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Abstract It is well known from laboratory testing that the

rock failure process becomes unstable in a soft test

machine due to excessive energy released from the

machine. Great efforts had been devoted to increasing the

loading system stiffness (LSS) of laboratory test machines

to ensure that the post-peak stress–strain curve of rock can

be obtained for underground rock engineering design. A

comprehensive literature review on the development of

stiff test machines reveals that because of the differences in

the manufacturing arrangement of the test machines, LSS

values of the test machines used for rock property testing

are always finite and vary in a large range, and the influ-

ence of LSS on stable rock failure is less understood.

A FEM-based numerical experiment is carried out to study

the influence of LSS on the stress–strain curves of

stable rock failure in uniaxial compression, with a focus on

the post-peak deformation stage. Three test machine

loadings including idealized rigid loading, platen loading,

and frame–platen loading with finite LSS are considered,

and the simulation results are analyzed and compared. The

modeling results obtained from the simulations indicate

that even if the LSS value is large enough to inhibit

unstable rock failure, as long as LSS is finite, it has an

influence on the post-peak stress–strain curve of rock. It is

revealed that because the input energy supplied by the

external energy source to drive the stable rock failure

process is affected by the finite LSS of a test machine, the

post-peak descending slopes of the stress–strain curves are

all steeper than the post-peak descending slope obtained

under an ideal loading condition of infinite LSS. An insight

from this numerical experiment is that it might be more

feasible to develop laboratory test machines with variable

LSS that can match the local mine stiffness in the field for

rock property testing.
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List of symbols

A Cross-sectional area

d Displacement

Ein Accumulative energy input from an external

energy source at peak load

Et Energy stored in a test machine at peak load

Er Accumulative energy consumed in a rock

specimen at peak load

Ein
* Accumulative energy input from an external

energy source at the post-peak deformation stage

Et
* Energy stored in a test machine at the post-peak

deformation stage

Er
* Accumulative energy consumed in a rock

specimen at the post-peak deformation stage

DEin Energy input from an external energy source

during post-peak deformation

DEt Energy released from a test machine during post-

peak deformation

DEr Energy consumed in a rock specimen during post-

peak deformation
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DEr
B Energy item DEr under the ideal loading condition

Ep Post-peak stiffness of a rock specimen in stress–

strain curve

H Height

k Stiffness of a column-shaped structure

k Post-peak stiffness of a rock specimen

LSSP Stiffness of a platen loading test machine

LSSF Stiffness of a frame–platen loading test machine

1 Introduction

Understanding rock deformation behaviors under com-

pression is critical for studying the stability of structures

built in or on rock. Knowing the compressive strength of

rock is important in rock mechanical property testing, and

test machines with high loading capacities were developed

to measure rock strength (Cook and Hojem 1966; Bieni-

awski 1966; Wawersik 1968; Stavrogin and Tarasov 2001;

Mogi 2007). Moreover, the importance of obtaining not

only the peak strength but also the complete stress–strain

curve of rock by laboratory testing has been recognized,

because the post-peak behavior of rock affects the extent of

excavation-damaged zones (Bieniawski 1967b; Alonso

et al. 2003; Cai et al. 2007) and the likelihood of violent

pillar failures (Morsy and Peng 2002). Accordingly, the

requirement for increasing the loading system stiffness

(LSS) of the test machines to control rock failure process

was specified by some researchers (Cook 1965; Salamon

1970).

Although a detailed testing method for determining

uniaxial compressive strength (UCS) and deformability of

rock has been suggested by the International Society for

Rock Mechanics (ISRM) (Fairhurst and Hudson 1999),

there is no standard regarding the LSS of test machines. As

a result, LSS in rock laboratory testing varies among dif-

ferent test machines. On the other hand, it is observed that

the post-peak stress–strain curve of rock is loading condi-

tion dependent (Wawersik and Fairhurst 1970; Peng 1973;

Xu and Cai 2015). It is thus hypothesized in this study that

LSS can affect the post-peak stress–strain curve of rock,

even if LSS is sufficiently high to inhibit unstable rock

failure.

In this paper, the development of stiff test machines and

the stable rock failure criterion along with the influence of

LSS on the post-peak behavior of rock are reviewed first.

Next, the advantage of using a finite element method

(FEM) numerical tool to model the structural response of a

rock specimen–test machine system in rock laboratory

testing is discussed. Subsequently, a comprehensive

numerical experiment is carried out to study the influence

of LSS on the stable rock failure in uniaxial compression

tests. Inspired by the laboratory test results of Bieniawski

et al. (1969), who used a test machine that could vary its

LSS, the goal of this study is to numerically confirm that

LSS can influence the post-peak stress–strain curve of

stable rock failure.

2 Review of Loading System Stiffness (LSS)

Loading system stiffness (LSS) in rock laboratory property

testing is reviewed first before a comprehensive numerical

experiment is carried out. In this way, the readers can

deepen the understanding why it is important to increase

LSS and how the LSS values of test machines differ with

each other. This will lead to the research question of this

study, i.e., whether the post-peak stress–strain curves

obtained from property testing are affected by LSS.

2.1 Development of Stiff Test Machines

2.1.1 Traditional Stiff Test Machines

According to the review on rock testing by Ulusay (2012),

mechanical property testing of materials using simple test

machines was first reported in the sixteenth century.

According to Ulusay (2012), Hooke published his experi-

mental results in 1678 and found that the relation between

the applied load and the elastic deformation of an elastic

material is linear. According to Hudson et al. (1972), in

about 1770, Émiland-Marie Gauthey built a lever system

and carried out the first rock property test and measured the

compressive strength of cubic rock specimens. Having

developed a large horizontal hydraulic test machine, David

Kirkaldy opened the first commercial testing laboratory in

London in 1865 (Smith 1980).

From the 1930s to the 1950s, studies on the rock failure

process began. Pioneering works were conducted by Griggs

(1936), Kiendl and Maldari (1938), and Handin (1953), and

this greatly promoted the development of rock laboratory

test machines using stiff components. Before 1966,

observations of the load–deformation curves of rock were

limited in the pre-peak deformation stage because the rock

failure process was violent immediately after the ultimate

load-carrying capacity of rock had been reached, largely

due to the low LSS of test machines relative to the post-

peak stiffness of rock as we know it today.

Cook (1965) explained the possibility of obtaining

information on the post-peak behavior of rock by increas-

ing LSS. The first sets of complete load–deformation

relations of rock were obtained by Cook and Hojem (1966)

and Bieniawski (1966) with the aid of stiff test machines.

Since then, these precursors, along with other researchers

(Wawersik and Fairhurst 1970; Cook and Hojem 1971;

Stavrogin and Tarasov 2001), had devoted great efforts to
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increasing LSS of test machines. A test machine normally

consists of a steel frame that accommodates the rock

specimen inside, end loading platens contacting the spec-

imen to distribute load, and a hydraulic ram to deform the

specimen (Fig. 1). According to Hudson et al. (1972) and

Stavrogin and Tarasov (2001), one technique to stiffen a

test machine is to add stiff components (e.g., steel bars) in

parallel with the rock specimen; another technique is to add

a fluid ram with a large cross-sectional area and a small

height. These types of test machines mentioned above

belong to the traditional stiff test machine.

2.1.2 Other Types of Stiff Test Machines

On the basis of traditional stiff test machines, other types of

stiff test machines were developed, with a focus on

increasing LSS by alleviating the reduction of LSS due to

the fluid ram. For instance, Cook and Hojem (1966) and

Wawersik (1968) employed a thermal circuit in their

loading frames as the means of contracting the frames to

apply load to deform rock specimens. An advantage of

employing the thermal contraction method is that the

reduction of LSS due to the fluid ram is avoided, but a

disadvantage is that the loading rate is hard to be controlled

in the post-peak deformation stage.

Bieniawski et al. (1969) designed a novel test machine

where the fluid ram was separated from the rock specimen–

steel frame system so that the compressibility of the fluid

(e.g., oil) did not affect LSS. Figure 2 illustrates the design

principle for the test machine described in Bieniawski et al.

(1969), and in the subsequent discussions, we call it

Bieniawski-type test machine. The rock specimen tested by

the Bieniawski-type test machine was arranged in parallel

with steel bars of a large cross-sectional area so that the

applied load to deform the rock was shared with steel bars

only. According to Bieniawski (1967a) and Bieniawski

et al. (1969), LSS of the Bieniawski-type test machine

could be varied from 103 to 1803 MN/m. Although the

original descriptions regarding the design principle for

varying LSS were given elsewhere, based on Bieniawski

(1967a) and Bieniawski et al. (1969), it is reasonable to

reckon that by adjusting the number of steel bars in parallel

with the rock specimen, it is possible to vary the LSS of the

Bieniawski-type test machine. However, one disadvantage

of the Bieniawski-type test machine was that the effective

loading capacity of the machine was reduced due to the low

compressibility of the steel bars and the deformation range

of rock specimens was also small (Hudson et al. 1972).

The failure process must be controlled to obtain the

complete load–deformation curve of rock. It was realized

that in some cases, the failure process of brittle rocks (refer

to Fig. 4) could not be controlled even when a very stiff

test machine was used (Wawersik and Fairhurst 1970).

Consequently, closed-loop, servo-controlled test machines

were developed in the 1970s. The ground-breaking work of

Fairhurst and his colleagues on rock laboratory testing

(Hudson et al. 1971, 1972) paved the way for recognizing

two advantages of using a servo-controlled test machine to

obtain the complete load–deformation curve of rock

(Fig. 3). Firstly, the response time of the traducer in a

servo-controlled test machine is shorter than that in the

rock failure process; as a result, instability of the rock

failure process can be detected in advance. Secondly, a

servo-controlled pump can be activated by the onset of

instability to reduce the fluid pressure rapidly and thereby

ro
ck

fluid
ram

platen

steel frame

Fig. 1 Schematic of a traditional stiff test machine for determining

stress–strain curves of rock, modified from Cook (1965)

ro
ck

fluid ram

steel frame

Fig. 2 Schematic of the Bieniawski-type test machine, after Bieni-

awski et al. (1969)
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increase the effective unloading stiffness of the test

machine (Rummel and Fairhurst 1970).

If the failure process is potentially unstable due to the

release of energy stored in the specimen itself, using the

lateral or radial displacement instead of the axial dis-

placement as the control variable, a servo-controlled test

machine allows any extra energy to be extracted from the

test machine rather than to release to the specimen

(Wawersik and Fairhurst 1970; Okubo and Nishimatsu

1985; He et al. 1990; Labuz and Biolzi 2007). This often

leads to a Class II-type load–deformation (or stress–strain)

relation (purple line in Fig. 4). Class II failure type shows

that the strength decreases with the decrease of axial strain

in the post-peak deformation stage, as opposed to Class I

failure type (red lines in Fig. 4), which primarily shows a

strain-softening behavior (Martin and Chandler 1994;

Lockner 1995; Vardoulakis et al. 1998). With the

advancement of closed-loop, servo-controlled test machi-

nes, more sophisticated rock behaviors can be observed and

studied under various loading conditions (Gettu et al. 1996;

Paterson and Wong 2005; Mogi 2007; He et al. 2010; Zhao

et al. 2013).

Stavrogin and Tarasov (2001) developed an ‘‘intrinsi-

cally’’ stiff test machine which had a stiffness of up to

2 9 104 MN/m. Similar to the test machine developed by

Bieniawski et al. (1969), the fluid ram in Stavrogin and

Tarasov’s machine was intentionally separated from the

rock specimen and the steel frame. Moreover, two design

strategies were adopted in this machine to achieve high

LSS. First and foremost, the alignment of the fluid pump-

ing system and the fluid ram was perpendicular to the

compression direction of the specimen (Fig. 5). The hori-

zontal movement of the ram was translated into a vertical

movement by the wedge system underneath the specimen.

As soon as the applied vertical load reached the load-car-

rying capacity of the rock, the screw would prevent the

wedge from moving, thereby preventing energy releasing

from the pressurized fluid and fluid ram, and violent failure

of the rock could be prevented. The second strategy

involves minimizing the number of the loading compo-

nents as well as the longitudinal height of these compo-

nents subjected to compression (refer to discussion in

Sect. 2.2.1). They believed that their test machine was stiff

enough to minimize the release of extra-large energy stored

in the machine during the unloading process; hence, very

ro
ck

load
cell

fluid
ram

steel frame

input
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program

servo
controller

power

servo valve

feedback
signal

control
signal

closed loop

program
signal

closed-loop servo-controlled system

displacement
transducer

Fig. 3 Schematic of a closed-

loop, servo-controlled test

machine, modified from Hudson

et al. (1972)
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Post-peak stiffnessClass II

Class I (ductile)

Fig. 4 Simplified post-peak deformation behaviors of rock (color

figure online)
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brittle rocks could deform in a stable fashion at the post-

peak deformation stage, even without the utilization of a

servo-controlled test machine. It should be pointed out that

although this test machine is stiff, this does not make it

drastically different from other traditional stiff test

machines (Fig. 1) because of its finite LSS.

2.2 Influence of LSS on Post-peak Behavior of Rock

2.2.1 Stable Rock Failure Criterion for Laboratory Testing

LSS of a test machine is largely governed by the defor-

mation characteristics of the loading frame, loading pla-

tens, hydraulic fluid and rams. The stiffness of an elastic

structure is defined as the force per unit deformation

required to deform the structure in a particular direction.

Therefore, the unit of stiffness is N/m for load–deformation

relation; for stress–strain relation, the unit of stiffness is

N/m2 or Pa. For a column-shaped elastic structure under

axial loading (Baumgart 2000, Chen and Han 2007), its

longitudinal stiffness (k) is determined by the cross-sec-

tional area (A), Young’s modulus (E), and height (H) as:

k ¼ AE

H
ð1Þ

Hudson et al. (1972) provided Eq. (2) to calculate the

composite stiffness of a test machine:

LSS ¼
XN

i¼1

1

ki

" #�1

ð2Þ

where ki is the stiffness of each loading component. The

existence of any elastic loading component in a test

machine reduces its composite LSS, which makes the

composite LSS always lower than the stiffness of any

single loading component. Thus, to increase the composite

LSS, it is important to decrease the number of loading

components and to increase their stiffness.

The loading frame has a large contribution to the com-

posite stiffness of a test machine, and its stiffness is often

quoted in manufacturer’s specifications (e.g., MTS 2013).

The loading frame generally consists of a set of parallel

steel columns, and its stiffness can be calculated using

Eq. (1). However, the deformation of the loading platen is

complicated by the combination of bending and indentation

effects (Bobet 2001). Furthermore, affected by the com-

pressibility of fluid, the dilation of containing vessels and

pipes, the incompatible deformation of seal, and the

deflection of ram (Bieniawski et al. 1969; Snowdon et al.

1983; Zipf Jr 1992), the stiffness of the hydraulic fluid in

compression is even more complex. Because of the com-

plex boundary condition and the interaction between dif-

ferent loading components of a test machine, Hudson et al.

(1972) suggested the use of numerical modeling to evaluate

the influence of LSS on rock deformation behaviors.

LSS is important in rock property testing because it

determines whether a rock failure process in laboratory

testing is stable or not. Salamon (1970) summarized some

laboratory compression test results and reasoned that

unstable rock failure does not occur if the test machine is

unable to introduce further deformation without the sup-

plement of additional external energy once the ultimate

load-carrying capacity of rock has been reached. The

stable rock failure criterion is formulated as (Salamon

1970):

LSS[ k ð3Þ

where k is the post-peak stiffness of a rock specimen Fig. 4

and it is proportional to the steepest descending slope in the

load–deformation curve of the rock specimen. The slopes

of post-peak load–deformation curves are assumed nega-

tive in this study. For simplicity, only the absolute values

of the post-peak stiffness are compared.

2.2.2 Influence of LSS on Stable Rock Failures

The stable rock failure criterion states that unstable rock

failure occurs when the LSS value is less than k. However,

laboratory evidences regarding the influence of LSS on the

post-peak behavior of rock are rare when the LSS value is

sufficiently high to ensure a stable rock failure process

occurs during the post-peak deformation stage. According

to Hudson et al. (1972), Späth (1935) provided a concep-

tual model (Fig. 6) to explain the difference between the

ideal and the apparent material behaviors due to the dif-

ference in LSS. Only a very stiff machine can produce a

material behavior that is close to the ideal one. Hudson

et al. (1972) reviewed that the first laboratory study con-

cerning the effect of LSS on the material property was

monolithic steel frame

loading wedge 
pair

monolithic steel frame

fluid
ram

screw to
unload/fix

driving
direction

compression
direction

ro
ck

Fig. 5 Simplified schematic of an ‘‘intrinsically’’ stiff test machine,

modified from Stavrogin and Tarasov (2001)
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conducted by Whitney (1943). Whitney measured LSS of

four test machines, and a difference between the

descending slope in the stress–strain curve of concrete

cylinders and the unloading slope of scaled LSS in dif-

ferent test machines was noted. However, the descending

slope of the stress–strain curve was just virtually extrapo-

lated from the point of peak strength, and the method used

to measure LSS was somewhat ambiguous and question-

able. An extensive round robin test project aiming at

studying the factors that influence the strain-softening

behavior of concrete was carried out by the International

Union of Laboratories and Experts in Construction Mate-

rials, Systems and Structures (Van Mier et al. 1997). LSS

was first considered as one of the inspecting parameters.

However, only a limited number of results were collected,

and it was impossible to make a reasonable comparison

based on these results.

To verify the assumption that different descending

slopes of stress–strain curves may be obtained by different

stiffness of test machine, quartzite specimens were tested

by Bieniawski et al. (1969) using the Bieniawski-type test

machine (Sect. 2.1.2) in uniaxial compression. The Bieni-

awski-type test machine had three measured LSS values—

103, 1029, and 1803 MN/m. The test results confirmed that

‘‘depending upon the stiffness of the loading system dif-

ferent negative slopes of the stress–strain curve are

obtained resulting in different levels of stress and strain at

rupture’’ (Bieniawski 1967a). It is worth noting that the

post-peak failure behaviors of the rocks (including some

brittle rocks like norite) obtained by the Bieniawski-type

test machine all showed strain-softening behaviors

(Bieniawski 1966, 1967b; Bieniawski et al. 1969), which is

different from the post-peak positive descending slopes of

brittle rocks (e.g., brittle failure illustrated in Fig. 4)

obtained by other types of test machines (Wawersik and

Fairhurst 1970; Tarasov and Potvin 2013). This is an

indirect evidence that shows that the post-peak failure

characteristics of rock can be affected by different test

machines.

It is preferable to carry out laboratory tests on specimens

with the same rock property to study the influence of LSS

on the rock deformation behaviors. However, it is impos-

sible to have rock specimens with exactly the same

mechanical property, even if the sampling is carefully

conducted (Zhao et al. 2015). The behaviors of rock show

variability due to rock heterogeneity, and this is especially

the case in the post-peak deformation stage, where local-

ized failure normally takes place (Rudnicki and Rice 1975;

Bobet and Einstein 1998). Therefore, laboratory study on

how LSS affects the post-peak behavior of rock is extre-

mely difficult. On the other hand, laboratory evidence

showing the influence of LSS on the response of elastic–

plastic materials with relatively homogeneous properties

can help us to gain insights into this problem (Schulson

1999). Sinha and Frederking (1979) carried out a series of

strength tests on ice, and it was found that test machines of

varying LSS values (i.e., Instron Model TTDM-L, Instron

Model 112, and MTS Model 90) had a large influence on

the stress–strain curves of ice. The ice specimens were

made with care and could be considered as identical. Rist

et al. (1991) further argued that different strain rates

associated with different LSS values could be responsible

for the difference in the strain-softening behaviors of ice

observed in the triaxial compression tests.

We have stated that rock specimens with the same

property are difficult to be prepared in rock laboratory

tests. In addition, LSS of a test machine is difficult to be

varied in a large range to study the influence of LSS on the

post-peak behaviors of rock. Hence, numerical experiment

seems to be the best approach (Cai 2008; Dai et al. 2015;

Xu and Cai 2017) for studying this problem. Kias and

Ozbay (2013) used a hybrid numerical method to study the

influence of LSS on unstable pillar failures. Two codes,

FLAC2D used for modeling elastic platens and PFC2D

used for modeling coal, were coupled. It was found that the

parameters of the test machine could change the pillar

failure mode drastically. Similarly, Hemami and Fakhimi

(2014) used a hybrid FEM-DEM numerical model to study

the rock specimen–test machine interaction. Their research

focus was placed on the difference between a stiff test

machine and a soft test machine. They noticed that a soft

test machine underestimated the slope of the post-peak

stress–strain curve. It is seen that most previous simula-

tions were conducted using models with a loading platen

atop of the specimen that represented the test machine. The

test machines in these models were simplified without

considering the compounded influences of other loading

Ideal material behavior

Displacement
(a) (b)

Fo
rc

e

u1 u2
Displacement

Fo
rc

e

Very soft machine

Soft
machine

Stiff
machine

u1 u2

Fig. 6 Conceptual illustration of the deviation between a ideal

material behavior and b material behaviors obtained under different

LSS values, modified from Hudson et al. (1972) who reproduced after

Späth (1935)

2260 Y. H. Xu, M. Cai

123



components such as loading frame and ram, which are

important in defining LSS (Sect. 2.1.1).

3 Numerical Models and Modeling Parameters

Section 2 reveals that different manufacturing arrange-

ments lead to different LSS values of test machines. So far,

the research on the influence of LSS on the post-peak

behavior of rock is limited. This is partially due to the fact

that there is no agreeable method to measure LSS in lab-

oratory tests (Van Mier et al. 1997), and it is impractical to

vary LSS in a large range to test rock specimens with

‘‘identical’’ rock properties. On the other hand, it is pos-

sible to carry out such an investigation using the numerical

experiment approach because the mechanical parameters of

a test machine and a rock specimen can be readily varied in

the modeling. Previous numerical modeling focused on the

influence of LSS on the unstable failure of rock or pillars.

In this numerical experiment, the influence of LSS on the

stress–strain curves of stable rock failure is investigated

numerically. In addition, the loading frame and the loading

ram of test machines will be considered in the numerical

modeling.

3.1 Simulation Statement

A numerical experiment using the FEM tool ABAQUS2D

(ABAQUS 2010) is performed to study the influence of

LSS on the post-peak deformation behavior of rock, with a

focus on the post-peak stress–strain curve of stable rock

failure. ABAQUS2D is a powerful tool in solving highly

nonlinear structure system problems under transient loads

by employing the explicit algorithm. It is also robust to

solve problems involving complex boundary conditions

with efficient contact convergence and oscillation control.

These two merits are significant for the simulation objec-

tive, i.e., modeling the interaction between a rock specimen

and the test machine in compression tests. Note that

because a continuum numerical tool is used in this study, it

is not possible to capture explicitly the crack initiation and

propagation processes that lead to discontinuous failure of

rock. In Sect. 3.2, it will be demonstrated how the simu-

lation of post-peak failure (i.e., strain-softening) is

performed.

Uniaxial compression test is widely used in rock prop-

erty testing and the numerical simulation is restricted to

this type of compression test in this study. In addition,

because we focus on LSS in the direction normal to the

specimen–platen contact surfaces, shear constraint along

the surfaces is excluded using frictionless contact behavior

(i.e., coefficient of friction l = 0). Note that the post-peak

slope of the rock specimen in uniaxial compression is

assumed negative (Class I), and LSS is greater than the

absolute value of the post-peak stiffness of the rock spec-

imen (k). Thus, rock failure is stable and will follow the

characteristics of Class I-type failure (Wawersik and

Fairhurst 1970; Salamon 1970). In such a case, the servo-

controlled test machine will act like a traditional stiff test

machine. Therefore, the elastic response of a traditional

stiff test machine (Fig. 1) and its influence on the post-peak

stress–strain relation of a rock specimen are investigated in

the numerical modeling.

In this study, it is hypothesized that LSS plays a role in

defining the post-peak behavior of rock even the rock fails

in a stable fashion. The research approach is as follows:

Firstly, a displacement-controlled loading is applied

directly onto a rock specimen’s ends, and the behavior

obtained in this way is termed as the base case, as opposed

to the rock behavior obtained by a test machine with a

finite LSS. Next, the rock deformation behaviors in dif-

ferent test machines are modeled, and the influence of LSS

on the post-peak stress–strain curve of the same rock

specimen is investigated by comparing the result of the

base case with the ones obtained with different LSS values.

Aside from the loading platen, the loading frame and the

ram are simulated eventually in the model to characterize

the stiffness of a traditional stiff test machine realistically

(Fig. 1).

3.2 Ideal Loading Condition

The result of the base case under uniaxial compression is

obtained first before carrying out a parametric study. This

section presents the assumptions used to define the rock

properties for the base case. According to the ISRM sug-

gested method for determining UCS (Fairhurst and Hudson

1999), a rectangular specimen with a height of 100 mm and

a width of 50 mm is used for the simulation. The pre-peak

behavior of the rock in compression is simplified as linear

elastic. A standard Mohr–Coulomb failure criterion with a

tension cutoff is employed to determine the ultimate

strength, and a strain-softening model is used to define the

post-peak deformation behavior. The strain-softening

behavior is defined by degrading the cohesion yield stress

as a function of plastic strain. The mechanical and strain-

softening parameters of the rock are presented in Tables 1

and 2, respectively.

Figure 7 presents the complete stress–strain curve of the

rock in uniaxial compression obtained by direct axial dis-

placement loading. The steepest descending slope of the

stress–strain curve is indicated by a red line, which tells

that the post-peak stiffness of the rock in the stress–strain

curve (Ep) is about 47 GPa, or k = 24 GN/m if the load–

deformation relation is used [according to Eq. (1)]. The

stress–strain curve is obtained by applying a constant
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displacement at a rate of 0.016 m/s1 symmetrically onto the

specimen’s top and bottom ends (Fig. 8). This loading

method implies that LSS in the loading direction of the

specimen is infinite and it is called the ideal loading con-

dition. We consider the rock behavior obtained under the

ideal loading condition as the base case because the rock is

free from the influence of LSS. Hence, once the geometry

and the applied loading velocity of the rock specimen are

determined, the result of the base case, which will be

compared with other results under different LSS values, is

indicated by the curve shown in Fig. 7.

3.3 Numerical Models of Test Machines

Different models of test machines, from the simplified to

more complex test machines consisting of some essential

loading components, are introduced in this section. LSS is

the control variable that is varied in the study. The range of

LSS spans from relatively soft to extremely stiff. In addi-

tion to the ideal loading condition, rigid loading, finite LSS

of platen loading, and finite LSS of frame–platen loading

are considered. In the more complex test machine models,

the actual geometrical relation between the test machine

and the rock specimen is considered in a qualitative manner

because precise modeling of all the components in a test

machine is beyond the intended scope of this study.

3.3.1 Rigid Loading Condition

The simplest loading condition uses a rigid body to represent

the test machine. A rigid body is an idealization of a solid body

with infinite stiffness, and the deformation in the rigid body is

zero. Hence, if a constant displacement rate is applied to a rigid

body, it will move at the same rate and in the same direction as

the applied load. The numerical model of a rock specimen in

uniaxial compression, applied by two rigid platens, is shown in

Fig. 9. This loading condition is termed as the rigid loading

condition. Because the influence of LSS is eliminated, rock

behaviors obtained under the rigid loading condition are

expected to be close to that of the base case. In other words, it is

reasonable to state that if LSS approaches infinity, the rock

behavior should approach that of the base case.

1 Note that the displacement rate applied using an explicit algorithm

for solving quasi-static problems is not comparable to that used real

rock testing because it is computationally impractical to model the

loading process in its physical time when the explicit algorithm is

used. Instead, an optimal displacement rate was selected through a

parametric study to ensure that the computation is cost-effective by

increasing the displacement rate, while it does not cause serious

oscillation that normally leads to dynamic loading to the specimen.

Rock
specimen

100 m
m

50 mm

μ = 0

μ = 0

40 elem
ents

20 elements

Total elements:
20 40 = 800

(a) (b)

Fig. 8 Rock specimen under uniaxial compression applied by the

ideal loading condition: a schematic of the loading condition, and

b FEM model

Table 1 Mechanical parameters used in simulation

Parameters Value

Poisson’s ratio, m 0.18

Young’s modulus, E (GPa) 30

Cohesion, c (MPa) 30

Tension cutoff, rt (MPa) 7

Friction angle, u (�) 24

Dilation angle, w (�) 24

Table 2 Strain-softening parameters of the rock used in simulation

Cohesion yield

stress (MPa)

Shear

plastic

strain

Tension cutoff

stress (MPa)

Tensile

plastic strain

30.0 0 7.0 0

26.7 0.020 0.1 0.009

17.3 0.065

9.0 0.123

1.0 0.171

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

Ep ≈ 47 GPa

λ ≈ 24 GN/m

S
tre

ss
 (M

P
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Fig. 7 Stress–strain curve of a rock specimen under the ideal loading

condition in uniaxial compression (color figure online)
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3.3.2 Platen Loading Condition

The numerical model of a rock specimen under uniaxial

compression applied by two identical loading platens is

shown in Fig. 10. This loading condition is termed as the

platen loading condition. A constant displacement rate,

which is the same as that under the ideal loading condition,

is applied to the specimen through the loading platens. In

this case, the composite stiffness of the test machine is

manifested by the two loading platens, the stiffness of

which can be calculated using Eq. (1). The Young’s

moduli of the loading platens are varied to study the

influence of LSS on the post-peak behavior of rock.

3.3.3 Frame–Platen Loading Condition

In this section, a simplified frame–platen loading test

machine is simulated. Two loading platens of the same

geometry are in contact with the specimen and a loading

frame encapsulating the specimen–platen complex is

modeled (Fig. 11). The Young’s moduli of the loading

frame and the platens are the same. Inspired by the thermal

loading mechanism by Cook and Hojem (1966) and

Wawersik (1968), the loading platen underneath the spec-

imen is defined with an orthotropic thermal property, i.e.,

thermal expansion occurs only in the vertical direction and

the thermal expansion in the horizontal direction is zero.

This is an attempt to simulate the loading ram in a stiff test

machine, and in this fashion, the loading frame that

encapsulates the specimen–platen–ram complex similar to

that shown in Fig. 1 can be included in the numerical

model.

The platen at the bottom consisting of an idealized

material is called the thermal loading platen, and the test

machine is called the frame–platen loading test machine.

When a constant heat flux is provided to the thermal loading

platen, the platen will expand lineally in the vertical direction

to contract the rock specimen in a way quite similar to that a

fluid ram does.2 In reality, the fluid in a fluid ram can reduce

LSS. If such a frame–platen loading test machine is not

considered, high LSS values cannot be achieved in the

numerical model. Consequently, three essential loading

components of a test machine (Sect. 2.1.1)—loading platen,

loading frame, and loading ram—are conceptually imbedded

in the numerical model (Fig. 11), and this is termed as the

frame–platen loading condition.

The heat flux applied to the thermal loading platen is

calibrated so that the specimen under the frame–platen

loading condition is subjected to an applied loading dis-

placement rate the same as that in other loading conditions.

Figure 12 shows the comparison of the displacement–time

relation of the specimen calibrated under the frame–platen

loading condition with that under the ideal loading condi-

tion. The displacement under the frame–platen loading

condition is recorded at the top end of the thermal loading

platen, and the whole body of which is continuously

exposed to a constant heat flux. Table 3 presents the

Rock
specimen

Rigid platen
( E = ∞ )

50 mm

100 m
m

μ = 0

μ = 0

40 elem
ents

20 elements

Total elements:
20 40 = 800

(a) (b)

Fig. 9 Rock specimen under uniaxial compression applied by the

rigid loading condition: a schematic of the loading condition, and

b FEM model

rock

loading
platen

loading
platen

100 m
m

50 mm

100 m
m

55 mm

μ = 0

μ = 0

Total elements:
20 40 = 800

Total elements:
22 40 = 880

(a) (b)

Fig. 10 Rock specimen under uniaxial compression applied by the

platen loading condition: a schematic of the loading condition, and

b FEM model

2 Note that no loading components other than the thermal loading

platen are defined with the thermal property for heat conduction; thus,

there is no heat conduction between the thermal platen and the

specimen.
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thermal parameters for the thermal loading platen used in

the numerical simulation.

The Young’s moduli of the loading frame and the pla-

tens are varied to change LSS. To compare the rock

behaviors between the frame–platen loading test machine

and the platen loading test machine, the Young’s moduli of

the frame–platen loading test machine need to be adjusted

in order to equalize the stiffness of the frame–platen

loading test machine and that of the platen loading test

machine. According to the definition of stiffness

(Sect. 2.2.1), Fig. 13 illustrates how the composite stiffness

of a frame–platen loading test machine (LSSF) is calibrated

in the numerical modeling. If a pair of concentrated reac-

tion load (F) is applied to the top and bottom loading

platens through two rigid platens, the relative displacement

(d1 ? d2) of the rigid platens will cause an elastic response

of the test machine. Then, the load–deformation relation

tells LSSF. Similarly, the stiffness of the platen loading test

machine (LSSP) can be calibrated in this fashion. Figure 14

presents the calibrated load–displacement relations of the

two test machines, along with the theoretical LSSP value

(LSStheory) of 2577 GN/m calculated using Eq. (1). Based

on the slopes of the fitting lines for the load–displacement

relations (Fakhimi et al. 2016), LSSF and LSSP are

obtained as 2579 and 2575 GN/m, respectively. In this

way, the Young’s moduli of the frame–platen loading test

machine can be adjusted to yield LSS the same as the LSS

of platen loading test machine.

4 Modeling Results and Discussion

4.1 Rigid Loading Results

Figure 15 shows the stress–strain curve of the rock under

the rigid loading condition, along with that under the ideal

loading
platen

loading frame

thermal
loading
platen

heat
flux

linearly
expandm

m
00

1

ro
ck
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60 mm 30 m
m

240 mm

80 mm

160 m
m

320 m
m

μ = 0

μ = 0

800
elements

120
elements

2560 elements

(a) (b)

Fig. 11 Rock specimen under

uniaxial compression applied by

the frame–platen loading

condition: a schematic of the

loading condition, and b FEM

model
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Fig. 12 Displacement–time relations of rock specimens under two

loading conditions

Table 3 Thermal parameters for the thermal loading platen used in

the numerical simulation

Thermal parameters Value

Conductivity at room temperature (RT)

(W m-1 K-1)

0.15

Expansion coefficient in the vertical direction at RT

(K-1)

0.0007

Specific heat at RT (J kg-1 K-1) 1900

Heat flux (W) 2.005 9 1010
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loading condition. It is seen that the two curves are very

close to each other. The modeling results show that the

influence of LSS on the post-peak stress–strain curve of

rock can be eliminated by assigning a rigid property to the

test machine. Thus, when LSS is finite, the post-peak

stress–strain curve of rock should approach that of the base

case if LSS becomes very stiff.

4.2 Platen Loading Results

Figure 16 presents the stress–strain curves of the rock

under the platen loading condition with different LSS

values and that under the ideal loading condition. It is seen

that different LSS values result in different post-peak

stress–strain curves of the rock, even though the peak

strengths are the same. With the increase of LSS, the post-

peak stress–strain curve of the rock first becomes steeper

(colored solid curves) than that of the base case (bold black

curve), and becomes the steepest at LSS = 825 GN/m

(pink dash curve). As LSS further increases, the post-peak

stress–strain curve gradually approaches (green and blue

dash curves) that of the base case.

When LSS = 19 GN/m\ k (24 GN/m), unstable rock

failure is observed. The slope in the post-peak stress–strain

loading frame

loading
platen

F

F

1

δ

δ

2

thermal
platen

Fig. 13 Calibration of the stiffness of the frame–platen loading test

machine in numerical modeling
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Fig. 14 Load–displacement relations of two test machines (LSSthe-

ory = 2577 GN/m as an illustration)
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Fig. 15 Stress–strain curves of the rock under ideal and rigid loading

conditions
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Fig. 16 Post-peak stress–strain curves of the rock under the ideal

loading condition and the platen loading condition with different LSS

values; the complete stress–strain curves are shown in the inset (color

figure online)

Table 4 Relation between LSRI and LSS under the platen loading

condition

LSS (GN/m) 2577 2448 825 289 61 24 19

LSRI 2.0 1.6 1.9 2.0 2.4 10.6 21.0
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curve of the unstable rock failure (gray solid curve) is

flatter than that under the ideal loading condition, indicat-

ing that excessive energy is released from the test machine

to the rock specimen. The modeling result of the unsta-

ble rock failure agrees well with laboratory and field

observations (Shepherd et al. 1981; Milev et al. 2001;

Blake and Hedley 2003; Zhang et al. 2012; Dai et al. 2016).

When LSS = 24 GN/m = k, which is the minimal or

the critical LSS loading condition to ensure that stable rock

failure occurs, the post-peak stress–strain curve (red solid

curve) is close to the base case under the ideal loading

condition. There are no solid laboratory observations on the

rock deformation behavior under the loading condition of

LSS = k, but the modeling result with LSS = k of this

study agrees with the results by other researchers using

DEM numerical models (Kias and Ozbay 2013; Hemami

and Fakhimi 2014) and more recently using a 3D FEM

numerical model (Manouchehrian and Cai 2015).

The above modeling results show that LSS influences

the post-peak stress–strain curve of rock even though the

rock failure process is stable. According to the loading

system reaction intensity (LSRI, defined as the ratio of the

maximum velocity of the loading platen at the rock spec-

imen–loading platen contact to the applied loading velocity

at the other end of the platen) proposed by Manouchehrian

and Cai (2015) to identify stable and unstable rock failures,

there is a sudden reaction movement of the loading platen

toward the failing rock if the rock failure is unstable. In

contrast, the reaction of the loading platen during a

stable rock failure is not easily noticeable. Manouchehrian

and Cai (2015) pointed out that LSRI is normally smaller

than 2.0 when stable rock failures occur. Table 4 presents

the relation between LSRI and LSS under the platen

loading condition. The calculated LSRI values confirm that

the rock failures are stable when LSS[ k. Referring to the

stress–strain curves of stable rock failures in Fig. 16, it is

seen that as LSS increases, the post-peak stress–strain

curves gradually depart from that of the base case and

reach the steepest descending slope when LSS = 825 GN/

m. Then, as LSS increases, the post-peak stress–strain

curves become less steep and approach the base case when

LSS is very stiff.

It is observed that for the stable rock failures in the

numerical modeling, the stress distributions in the rock

σσ1 (Pa)

24 GN/m (= λ) 61 GN/m 289 GN/m

825 GN/m 2448 GN/m 2577 GN/m (very stiff) Ideal

Fig. 17 r1 distributions in the

rock specimen at e = 0.4% at

the post-peak deformation stage

under the platen loading

condition for LSS C k and the

ideal loading condition

(compressive stress is taken as

negative in ABAQUS)
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specimen are not the same for different LSS values. Fig-

ures 17 and 18 present maximum principal stress r1 and

minimal principal stress r3 distributions, respectively, in

the rock specimen at the post-peak deformation stage at

e = 0.4% under the platen loading condition for LSS C k,

along with those under the ideal loading condition. When

LSS is critical or very stiff, the platen loading condition

will result in similar stress distributions in the rock speci-

men as that under the ideal loading condition. Hence, the

post-peak stress–strain curve obtained under either the

critical LSS or very stiff LSS loading condition is very

close to that under the ideal loading condition.

It is important to investigate the energy consumed in

the rock specimen because both the stress–strain curves

and the stress distributions in the rock specimen are

macro-behaviors of the rock specimen in response to the

input energy (Ein) supplied by an external energy source

(independent of the rock specimen–test machine system)

to the rock specimen–test machine system. Figure 19

illustrates the energy consumed in a rock specimen (Er)

and the energy stored in a test machine (Et), where the

test machine is idealized and represented by a spring and

Ein from an external energy source is provided to the

rock specimen–test machine system to deform the rock.

As the load increases to the peak load of the rock

specimen, both the energy stored in the test machine and

the energy consumed in the rock specimen increase, and

the energy conservation equation of the system at the

peak load is:

Ein ¼ Et þ Er ð4Þ

σσ3 (Pa)

24 GN/m (= λ) 61 GN/m 289 GN/m

825 GN/m 2448 GN/m 2577 GN/m (very stiff) Ideal

Fig. 18 r3 distributions in the

rock specimen at e = 0.4% at

the post-peak deformation stage

under the platen loading

condition for LSS C k and the

ideal loading condition

ro
ck

Load

Et

Er

Ein
Fig. 19 Illustration of energy

consumed in a rock specimen

and energy stored in a test

machine with the supply of

external input energy
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At the post-peak deformation stage, Eq. (4) still holds

true for the system and asterisk (*) is used to differentiate

the energy items at the post-peak deformation stage from

those at the peak load. The energy conservation equation of

the system at the post-peak deformation stage is:

E�
in ¼ E�

t þ E�
r ð5Þ

Part of the energy stored in the test machine (DEt) is

released to the rock specimen due to the unloading of the

test machine (Et[Et
*); thus, Er\Er

* and DEt = Et - Et
*.

Meanwhile, as discussed in Sect. 2.2.1, additional input

energy (DEin) is required when the rock failure is

stable (Ein\Ein
* ), because DEt alone is not sufficient to

drive the deformation of the rock during the post-peak

deformation stage (DEin = Ein
* - Ein). Therefore, Eq. (5)

for the system in the unloading of the test machine while

DEin is introduced into the system can be expressed in an

incremental form as:

Ein þ DEin ¼ ðEt � DEtÞ þ ðEr þ DEt þ DEinÞ ð6Þ

Accordingly, compared Eq. (6) with Eq. (5), the energy

consumed in the rock specimen in the post-peak defor-

mation stage (DEr = Er
* - Er) is composed of two energy

items:

DEr ¼ DEt þ DEin ð7Þ

Based on traditional viewpoints regarding DEr during

the unloading of a test machine (Bieniawski et al. 1969;

Salamon 1970; Hudson et al. 1972; Hudson and Harrison

2000), Fig. 20 illustrates conceptually the relation between

Rock deformation
0

Load

Base case of rock (LSS = ∞)

Unloading behavior (LSS = λ)

Unloading behavior (LSS = ∞)
Unloading behavior (λ < LSS < ∞)

Er

Peak load

Et

Spring deformation

Loading

Unloading

Loading & unloading 
behaviors of test machine

Hypothesis:
If no LSS influence, 
then ΔEr = ΔEr

B

ΔEt ΔEin 

Fig. 20 Conceptual illustration

of the relation between the

energy consumed in a rock

specimen and LSS during

stable rock failure (color

figure online)
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Fig. 21 Variation of DEr and DEr
B (LSS = ?) with strain under the

platen loading condition for LSS C k
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Fig. 22 Variation of DEt and DEr
B (LSS = ?) with strain under the

platen loading condition for LSS C k
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DEr and LSS for stable rock failure, where the rock

behavior under the ideal loading condition (i.e., the base

case) is simplified by red lines. LSS = ? and LSS = k are

two special loading conditions of stable rock failure. In the

subsequent discussion, the energy provided to the rock

under the ideal loading condition (LSS = ?) to obtain the

post-peak load–deformation curve is denoted as DEr
B, as

opposed to DEr which is under the loading condition with a

finite LSS. Because a test machine of LSS = ? cannot

store and release any energy (red dash line), DEr
B has to be

provided wholly by DEin from the external energy source.

On the other hand, no additional input energy DEin is

required for a test machine of LSS = k to obtain the post-

peak load–deformation curve of the base case (black dash

line), because the energy released from the test machine is

just the right amount needed to drive rock failure

(DEt = DEr = DEr
B). When LSS of a test machine is finite

and greater than k (blue dash line), in addition to DEt

released from the test machine, additional input energy

DEin from the external energy source is required to drive

rock failure.

The relation between DEr under a finite LSS[ k and

DEr
B under LSS = ? is important for verifying the

hypothesis of this study—the post-peak stress–strain (or

load–displacement) curve of stable rock failures varies

with LSS. Obviously, DEr cannot be greater than DEr
B;

otherwise, the rock is not capable of absorbing extra energy

and unstable rock failure will occur. If LSS has no influ-

ence on the post-peak stress–strain curve, then the

stable rock behavior obtained under various finite LSS[ k
and that under the ideal loading condition are the same. In

such a case, DEr should be constant and equal to DEr
B.

Thus, a specific amount of DEin has to be varied each time

when DEt is varied (variation of LSS) so that the

summation of DEin and DEt is constant and equal to DEr
B

(e.g., green and pink filled areas illustrated in Fig. 20).

The modeling results demonstrate that different DEr

consumed in the post-peak deformation stage result in

different post-peak stress–strain curves. Hence, the post-

peak stress–strain curve is affected by LSS. Figure 21

compares the variation of DEr and DEr
B (black curve)

values with strain starting at the peak load in the rock under

the platen loading condition for LSS C k. DEr is obtained

by subtracting the accumulative energy provided to the

rock at the post-peak deformation stage (Er
*) by that at the

peak load (Er). DEr approaches DEr
B only if the rock is

loaded under a very stiff loading condition (2577 GN/m).

The DEr values under the critical LSS condition (24 GN/m)

are close to the DEr
B values, but are not as close to that

under the very stiff LSS condition. As a result, the post-

peak stress–strain curves under a finite LSS C k are always

stiffer than that under the ideal loading condition. Refer-

ring to Eq. (7), DEr is comprised of DEt and DEin. To

understand how the post-peak stress–strain curve is varied

with the increase of LSS, the variation of DEt and DEin

with increasing LSS is examined separately.

Figure 22 shows the comparison of the variation of DEt

and DEr
B values with strain starting at the peak load in the

rock under the platen loading condition for LSS C k. DEt is

obtained by subtracting the elastic energy stored in the test

machine at the peak load (Et) by that at the post-peak

deformation stage (Et
*).

DEt decreases with the increase of LSS because the

stiffer a test machine is, the lower the storing and releasing

energy capacity of the test machine is. In particular, within

the range of LSS C k, DEt is the highest when the LSS

value is equal to the critical value k. In this case, the test
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Fig. 23 Variation of DEin and DEr
B (LSS = ?) with strain under the

platen loading condition for LSS C k (color figure online)
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Fig. 24 Evolution of energy in the rock with the increase of LSS at

the post-peak deformation stage (e = 0.5% as an illustration, trend is

the same for other strain levels)
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machine can release the most energy needed to the rock so

that the post-peak stress–strain is close to that of the base

case. Note that for the case of critical LSS loading condi-

tion, DEt\DEr
B, which is different from the illustration

shown in Fig. 20, where DEt = DEr
B. This is because that

the post-peak load–deformation curve of the rock shown in

Fig. 20 has been idealized as a straight line, which is rarely

the case for rocks. In the numerical modeling, the post-

peak load–deformation (or stress–strain) curve is nonlinear.

k is the stiffness at the point where the descending load–

deformation curve is the steepest. Therefore, the DEt value

under the critical LSS condition is lower than DEr
B, and

additional input energy DEin is needed to drive rock failure

(to increase DEr).

Figure 23 shows the comparison of the variation of DEin

and DEr
B values with strain starting at the peak load in the

rock under the platen loading condition for LSS C k. DEin

is obtained by subtracting the accumulative external energy

input to the rock specimen–test machine system at the post-

peak deformation stage (Ein
* ) by that at the peak load (Ein).

DEin increases with the increase of LSS, except for the

cases for LSS = 289 and 825 GN/m. If LSS is very stiff,

DEin can match DEr
B well, while DEt is very small.

Therefore, it is inferred that the DEin provided to the rock

for driving rock failure from an external energy source is

somewhat influenced by the test machine so that DEr is

always lower than DEr
B. Only if the test machine is per-

fectly stiff, i.e., the test machine is a rigid body, the

influence of the test machine on the rock to absorb the right

amount of DEin = DEr
B can be eliminated and the post-

peak stress–strain curve in this case is the same as that in

the base case. This has been demonstrated by using the

numerical model of rigid loading test machine (refer to

Fig. 9) to obtain the post-peak stress–strain curve (Fig. 15).

The modeling results presented in Figs. 21 and 22 are

summarized in Fig. 24, which shows the evolution of DEt,

DEin, DEr, and DEr
B in the rock with the increase of LSS at

the post-peak deformation stage. The abscissa is natural

logarithm of LSS. Note that DEr = DEt ? DEin and DEr
B

shown in Fig. 24 determine the relation between the post-

peak stress–strain curve obtained under a finite LSS C k
and that under the ideal loading condition. Therefore, it is

understood that as LSS increases, DEt decreases and DEin

increases simultaneously at different rates and their sum-

mation is not a constant. That is why as LSS increases the

slopes of the post-peak stress–strain curves first become

steeper, then become flatter, and finally approach that of

base case obtained under the ideal loading condition.

This numerical experiment focuses on studying

stable rock failure under different LSS loading conditions.

Based on the modeling results from this study, Fig. 25

illustrates conceptually that for stable rock failure to occur

under a finite LSS loading condition (e.g., rock laboratory

testing using a stiff test machine), DEr consisting of DEt

and DEin (area under the blue solid line) is always smaller

than DEr
B consisting of DEin solely (area under the red

descending line). The modeling results suggest that DEin is

affected by the test machine with a finite LSS; DEin and

DEt are varied with LSS. Consequently, the slope of the

post-peak stress–strain curve of a rock under a finite

LSS[ k loading condition is always steeper than the one

under the ideal loading condition (LSS = ?). Therefore, it

is concluded that the post-peak stress–strain curve of

stable rock failure is influenced by test machines with

various LSS values.

This conclusion drawn by the numerical modeling is

partially supported by the incomplete laboratory test results

on nearly identical material specimens, which show that

different stress–strain curves of concrete (Hudson et al.

1972 based on Whitney 1943) and ice (Sinha and Fred-

erking 1979) were obtained by different test machines.

Most importantly, the modeling results confirmed the

Deformation0

Lo
ad

Base case of rock (LSS = ∞)

Er

ΔEt ΔEin 

ΔEr

Rock behavior obtained 
(finite LSS > λ)

λ < LSS < ∞
Peak load

ΔEr
B

Unloading behavior of test machine
(finite LSS > λ)

Implication:
ΔEr ≠ ΔEr

B

Fig. 25 Comparison of the

load–deformation curve of the

rock under the ideal loading

condition with that under the

loading condition of a finite

LSS[ k (color figure online)
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laboratory results conducted by Bieniawski et al. (1969),

whose work revealed that the descending slopes of the

post-peak stress–strain curves of rock were dependent on

LSS.

4.3 Frame–Platen Loading Results

The influence of LSS on stable failure of rock under the

frame–platen loading condition is investigated, and the

results are presented in this section. The LSRI values

shown in Table 5 confirm that for a LSS value the same as

that under the platen loading condition, rock failure is

stable under the frame–platen loading condition. Figure 26

shows the comparison of the stress–strain curves under the

frame–platen loading condition with different LSS values

with that under the ideal loading condition (bold black

curve). As LSS increases, the slope of the post-peak stress–

strain curve of the rock increases gradually and then

reaches the steepest at LSS = 289 GN/m (colored solid

curves). With further increase of LSS, the slope of the post-

peak stress–strain curve decreases and eventually approa-

ches that of post-peak stress–strain curve for the base case

as LSS becomes very large (colored dash curves).

Figure 27 shows the comparison of the stress–strain

curves of the rock under the frame-platen and platen

loading conditions with different LSS values. It is seen that

unless LSS is very stiff or equal to k, which are the LSS

loading conditions that lead the post-peak behavior of the

rock close to that of the base case, the post-peak stress–

strain curves of the rock under these two loading conditions

are different even though their LSS values are the same. It

seems that the platen loading condition leads to a steeper

descending slope of the stress–strain curves than that under

the frame–platen loading condition (e.g., LSS = 825 GN/

m).

Figure 28 presents r1 distributions of the two test

machines at the post-peak deformation stage at a strain of

e = 0.4%. It is seen from the r1 distributions that tensile

stresses (white contoured areas) dominate in the frame–

platen loading test machine because the loading frame is in

tension to balance the load applied to the specimen; how-

ever, compressive stresses dominate in the platen loading

test machine. It is reckoned that these two test machines

with different loading conditions can affect the DEin values

provided to drive the rock failure process and hence the

post-peak stress–strain curves of the rock. The DEin values

in the two test machines are plotted and presented in

Fig. 29 as a function of strain. The additional input energy

provided to the rock DEin in the frame–platen loading test

machine is indeed different from that in the platen loading

test machine. As a result, the DEr values between the

frame–platen loading and platen loading test machines are

different and this is reflected in the difference in the post-

peak stress–strain curves (Fig. 27). This indicates that the

post-peak stress–strain curves of a rock obtained from a

laboratory test is affected not only by LSS but also by the

loading method.

Table 5 Relation between LSRI and LSS under the frame–platen

loading condition

LSS (GN/m) 2577 2448 825 289 61 24 19

LSRI 1.0 1.0 1.0 1.1 1.5 3.4 5.8

0.3 0.4 0.5 0.6
0
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Ideal
loading

289 GN/m

 Ideal loading
19 GN/m (unstable)
24 GN/m (= λ)
61 GN/m
289 GN/m
825 GN/m
2448 GN/m
2577 GN/m (very stiff)

St
re

ss
 (M

Pa
)

Strain (%)

Fig. 26 Stress–strain curves of the rock under the ideal loading condition

and the frame–platen loading condition with different LSS values; the

complete stress–strain curves are shown in the inset (color figure online)
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Fig. 27 Comparison of stress–strain curves of the rock under the

platen (subscript ‘‘P’’) and frame–platen loading (subscript ‘‘F’’)

conditions with different LSS values; the complete stress–strain

curves are shown in the inset
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4.4 Final Remarks

The numerical modeling in this study was conducted using

2D models. One concern that may arise is that 2D models

sometimes overlook the 3D nature of the physical problem.

While 3D modeling results were missing in previous sec-

tions, this study indeed began with 3D modeling of uniaxial

compression test. 3D modeling results show that by

increasing LSS of 3D loading platens (50 mm in square

and 25 mm in height), the post-peak stress–strain curve of

the rock specimen (44 mm in square and 100 mm in

height) experiences the same trend as that of the 2D models

of the platen and frame–platen loading test machines pre-

sented in Figs. 16 and 26, respectively.

As highlighted in this study, modeling a frame–platen

loading test machine that can more realistically (compared

with platen loading test machine) reflect the mechanical

property of test machines is the research objective.

Apparently, due to the complexity of the frame–platen

loading test machine model used in the simulation, it is

difficult to carry out a 3D modeling of such a frame–platen

loading test machine model. Hence, to keep the consistency

σσ1 (Pa)

Platen loading
test machine

Frame-platen loading
test machine

Fig. 28 r1 distributions of the

two test machines (for

LSS = 825 GN/m) at the post-

peak deformation stage

(e = 0.4%)
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0
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LSSP= 825 GN/m
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Δ E
in
 (J

)

Strain (%)

Fig. 29 Variation of DEin and DEr
B (LSS = ?) with strain in the

rock by the two test machines at the post-peak deformation stage for

LSS = 825 GN/m (subscripts ‘‘P’’ and ‘‘F’’ indicate platen and

frame–platen loading conditions, respectively)
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Fig. 30 Stress–strain curves of the rock under the platen and frame–

platen loading conditions with LSS = 4000 GN/m and 825 GN/m
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of the numerical models, only 2D modeling results are

presented. It is a common practice to carry out 2D mod-

eling of uniaxial compression test (Tang et al. 2000;

Potyondy and Cundall 2004; Kias and Ozbay 2013;

Hemami and Fakhimi 2014) to study the deformation

behaviors of rock. Useful insight can be obtained from such

modeling work.

Regarding the trend of the influence of LSS on the post-

peak stress–strain curves presented in Figs. 16 and 26, one

may wonder what the trend would be with further increase

of LSS from 2577 GN/m. A follow-up simulation using

both the platen loading and frame–platen loading test

machine models with a higher LSS of 4000 GN/m is pre-

sented in Fig. 30. It demonstrates that the stress–strain

curves of the rock under the platen and frame–platen

loading conditions with a very stiff LSS value are close to

that under the ideal loading condition.

If LSS of a test machine is very high, DEt is minimal

compared with DEin (refer to Fig. 24). In such a case, the

DEr that determines the post-peak stress–strain curve is

mostly coming from DEin, a loading condition quite similar

to the ideal loading condition (refer to the blue dash curve

and black solid curve in Fig. 23). It is easy to imagine that

if a test machine becomes very stiff, it will act like a rigid

body and compress the rock specimen the same way as the

rigid loading test machine does (Sect. 3.3.1). As a result,

the post-peak stress–strain curve obtained by a very stiff

test machine or rigid loading test machine will be very

close to that under the ideal loading condition (Fig. 15).

5 Conclusions

Great efforts had been made to develop stiff test machines

to capture post-peak stress–strain curves of rock for engi-

neering design; however, the influence of the loading sys-

tem stiffness (LSS) on the post-peak behavior of rock is

less understood. This is in part due to the difficulty in

varying LSS to conduct tests using rock specimens with

nearly identical material properties. Numerical experiment

provides a solution to address this problem.

In the numerical experiment, the post-peak stress–strain

curves of rock specimens with the same material property

under uniaxial compression were examined using test

machines with different LSS values. The modeling results

indicate that the post-peak stress–strain curve of stable rock

failure depends on LSS. The slope of the post-peak stress–

strain curves under finite LSS are all steeper than the slope

for LSS = ?. In other words, the post-peak behaviors

obtained by test machines with finite LSS are more brittle

than the one obtained by an extremely rigid test machine.

We find that this difference is attributed to the energy

supplied by the external energy source to drive the rock

failure process in the post-peak deformation stage. When

LSS is finite, the amount of energy released from the test

machine (DEt), combined with that supplied from the

external energy source (DEin), determines the post-peak

stress–strain curve of the rock. In this case, both DEin and

DEt are influenced by LSS.

One important insight gained from the numerical

experiment is that perhaps there is no need to develop

extremely stiff test machines for rock property testing. This

is because that the modeling results suggest that even if a

test machine is stiff enough to ensure stable rock failure, as

long as its LSS is neither extremely rigid nor equal to the

post-peak stiffness of the rock specimen, the post-peak

stress–strain curve is always LSS dependent and different

from that of the base case. However, obtaining an unbiased

post-peak stress–strain curve that can characterize the

intrinsic mechanical behavior of rock was the motivation of

developing stiff test machines in the 1960s in the first place

(Sect. 2.1).

On the other hand, test machines that can vary LSS are

useful. This study makes a contribution to suggesting an

alternative approach to develop test machines with proba-

bly less manufacturing costs but can obtain more mean-

ingful testing results. The post-peak stress–strain curve is

important in underground rock engineering design, but it is

neither necessary nor practical to obtain such a curve for

rock under the ideal loading condition because the ideal

loading condition does not exist in an underground rock

engineering setting. Instead, it might be useful to investi-

gate the local mine stiffness (LMS) and to study its influ-

ence on the post-peak deformation behavior of rock or

pillar. Once the LMS surrounding a rock of interests (e.g.,

pillar) is quantified, test machines with variable LSS values

that can accommodate the measured LMS can be used for

rock property testing. The test machine developed by

Bieniawski et al. (1969) can vary its LSS. Manufacturing

and control techniques have been advanced since then, and

it is possible to develop a test machine that can vary its

LSS in a more controllable fashion. In this way, the post-

peak deformation behavior of rock obtained by such a test

machine with LSS matching LMS would be more mean-

ingful for rock engineering design.

The modeling results show that the trend of the post-

peak stress–strain curves of the rock obtained by the

frame–platen loading test machine is consistent with that

by the platen loading test machine. However, the post-peak

stress–strain curves are different between these two models

of test machines. This indicates that the loading method

can supply different amounts of energy to the rock at the

post-peak deformation stage. Future study will consider the

influence of a frame–platen loading test machine on

unstable rock failure, a process that is strongly related to

the energy stored in the test machine. In addition, LMS is
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important for determining whether pillar burst will occur or

not. Hence, future study will investigate pillar stability

under different LMS values.
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