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Abstract Orientation statistics are prone to bias when

surveyed with the scanline mapping technique in which the

observed probabilities differ, depending on the intersection

angle between the fracture and the scanline. This bias leads

to 1D frequency statistical data that are poorly represen-

tative of the 3D distribution. A widely accessible estimator

named after Terzaghi was developed to estimate 3D fre-

quencies from 1D biased observations, but the estimation

accuracy is limited for fractures at narrow intersection

angles to scanlines (termed the blind zone). Although

numerous works have concentrated on accuracy with

respect to the blind zone, accuracy outside the blind zone

has rarely been studied. This work contributes to the lim-

ited investigations of accuracy outside the blind zone

through a qualitative assessment that deploys a mathe-

matical derivation of the Terzaghi equation in conjunction

with a quantitative evaluation that uses fractures simulation

and verification of natural fractures. The results show that

the estimator does not provide a precise estimate of 3D

distributions and that the estimation accuracy is correlated

with the grid size adopted by the estimator. To explore the

potential for improving accuracy, the particular grid size

producing maximum accuracy is identified from 168

combinations of grid sizes and two other parameters. The

results demonstrate that the 2� 9 2� grid size provides

maximum accuracy for the estimator in most cases when

applied outside the blind zone. However, if the global

sample density exceeds 0.5�-2, then maximum accuracy

occurs at a grid size of 1� 9 1�.

Keywords Rock fractures � Fracture orientation � Scanline
mapping technique � Terzaghi bias correction � Blind zone �
Estimator optimization

1 Introduction

Three-dimensional (3D) fracture geometries have a sig-

nificant impact on fluid flow and the productivity of geo-

logical formations, especially those with low permeability

(Ghislain et al. 2016; Nur and Booker 1972). Among the

3D geometric attributes, orientation plays an important role

in discrete fracture network (DFN) modeling (Fernandes

et al. 2016). The 3D orientation distribution is a funda-

mental parameter for the DFN hydraulic model, and an

accurate estimation of this distribution is essential in the

evaluation of gas production and the estimation of fluid

flow capabilities in fractured rocks (Middleton et al. 2015;

Pandey et al. 2017). Because the 3D structure of a rock

system cannot be easily observed, the true 3D fracture

geometries, including the orientations, are usually

unavailable. However, fresh rock exposures, e.g., outcrops

and tunnel pit faces, allow geologists to acquire 2D fracture

information through window sampling technique (Mauldon

1998, Mauldon et al. 2001; Han et al. 2016) or 1D fracture

information through borehole/scanline mapping technique

(Gao et al. 2016; Havaej et al. 2016). In the 1D scanline

mapping, bias is often introduced, as fractures with shallow

angles of intersection with the scanline are seldom

observed (Fisher et al. 2014; Priest 1985).

& Lei Huang

huanglei@cug.edu.cn

1 Department of Geotechnical Engineering and Engineering

Geology, Faculty of Engineering, China University of

Geosciences, Wuhan 430074, Hubei, China

2 Glenn Department of Civil Engineering, College of

Engineering, Computing and Applied Sciences, Clemson

University, Clemson, SC 29634, USA

123

Rock Mech Rock Eng (2017) 50:2085–2099

DOI 10.1007/s00603-017-1254-7

http://orcid.org/0000-0001-9991-0087
http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-017-1254-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-017-1254-7&amp;domain=pdf


Terzaghi (1965) developed a four-step estimator to

estimate the orientation probability distribution in 3D from

available 1D biased observations as follows:

1. Partition the projection net into grids of a given size;

2. Count the fracture frequency occurring within each

grid;

3. Weight the individual frequencies according to the

Terzaghi equation:

N3D ¼ N1D

sin h
ð1Þ

where h is the intersection angle between the fracture

and scanline (Fig. 1a), N1D is the fracture frequency in

1D intersected by the scanline at angle h, and N3D is

the fracture frequency in 3D;

4. Round the weighted frequencies to the nearest integer,

because the frequencies defined in this manner must be

integers.

The Terzaghi estimator has been widely utilized for 3D

orientation distribution estimation in rock relevant fields, such

as rockmechanics and hydrocarbon geology (Clair et al. 2015;

Haftani et al. 2016; Huang et al. 2016). Previous simulations

and practices have demonstrated that the Terzaghi estimator

exhibits low accuracy or is simply invalid when applied to

fractures at extremely shallow intersection angles to the

scanline (Park and West 2002; Priest 1985), and this interval

of angle was conceptualized as the blind zone (as shown in

Fig. 1b). The size of the blind zone was roughly estimated at

20� (Fouché and Diebolt 2004; Goodman 1976) or 30�
(Mauldon and Mauldon 1997; Priest 2012). Although a

number of studies have examined the negative effects of the

blind zone and its avoidance (Chaminé et al. 2014;Martin and

Tannant 2004; Yow 1987), few researchers have studied the

accuracy of the Terzaghi estimator in applications outside the

blind zone.

Therefore, this paper focuses on (1) performing a system-

atic investigation of the accuracy outside the blind zone and

(2) exploring potential accuracy improvements. First, a

detailed derivation of the Terzaghi equation (Eq. 1) is utilized

to qualitatively reveal the source of potential inaccuracy.

Next, accuracy magnitudes are quantitatively tested in an

experiment employing artificial fractures and involving 168

combined conditions of three parameters: sample density,

scanline direction, and grid size. In the experiment, the effect

of grid size on the accuracy of the estimator is further exam-

ined, and a particular grid size that enables the maximum

estimation accuracy is identified to optimize the Terzaghi

estimator. Finally, the experiment results are verified using an

empirical study of natural fractures in Wenchuan, China.

2 Derivation of the Terzaghi Equation

To reveal potential sources of inaccuracy when applying

the Terzaghi estimator outside the blind zone, we must first

navigate through the possible theoretical defects of this

estimator. A detailed, rigorous mathematical derivation of

the Terzaghi equation is employed, although Terzaghi

(1965) had given a simple, thin proof for her equation,

which was nevertheless insufficient to clarify the theoreti-

cal features of the estimator, particularly the possible the-

oretical defects. For ease of derivation, certain notations

are defined first. Based on these notations, the derivation

proceeds, using analytic geometry, probability theory, and

integrals.

Fig. 1 Illustration of the intersection angle, h, between the fracture

and scanline, the resulting blind zone, and the region of interest

outside the blind zone. a Intersection angle h. A fracture is assumed to

be disk shaped. An example scanline has a trend/plunge of 090/45�.
b The blind zone and region of interest outside the blind zone. They

are presented in an equal-angle upper-hemisphere projection. The two

isogonic lines are constituted by the poles of those fractures

intersected by the scanline at h = 30� and define the boundary

between the blind zone (h\ 30�) and the region of interest outside

the blind zone (h[ 30�)
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2.1 Notations

1. Random variable A denotes the orientation of a frac-

ture that occurs in a rock mass (in 3D space).

2. Random variable B denotes the orientation of the

fracture intersected by a scanline (in 1D).

3. Set A denotes a collection of random variable A values

and represents the collection of orientations of all the

fractures in the rock mass.

4. Set B denotes a collection of random variable B values

and represents the collection of orientations of those

fractures observed with scanline mapping. Set B natu-

rally constitutes a subset of Set A.

5. Set A \ B denotes the intersection of Sets A and B.

6. pA(a, b) denotes the probability density of random

variable A, with a and b representing two elements of

orientation: dip direction and dip angle.

7. pB(a, b) denotes the probability density of random

variable B.

8. pA\B(a, b) denotes the probability density of A\B.
9. pB|A(a, b) denotes the conditional probability density of

B given A. In probability theory and statistics, the

conditional probability density of B given A is defined

as the probability density of B when A is known

(Kinney 2015). We first consider that A is constant and

is interpreted to indicate that all fracture orientations in

the rock mass are uniform, or, more generally, that all

fractures in the rock mass are parallel. pB|A(a, b)
accordingly reflects the probability density of the

orientations of fractures observed by the scanline under

the condition of all fractures being parallel.

2.2 Derivation

For parallel fractures (as shown in Fig. 2), the relationship

of the distance (l) between fractures along the scanline to

their vertical distance (L) is formulated as follows:

l ¼ L

sin h
ð2Þ

then

pBjAða; bÞ /
N

l
¼ N sin h

L
ð3Þ

or equivalently

pBjAða; bÞ ¼ k sin h ð4Þ

with

k / N

L
ð5Þ

The introduction of pB|A(a, b) allows us to connect pA(a,
b) and pA\B(a, b), using the Kolmogorov formula, as

follows:

pAða; bÞ ¼
pA\Bða; bÞ
pBjAða; bÞ

ð6Þ

An arbitrary orientation region from a projection net

(labeled as R, shown in Fig. 3) is partitioned by the

Terzaghi estimator into the desired number of grids: r1, r2,
r3,…, rn. The 3D frequency of orientation in the region

R is regarded as the sum of the frequencies over the cor-

responding grids r1, r2, r3,…, rn:ZZ
R

pAða; bÞdadb ¼
Xn
i¼1

ZZ
ri

pAða; bÞdadb ð7Þ

Substituting Eqs. 4 and 6 into Eq. 7 givesZZ
R

pAða; bÞdadb ¼ 1

k

Xn
i¼1

ZZ
ri

pA\Bða; bÞ
sin h

dadb ð8Þ

As noted earlier, Set B is a subset of Set A. Therefore,

A \ B ¼ B ð9Þ

Substituting Eq. 9 into Eq. 8 gives

Fig. 2 Intersection between the scanline and parallel fractures at

angle h. The vertical distance between fractures 1 and n is assumed to

be L, and their distance along the scanline is assumed to be l

Fig. 3 Example showing the partition of an arbitrary orientation

region into grids
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ZZ
R

pAða; bÞdadb ¼ 1

k

Xn
i¼1

ZZ
ri

pBða; bÞ
sin h

dadb ð10Þ

Suppose that hci is the intersection angle between the

scanline and fracture defined at the center of grid ri (i = 1,

…, n) and Pi is the observed 1D frequency over grid ri.
According to the Riemann middle sum interpretation of the

double integral, as described in Peterson (2016), Eq. 10 is

rewritten as follows:ZZ
R

pAða; bÞdadb ¼ eþ 1

k

Xn
i¼1

Pi

sin hci
ð11Þ

with

e ¼ 6¼ 0; if n\1
0; if n ¼ 1

�
ð12Þ

where
RR

R
pAða; bÞdadb is the true 3D frequency in terms of

the integral; 1
k

Pn
i¼1

Pi

sin hci
is the 3D frequency estimated using

the Terzaghi estimator, or in integrals is called the Rie-

mann middle sum; and e is the Riemann middle sum error,

or defined here as the estimation error of the Terzaghi

estimator.

Equation 11 is consistent with the Terzaghi (1965)

equation, as given in Eq. 1. The error term (as given in

Eq. 12) indicates that the Terzaghi estimator does not

involve an estimation error if and only if the grid number is

infinitely great, or, equivalently, grids are infinitesimal; any

other case involves estimation error. In reality, a grid is not

infinitesimal, and the Terzaghi estimator consequently

involves an estimation error. An alternative interpretation

of the error from the spatial geometric viewpoint is that all

nonparallel fractures in grid ri are incorrectly assumed to

be parallel fractures with a uniform orientation, as con-

strained at the center of the grid (Fig. 4).

3 Fractures Simulation

The purpose of the simulation is to (a) test the accuracy

magnitude of the Terzaghi estimator in application outside

the blind zone and (b) explore potential accuracy improve-

ments if the accuracy magnitude is low. In our exploration,

we examine the effect of grid size on the accuracy and

identify the grid size that generates the highest estimation

accuracy. This size is then considered the optimal Terzaghi

estimator parameter to maximize accuracy.

The simulation employs DFN modeling to connect true

3D and observed 1D distributions, and it subsequently

estimates 3D distributions from observed 1D distributions

by executing the Terzaghi estimator. In this way, the link

between true 3D distributions and estimated 3D

distributions can be tested. The accuracy based on the

statistical difference between true and estimated 3D dis-

tributions is evaluated using the two-dimensional Kol-

mogorov–Smirnov test. This nonparametric statistical test

assesses whether two sets of two-dimensional data come

from the same or different distributions. The null hypoth-

esis is that both data sets are sampled from the same

continuous distribution. This test returns an asymptotic

significance to measure statistical difference. The asymp-

totic significance ranges between 0 and 1, and a higher

asymptotic significance corresponds to a smaller statistical

difference and a higher accuracy. Additional information

on this test is provided by Justel et al. (1997), Lopes

(2010), and Lopes et al. (2007).

The variables in the simulation include the scanline

directions, global sample densities, and grid sizes. For a given

fracture set, the scanline direction determines the intersection

angles from the fractures to the scanline. The required inter-

section angles can be produced by adjusting the scanline

direction. The grid size is the grid dimension assigned in the

Terzaghi estimator, and it is directly related to the estimate;

see the Terzaghi estimator description in Sect. 1. The global

sample density is defined as the average size of the fracture

sample per grid size in the projection net. For a given fracture

set, the global sample density is dependent on the sample size

and thus is relevant to the field survey. The three variables

describe custom configurations associated with the field

observations and estimations and are potential influencing

factors for the accuracy of the Terzaghi estimator. Broad

combinations of the three variables values are designed so as

to flexibly represent most real situations.

3.1 Analysis Methodology

The simulation follows the three-step process below (see

also Fig. 5 for workflow), with the first step specifying the

model parameters, the second step realizing the models and

1D orientation observations, and the third step estimating

the 3D orientation distribution from 1D observations and

evaluating the asymptotic significance.

First, the true 3D distribution of orientations is specified,

along with the other parameters necessary for modeling

(Table 1). In order to confine the orientations within the

region outside the blind zone, a distribution type with upper

and lower limits is required. An ideal type having this feature

is uniform distribution. Although uniform distribution is not

common for orientation distribution characterization, almost

all distribution types, including the most frequently applied

Fisher distribution, can be flexibly approximated as a piece-

wise distribution, where each piecewise unit is uniformly

distributed at intervals. Hence, analyses based on a piecewise

uniform distribution should be sufficiently adaptable.
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Secondly, using the specified parameters, the DFN

model in 3D was generated using a stochastic modeling

technique. The fracture geometry in this technique is

characterized by the Baecher et al. (1977) disk model,

which is defined with a center location, radius, orientation,

and aperture. This model makes various assumptions: (1)

the fractures are disk shaped, (2) the aperture is a mutually

independent variable, (3) the radius is a mutually inde-

pendent variable, (4) the orientation is also a mutually

independent variable, and (5) the radius and orientation are

independent of each other. For simplicity, the roughness

feature is not considered in the modeling. This technique

used Monte Carlo operations to generate random numbers

of geometric elements in the desired distributions/pro-

cesses and the subsequent 3D simulations for visualizing

the network. Here, scanlines with individual directions (as

listed in Table 1) were separately incorporated into the

model to produce seven intersection angles, and exposures

on the model were created to coordinate with scanlines, as

depicted in Fig. 6. Observations of fracture orientations

were performed along the scanlines on these exposures. In

each model, the orientations were observed separately

under six global sample densities, as listed in Table 1,

which resulted in various sample sizes. Thus, for the seven

models, 42 samples in 1D were observed, and they all fell

into the region of interest outside the blind zone. Figure 7

shows a selection of observed 1D distributions.

Finally, 3D distributions were estimated from the

observed 1D frequencies, using the Terzaghi estimator

under four grid size settings: 1� 9 1�, 2� 9 2�, 5� 9 5�
and 10� 9 10�. (For lack of space, the estimated 3D dis-

tributions are not presented herein.) The statistical differ-

ence between true and estimated 3D distributions was then

evaluated, using the two-dimensional Kolmogorov–Smir-

nov test, and the results are presented in the following

section, where the relationship between this statistical

difference and parameter grid size will be further analyzed.

In addition, the particular grid size giving the smallest

statistical difference will be identified as the optimal

parameter setting of the Terzaghi estimator.

3.2 Analysis Results

3.2.1 Accuracy of the Terzaghi Estimator Outside

the Blind Zone

The statistics on the significance from 168 conditions

(Fig. 8) illustrates that all significance values are less than

or equal to 0.81, and the upper limit of the 95% confidence

intervals does not exceed 0.75 and is far below 1. This

result indicates that the Terzaghi estimate of the 3D dis-

tribution has a significant statistical distance from the true

3D distribution, implying that the Terzaghi estimator does

not permit an extremely accurate estimate when applied

Fig. 4 Spatial geometric interpretation of the estimation error involved in the Terzaghi estimator
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outside the blind zone. Seriously low significances are

detected in certain cases of low global sample density and

huge grid sizes, suggesting that the Terzaghi estimator

suffers significant inaccuracy when applied in these cases.

The upper limit of the 95% confidence interval of sig-

nificances over intersection angles (as shown in Fig. 8a)

indicates that the significance increases slightly by 0.07 as

the intersection angle increases from nearly 50� to 89�.
This result suggests that accuracy improvements are lim-

ited when the scanline shifts to be orthogonal to fractures,

although this orthogonality was widely suggested (Dockrill

and Shipton 2010; Park and West 2002). The upper limit of

the 95% confidence interval of significances over global

sample densities (as shown in Fig. 8b) indicates that the

significance increase (0.37) is considerable when the global

sample density rises from 0.05 to 0.5�-2. Therefore, the

orientation sample size should be enlarged in field surveys

of fracture geometry when possible. The upper limit of the

95% confidence interval of significances over grid sizes (as

shown in Fig. 8c) indicates that the significance does not

show a steady variation trend as the grid size changes. A

comprehensive analysis of the effect of grid size will be

included in the following section.

3.2.2 Effect of Grid Size on the Accuracy

and Identification of Optimal Grid Size

The significance values obtained by the test are shown in

Fig. 9. For most sample densities and intersection angles,

the significance shows an increasing function of grid size in

the size interval between 1� 9 1� and 2� 9 2�, a decreas-

ing function between 2� 9 2� and 5� 9 5�, and a constant

Fig. 5 Simulation workflow. There are three primary steps for

investigating the effect of grid size on accuracy and identifying the

particular grid size with the highest accuracy: (1) specification of

model parameters, (2) realization of models and 1D orientation

observations, and (3) estimation of 3D orientation distribution from

1D observations and asymptotic significance evaluations
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function between 5� 9 5� and 10� 9 10�. This result

suggests that grid size affects accuracy. Specifically,

(a) decreasing the grid size from 10� 9 10� to 5� 9 5�
cannot stimulate accuracy improvements, (b) decreasing

the grid size from 5� 9 5� to 2� 9 2� improves accuracy,

and (c) decreasing the grid size from 2� 9 2� to 1� 9 1�
leads to a drop in accuracy.

Peak significance occurs at a grid size of 2� 9 2� for

most sample densities and intersection angles, although in

certain cases where the global sample density is 0.5�-2, this

grid size does not achieve peak significance. Thus, 2� 9 2�
is identified as the optimal grid size. But additionally

notable is that for cases where the global sample density

exceeds 0.5�-2, the optimal grid size is 1� 9 1�.

4 Verification with a Natural Fracture Case

The effect of grid size on accuracy, as well as the optimal

grid size, is verified with an actual case of natural fractures

from a rocky roadcut outcrop near the 2008 Wenchuan

earthquake epicenter. The verification process is as

follows: (1) 1D fracture orientations were observed in the

field by the scanline mapping technique. (2) 3D distribu-

tions were estimated from the 1D observations using the

Terzaghi estimator, and various grid sizes were applied. (3)

3D fracture networks were reproduced via the stochastic

modeling technique using the estimated 3D distributions of

orientation. In these reproduced networks, scanlines in the

field were reconstructed, and the fractures intersected by

these scanlines were observed. To differentiate the fracture

orientations observed in the field, the fractures observed on

the reproduced model are referred to as reproduced 1D

orientations. (4) The statistical differences between the two

data sets (observed and reproduced 1D orientations) were

evaluated at a range of grid sizes using the two-dimen-

sional Kolmogorov–Smirnov test. The process is presented

in detail in the following section.

4.1 1D Orientation Observations, 3D Distribution

Estimations, Modeling and Testing

The field site is a rocky roadcut outcrop located near the

town of Yingxiu (Fig. 10a). The rock has two fracture sets,

Table 1 Parameter

specification for DFN modeling

and orientation observations

Parameter Specification

Geometry of fracture Baecher disk model

Dimensions of simulated zonea: length (m) 9 width (m) 9 height (m) 20 9 20 9 20

Dimensions of applied zoneb: length (m) 9 width (m) 9 height (m) 10 9 10 9 10

Distribution of center location Poisson (5)c

Distribution of orientation: dip direction/angle (�) U (175, 185)d/U (40, 50)

Distribution of radius (m) Exp (1)e

Distribution of aperture (mm) Exp (3)

Direction of scanline: trend/plunge (�) 000/45

010/45

020/45

030/45

040/45

050/45

060/45

Global sample density (�-2) 0.05

0.1

0.2

0.3

0.4

0.5

a Simulated zone = 3D region where the simulation of fractures occurs
b Applied zone = 3D region where sampling of fractures and observations is performed
c Poisson (k) = spatial Poisson point distribution, where k is the volume density (m-3) defined by the

number of fracture centers per rock volume
d U (m, n) = uniform distribution, where m is the lower limit and n is the upper limit
e Exp (k) = exponential distribution, where k is the reciprocal of the mean
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and one is a set of bedding planes. A scanline with a

trend/plunge of 108/15� was fixed on the outcrop to map

the 1D bedding plane geometries (Fig. 10b). The observed

1D orientations are shown in Fig. 11a, which also shows

the scanline direction and region of interest outside the

resulting blind zone. It is apparent from this figure that the

fracture orientations all lie in the region of interest outside

the blind zone.

The 3D distribution was estimated from 1D observations

using the Terzaghi estimator. To verify the effect of grid

size, the estimations were performed with four grid sizes

(1� 9 1�, 2� 9 2�, 5� 9 5� and 10� 9 10�) in combination

with four global sample densities: 0.02, 0.05, 0.1, and

0.2�-2. Figure 11b shows only the 3D distribution, esti-

mated under a combination of 5� 9 5� grid size and 0.2�-2

global sample density. Other parameters necessary for

Fig. 6 DFN models in 3D. The

scanline for mapping is at the

trend/plunge of a 000/45�;
b 010/45�; c 020/45�; d 030/

45�; e 040/45�; f 050/45�; and
g 060/45�
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Fig. 7 Observed 1D

orientations presented in terms

of pole diagrams (experiment).

The scanline for mapping is at

the trend/plunge of a 000/45�;
b 010/45�; c 020/45�; d 030/

45�; e 040/45�; f 050/45�; and
g 060/45�
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modeling were also calculated, and the results are listed in

Table 2. Using these parameters, DFNs were reproduced,

together with the scanline (as depicted in Fig. 11c). In the

reproduced models, orientations of those fractures inter-

sected by the scanline (reproduced 1D observations) were

measured, with sample sizes equal to that in the field.

Figure 11d shows one of the reproduced 1D orientation

distributions. The statistical difference between the

observed and reproduced 1D observations was evaluated

using the two-dimensional Kolmogorov–Smirnov test, and

those evaluation results are shown in the following section.

4.2 Verification Result

The significance values are less than 1, and when the grid

size exceeds 5� 9 5�, the significance values are extremely

small. This empirical result supports the relevant findings

derived from the analysis of simulated data. Figure 12

shows the significance values over grid sizes. The curve

indicates that the significance is an increasing function of

grid size in the size interval between 1� 9 1� and 2� 9 2�,
decreasing function of grid size between 2� 9 2� and

5� 9 5�, and approximately constant function of grid size

between 5� 9 5� and 10� 9 10�. Moreover, the peak of

significance appears at the grid size of 2� 9 2�. The two

results are consistent with the simulated analysis findings

regarding the effect of grid size and optimal grid size.

Theoretical derivation of the Terzaghi equation (Sect. 2)

suggests that a smaller grid size is supposed to contribute to

higher estimation accuracy. For grid sizes greater than

2� 9 2�, accuracy appears to increase as the grid size

shrinks, whereas for grid sizes smaller than 2� 9 2�,
accuracy decreases as the grid size shrinks, as detected in

the numerical and empirical cases (Figs. 9, 12). How can

the apparent variation and partial inconsistency between

the theoretical result and the numerical/empirical case be

accounted for? A twofold effect of grid size on accuracy

likely occurs: (1) a positive (direct) effect and (2) a nega-

tive (indirect) effect. Shrinking the grid size, which is

detailed in Sect. 2, would reduce the error of the Riemann

middle sum, thereby directly benefitting accuracy

improvements (positive effect). However, shrinking the

grid size will cause smaller sample numbers to fall into

individual grids, thereby increasing the likelihood of larger

sampling errors. Such errors would transfer to the estima-

tion result (negative effect). When the positive effect

exceeds the negative effect, the resulting appearance of

superposition demonstrates that accuracy increases as the

grid size shrinks (i.e., when greater than the critical grid

size of 2� 9 2�) and decreases otherwise (i.e., when less

than the critical grid size of 2� 9 2�). For global sample

densities no more than 0.5�-2, the critical grid size mostly

occurs at 2� 9 2�, whereas for global sample densities

higher than 0.5�-2, the critical grid size appears to be

1� 9 1�, as found in this work. This high global sample

density is responsible for the change in critical grid size

because it leads to more individuals falling into grids,

which weakens the negative effect. Compared with the case

of global sample densities that are no more than 0.5�-2, the

negative effect in the global sample density of 0.5�-2 does

Fig. 8 Scatter plots of

significance for 168 conditions,

accompanied by the 95%

confidence interval (blue line).

a Significance versus

intersection angle,

b significance versus global

sample density, c significance

versus grid size
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not exceed the positive effect, even when grid sizes are

smaller than 2� 9 2�. Therefore, the grid size of 1� 9 1�
exhibits maximum accuracy in this case.

5 Discussion

The 3D orientation distribution estimated using the

Terzaghi estimator is an important input parameter for

DFN modeling and has a significant application in oil

production evaluation and carbon sequestration operations.

The use of the suggested optimal grid size of 2� 9 2� in the
estimator has been demonstrated to provide a more accu-

rate estimate of 3D orientation distributions than other grid

sizes in the vast majority of cases, thereby producing a

DFN geometrical model that accurately represents the 3D

fracture population. Hence, we recommend that prior to

modeling, the observed 1D distribution should be cor-

rected, preferably under the optimal setting of a 2� 9 2�
grid size.

Fig. 9 Significance versus grid

size and the statistics for the

grid sizes with peak

significance. Significance values

were tested using the two-

dimensional Kolmogorov–

Smirnov test. Significance

versus grid size curves under the

global sample densities of

a 0.05�-2; b 0.1�-2; c 0.2�-2;

d 0.3�-2; e 0.4�-2; and f 0.5�-2.

g Statistics for grid sizes with

peak significance. The cells

show the grid sizes with peak

significance versus the

intersection angle and global

sample density (GSD)
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Previous studies performing DFN modeling usually

input the observed 1D orientation distribution directly

(Fereshtenejad et al. 2016; Maffucci et al. 2015; Panza

et al. 2016; Tsang et al. 2015) or the 3D distribution esti-

mated using the Terzaghi estimator under an arbitrary grid

size (Desbarats et al. 1999; Keren and Kirkpatrick 2016;

Stephens et al. 2015). Comparing the Terzaghi 3D estimate

and a field survey, researchers have found that estimates

with intersection angles no more than 20� or 30� cannot

reflect the true distribution in 3D, and this angle interval is

defined as the blind zone (Park and West 2002). Those

summaries are based on an underlying assumption that the

field survey captures the true 3D distribution. Unfortu-

nately, the 3D distribution presents access limitations,

rendering direct validation of the representation essentially

impossible. In this paper, the 30� blind zone drawn from

this assumption is applied to focus on investigating the

accuracy rather than estimating the blind zone and avoid a

longer discussion of the precise boundary of the blind zone.

Qualitative analyses, such as those by Fouché and

Diebolt (2004), Martel (1999) and Munn (2012), have

implied that the estimation accuracy of the Terzaghi

estimator is higher when applied outside the blind zone. To

date, no quantitative study has been performed to evaluate

the accuracy of the Terzaghi estimation. The validity of

accuracy investigations based on comparisons between

estimates and field surveys is questionable because of the

unconfirmed assumption, as previously noted, although the

investigation of Park and West (2002) appeared to involve

this assumption. In this paper, we present an investigation

employing simulated fractures where the true orientation

distribution can be accurately established; thus, compar-

isons can be made between the true and estimated 3D

distributions. More precisely, when the true orientation

distribution is accurately known, the true and estimated 3D

distributions can be compared. Although the true distri-

bution is not known in the actual case of natural fractures,

the Terzaghi estimator accuracy is investigated by com-

paring observed and reproduced 1D orientations, as per-

formed in the case study in this work. The statistical

difference obtained via this approach indirectly reflects the

statistical difference between the true and estimated 3D

distributions. The investigation herein does not involve the

assumption that the field survey captures the true 3D

Fig. 10 a Location of the survey field. The site is near the town of

Yingxiu in Wenchuan, Sichuan Province, China, approximately

1800 m east of the 2008 Wenchuan earthquake epicenter. b View

of the survey field. This nearly vertical outcrop (11 m long, 5 m wide,

and 6 m high) strikes at 102� and develops in the upper Triassic lithic

arkose of the Xujiahe Formation
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Fig. 11 a Observed 1D orientations, accompanied by the scanline

direction and region of interest outside the resulting blind zone (case).

b Orientations in 3D estimated under the combination of a grid size of

5� 9 5� and a global sample density of 0.2�-2. Note that because

certain poles coincide, it seems there are only 11 poles. In fact, there

are 74 poles. c DFN model in 3D, which adopts the 3D orientation

distribution estimated under the combination of 5� 9 5� grid size and

0.2�-2 global sample density. d Reproduced 1D orientations that

correspond to the 3D orientation distribution estimated under the

combination of 5� 9 5� grid size and 0.2�-2 global sample density

Table 2 Parameter

specification for DFN modeling

and orientation observations.

Distributions of the orientation

are expressed in terms of

frequency data, as shown in

Fig. 11b, and are not duplicated

here

Parameter Specification

Geometry of fracture Baecher disk model

Dimensions of simulated zone: length (m) 9 width (m) 9 height (m) 20 9 20 9 20

Dimensions of applied zone: length (m) 9 width (m) 9 height (m) 10 9 10 9 10

Distribution of center location Poisson (4)

Distribution of radius (m) Exp (0.25)

Distribution of aperture (mm) Exp (3.2)

Direction of scanline: trend/plunge (�) 108/15
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distribution and is consequently more rigorous, relative to

past investigations that have directly compared Terzaghi

estimates and field surveys. Such an investigation strategy

provides a practical method of accurately analyzing frac-

ture geometry, and the results will also benefit studies

relevant to 3D distribution estimations, including future

assessments of the blind zone.

The findings in this work come from scanline surveys,

and their applicability to borehole/well data remains

unclear. Scanlines are a sampling tool in which the width is

negligible relative to the fracture size. In contrast, bore-

holes/wells with a sizeable width differ from scanlines.

Thus, the applicability of the findings (derived from the

scanline situation) to borehole/well conditions should be

empirically examined when adequate orientation data from

boreholes/wells are available. Alternatively, an investiga-

tion could be performed to address the width effect of the

sampling tool on applicability. If the investigation results

showed the width had no effect, then findings based on the

scanline will hold true under borehole/well conditions.

Mauldon and Mauldon (1997) provided some general

mathematical results about the width effect on the esti-

mation accuracy. However, the additional empirical

investigations with actual data can provide insight. In

addition, a systematic analysis for different cases (e.g.,

intersection angles, global sample densities, and grid sizes)

is desirable. Finally, the impact of grid size on the esti-

mation accuracy, including the optimal grid size value, is

valuable.

6 Conclusions

In this study, a detailed, rigorous mathematical derivation

of the Terzaghi equation generated a theoretical, qualitative

proof that the Terzaghi estimator using the Riemann

middle sum tends to have an estimation error. This error

affects the estimate of 3D orientation distributions when

applied outside the blind zone. An alternative interpretation

of the error from a spatial geometric perspective is that

nonparallel fractures within individual grids are incorrectly

defined as parallel fractures with a uniform central orien-

tation. These findings provide deeper insights into the

Terzaghi estimator.

Quantitative surveys have demonstrated that the Terza-

ghi estimate of 3D orientation distribution is statistically

significantly different from the true 3D distribution. Con-

sequently, the Terzaghi estimator does not provide an

extremely accurate estimate when applied outside the blind

zone and may even result in seriously low accuracy ranges

in cases of narrow intersection angles, low global sample

densities, and large grid sizes. Intersection angle widening

does not produce a significant accuracy improvement, but

increasing the sample size does improve the accuracy of

the estimator.

In addition, the effect of grid size on accuracy was

systematically investigated, and we found that (a) decreas-

ing the grid size from 10� 9 10� to 5� 9 5� does not

improve the accuracy, (b) decreasing the grid size from

5� 9 5� to 2� 9 2� improves the accuracy, and (c) de-

creasing the grid size from 2� 9 2� to 1� 9 1� reduces the
accuracy. In this investigation, the particular grid size of

2� 9 2� was identified as the optimal parameter setting of

the Terzaghi estimator and was recommended to improve

the accuracy. However, if the global sample density

reaches 0.5�-2, the maximum accuracy tends to occur at

1� 9 1�.
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