytical solution for the 1D fluid

pressure loading with the same parameters as in Table 1,

the induced stresses are obtained and plotted in Fig. 25. As

can be seen, the induced stress contrast, DSyy - DSxx, on
the pressure loading surface is -5 MPa, which is almost

the same as our numerical results for pressurized penny-

shaped fracture when t = 0.02 s and t = 7 min.

Rocks generally exhibit heterogeneous and anisotropic

characteristics. Both of these characteristics could influ-

ence the stress and pore pressure distributions during

hydraulic fracturing. Our current model can be used to

generate heterogeneous isotropic parameters. The role of

anisotropic rock properties on hydraulic fracturing has

been considered in Sesetty and Ghassemi (2016). More

effort is needed to improve the model of this paper to

consider rock anisotropy and is left for future work. In real
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Fig. 20 Induced total stress

DSyy (compression positive) on

a central horizontal plane:

a mode 1; b mode 2; c mode

1 ? 2 (unit: MPa)
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situations, material properties, such as Young’s modulus

and permeability, could vary by a factor of two and more,

especially when discontinuities (e.g., joints, natural frac-

tures) exist. These sudden changes in material properties

could be explicitly incorporated into the generated random

fields.

Complex processes are involved in hydraulic stimula-

tions, especially when the heterogeneous characteristics of

geological formations are considered. For the sake of

simplicity, some simplifying assumptions have been made,

which may need to be improved when dealing with a real

system, and are left for future research.

Fig. 21 Induced normal stresses along the line yy0 (see Fig. 20) due

to the change of Biot’s effective stress coefficient, a, between

y = 0.4 m and y = 0.8 m: a DSxx; b DSyy; c DSzz

Fig. 22 Displacement in the x-direction along the line yy0 (see

Fig. 20) for different Biot’s effective stress coefficients in the central

zone

Fig. 23 Induced shear stresses along the line yy0 (see Fig. 20) for

cases using different Biot’s effective stress coefficient between

y = 0.4 m and y = 0.8 m: a DSxy; b DSyz; c DSzx
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6 Conclusions

A fully coupled 3D poroelastic model based on FEM has

been developed to analyze the stress and pore pressure dis-

tributions around a pressurized fracture in heterogeneous

porous media. The heterogeneous distributions of Young’s

moduli and permeability are generated based on lognormal

random distribution. Good agreement has been achieved

between the analytical solutions and numerical results.

Comparison of the pressurized fracture simulation results for

a heterogeneous medium with those in a homogeneous one

indicates that the normal stress component is almost the same

in the two cases, but shear stresses in the heterogeneous

media are significantly larger and vary as a function of time

and thus are related with the diffusion of pore pressure. Our

analyses show that shear stresses develop along the interfaces

of materials with different properties (e.g., Young’s modu-

lus). Although normal stresses experience variations along

the interfaces, their magnitudes are smaller than the generated

shear stresses and much smaller than their initial values. Due

to the spatial variation in material properties, shear stresses

and nonuniform deformations are generated in a poroelastic

rock surrounding a pressurized crack. The induced shear

stresses in heterogeneous rock cause the initially horizontal

principal stresses to rotate out of horizontal planes, which

may potentially influence the propagation direction of sub-

sequent fractures. As the pore pressure diffuses into the for-

mation, the stress-reversal regions gradually disappear, and in

areas where there has been stress rotation without a complete

reversal, the rotation angles of the principal stresses decrease.

The induced horizontal stress differential caused by the

pressurization of the fracture is less than the original in situ

horizontal stress differential in a region close to the fracture

surface. As a result, the maximum horizontal stress remains

larger than the minimum horizontal stress, and there will be

no stress reversal in regions close to the fracture surface. This

is in contrast to predictions based on an elastic formulation

without consideration of the pore pressure diffusion effects on

rock deformation.
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