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Abstract While advanced numerical techniques in slope

stability analysis are successfully used in deterministic

studies, they have so far found limited use in probabilistic

analyses due to their high computation cost. The first-order

reliability method (FORM) is one of the most efficient

probabilistic techniques to perform probabilistic stability

analysis by considering the associated uncertainties in the

analysis parameters. However, it is not possible to directly

use FORM in numerical slope stability evaluations as it

requires definition of a limit state performance function. In

this study, an integrated methodology for probabilistic

numerical modeling of rock slope stability is proposed. The

methodology is based on response surface method, where

FORM is used to develop an explicit performance function

from the results of numerical simulations. The implemen-

tation of the proposed methodology is performed by con-

sidering a large potential rock wedge in Sumela Monastery,

Turkey. The accuracy of the developed performance

function to truly represent the limit state surface is evalu-

ated by monitoring the slope behavior. The calculated

probability of failure is compared with Monte Carlo sim-

ulation (MCS) method. The proposed methodology is

found to be 72% more efficient than MCS, while the

accuracy is decreased with an error of 24%.

Keywords Rock slope stability � Uncertainty � Numerical

simulation � Response surface method � First-order
reliability method

1 Introduction

The assumptions and simplifications of conventional limit

equilibrium slope stability methods may not be sufficient to

represent the behavior of complex slope problems. With

the recent advancements in computational approaches, it is

possible to model the slope stability problems more real-

istically by adopting numerical simulation methods (Cun-

dall 1971; Firpo et al. 2011; Griffiths and Lane 1999; Stead

and Eberhardt 1997; Eberhardt et al. 2004). It is widely

accepted that rock slope stability involves various param-

eters which have large degree of uncertainty with data

deficiency related to them. Thus, incorporation of uncer-

tainties in the analysis is required for realistic analysis and

risk-based decisions. Although numerical methods are

quite capable of simulating complex slope stability situa-

tions, they use deterministic values for the input variables.

The uncertainty related to input values is implicitly con-

sidered in numerical methods by performing some sensi-

tivity analysis, which require high computational

performance. On the other hand, direct incorporation of the

uncertainties in numerical methods serves for explicit

consideration of uncertainties. Monte Carlo simulation

(MCS) technique is one of the well-known methods which

allow the systematic and quantitative treatment of the
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uncertainties. However, the main disadvantage of this

technique is the extensive computational cost (requires

hundreds of simulations) which increases substantially in

the numerical analyses (Wong 1985). The first-order reli-

ability method (FORM) is an efficient reliability based for

considering the variability in the analysis of the parameters

(Hasofer and Lind 1974). Defining a limit state function,

which is a division surface between the failure and safe

state of the slope, is mandatory in FORM. The limit state

function of a slope can easily be obtained from limit

equilibrium methods. There is considerable number of

studies, which focus on the application of reliability-based

methods in rock slope stability using limit equilibrium

methods. Duzgun et al. (2003) introduced a methodology

for reliability-based design of rock slopes. Jimenez-Ro-

driguez et al. (2006) proposed a system reliability approach

for rock slope stability. Duzgun and Bhasin (2008) applied

reliability techniques to investigate the stability of a rock

slope in Norway. Li et al. (2009) presented a system reli-

ability approach for rock wedges. However, since it is not

possible to define an explicit mathematical function for the

stability of a slope simulated by numerical methods,

FORM cannot be directly used as a reliability assessment

tool. On the other hand, the drawback with the high CPU

cost of MCS technique makes the probabilistic analyses

costly to be performed. Consequently, use of alternative

efficient approaches for integrating reliability-based

methods with numerical methods in engineering designs is

becoming a topic of interest in the recent years. Liu and

Cheng (2016) presents a system reliability analysis

approach for layered soil slopes based on multivariate

adaptive regression splines (MARS) and Monte Carlo

simulation (MCS). The proposed approach is achieved in a

two-phase process. First, MARS is constructed based on a

group of training samples that are generated by Latin

hypercube sampling (LHS). Second, the established MARS

is integrated with MCS to estimate the system failure

probability of slopes.

Response surface method (RSM) is a powerful tech-

nique, which allows developing explicit mathematical

relationships between the parameters of a given output. The

application of the RSM in engineering reliability analyses

started at the end of 1980s and well developed in 1990s

(Wong 1985; Faravelli 1989; Bucher and Bourgund 1990;

Rajashekhar and Ellingwood 1993; Liu and Moses 1994;

Kim and Na 1997). Efforts have been dedicated to the

application of the RSM in geotechnical and soil slope

stability problems. The first use of RSM in geotechnical

application was performed by Wong (1985) in which a soil

slope was modeled by finite element code. He repeated the

slope model in MCS technique and received a reasonable

match between the probability of failure (Pf) obtained from

MCS and RSM. Zangeneh et al. (2002) employed the RSM

to analyze the displacement of slopes in the earthquake

studies. Ji and Low (2012) tried to improve the existing

methods of slope reliability analysis by considering system

reliability using a stratified RSM to define the performance

functions of possible failure modes. Zhang et al. (2013)

studied the system reliability of soil slopes with RSM. Li

et al. (2015) proposed a stochastic RSM for reliability

analysis involving correlated non-normal random variables

(RV). Such studies profoundly facilitate the applications of

reliability methods for complex problems. However, the

application of reliability methods requires to be integrated

with the state-of-the-art numerical simulations.

Li et al. (2016) reviewed previous studies on develop-

ments and applications of RSMs in different slope relia-

bility problems. Then, the computational efficiency and

accuracy of four commonly used RSMs (namely single

quadratic polynomial-based response surface method

(SQRSM), single stochastic response surface method

(SSRSM) and multiple quadratic polynomial-based

response surface method (MQRSM), and multiple

stochastic response surface method (MSRSM) were sys-

tematically compared for cohesive and c–/ slopes, and

their feasibility and validity in the four types of slope

reliability problems were discussed.

Johari and Lari (2016) employed probabilistic rock

wedge stability analyses. In their paper, a system reliability

analysis of rock wedge stability was presented. To perform

reliability analysis, a cut-set system was used for wedge

analysis. The reliability indices of the individual compo-

nents and the correlations between the components are

determined by the first-order reliability method (FORM).

The sequential compounding method (SCM) is used as an

efficient numerical procedure to determine the reliability

indices of failure modes and system reliability index,

considering correlations between failure modes which are

calculated by defining equivalent linear safety margin for

each failure mode. The predicted system reliability indices

and corresponding probabilities of failure from the pro-

posed method were compared with those of the Monte

Carlo simulation (MCS).

In this paper, an integrated methodology for proba-

bilistic numerical modeling of rock slope stability is pro-

posed. The proposed methodology integrates FORM and

numerical simulations through the use of the RSM. In order

to demonstrate the implementation of the proposed

methodology, the three-dimensional distinct element code,

3DEC, is used to simulate a rock slope in Sumela Mon-

astery, Turkey. The accuracy of the methodology is

assessed by monitoring the slope behavior in each level to

investigate whether the limit state function developed by

RSM truly represents the slope behavior. The accuracy and

efficiency of the approach is later studied by comparing the

results with MCS method.
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Although the use of probabilistic methods has been

increased recently, as summarized above, the integration of

numerical and reliability methods has not been well

investigated in the rock slope stability assessments yet.

Moreover, as RSM is a local approximation tool, studies

have not been performed to investigate whether the

developed functions by RSM truly represent the limit state

surface of the slope stability problem. The numerical

methods, specifically distinct element analysis, response

surface analysis and reliability analysis for rock slopes are

not new. However, integration of distinct element slope

stability analysis by response surface model to obtain a

reliability index for a given slope is novel. Majority of the

works in the literature related to reliability-based rock

slope stability analyses rely on limit equilibrium analysis.

Although there are probabilistic numerical methods, they

mainly do not incorporate response surface model

approach, rather they use Monte Carlo simulation

approach, which is not practical when a large number of

blocks are modeled. Even the recent relevant works in the

literature does not integrate three methods into a single one

so that advantages of them are taken into account for rock

slope stability analysis. Moreover, RSM applications in all

the studies generate the limit state function iteratively until

acceptable convergence of the reliability index is achieved.

The advantage of the proposed methodology is that the

design point in each iteration is examined in the numerical

model and corresponding factor of safety (FOS) and slope

behavior is recorded. Based on the FORM, the true

response function is achieved when corresponding design

point generates a FOS & 1.0 in the numerical model.

Furthermore, tracking the slope behavior in each iteration

provides valuable information about critical values which

can indicate failure behavior better. In all these respects,

the proposed approach with its implementation to a case

study captures and demonstrates advantages of the three

integrated methods.

2 First-Order Reliability Method (FORM)

According to the reliability theory, the probability of fail-

ure (Pf) of a system is evaluated by approximating a

defined limit state function beyond which the determina-

tion of the supply capacity of an engineering system cannot

meet certain demand requirements (Ang and Tang 1984).

The limit state function is approximated either linearly or

nonlinearly in higher orders (Fiessler and Rackwitz 1979;

Hasofer and Lind 1974; Zhang and Du 2010). The FORM

is introduced by Hasofer and Lind (1974) in which the Pf is

estimated by approximating the limit state function with a

hyper plane tangent to it at the most probable point (MPP)

in the transformed space of independent standard normal

variables.

In the practice of the FORM, a limit state function,

g(Xi), must be constructed. The g(Xi) is defined in such a

way that the operating or safe scenario is the availability of

a resistance greater than the load:

g Xið Þ ¼ R Xið Þ � S Xið Þ[ 0 ð1Þ

and the non-operating or failure scenario is:

g Xið Þ ¼ R Xið Þ � S Xið Þ\0 ð2Þ

where Xi is the vector of basic variables, R(Xi) represents

the resistance function and S(Xi) represents the load func-

tion of the system. The variables must be transformed into

a new space of statistically independent Gaussian variables,

with zero mean ðlXi
Þ and unit standard deviation ðrXi

Þ. The
transformation from physical space (Xi) to standardized

space or normalized space (Ui) is immediate in the case of

independent Gaussian variables. When (random variables)

RVs are not Gaussian or independent, a transformation

must be applied to convert the variables into uncorrelated

standard normal parameters. There are several transfor-

mation methods (Rosenblatt 1952; Nataf 1962; Fiessler and

Rackwitz 1979) among which the Fiessler and Rackwitz

(1979) has widely been used in reliability studies. Once the

variables are transformed to the standard Gaussian Ui

space, the reliability index of Hasofer–Lind, bHL, is defined
as the shortest distance from the origin to the limit state

surface in the normalized Ui space. The point U�
i corre-

sponds to this shortest distance and is called the design

point or the MPP. Once the MPP is estimated in the Ui

space, the transformation methods can be used to find the

corresponding point in the Xi space. Figure 1 illustrates the

graphical representation of the FORM approximation for

two variables.

The design point ðU�
i Þ is defined as:

U�
i ¼ ai � b; i ¼ 1; 2; . . .; n ð3Þ

where i is the number of RV, ai is the direction cosine of

the corresponding design point and b is the reliability index

and can be iteratively obtained by:

ai ¼
� og

dui
b � �að Þ

Pn
j¼1

og

dui
b � �að Þ2

h i1=2 ; i ¼ 1; 2; . . .; n ð4Þ

g a1 � b; a2 � b; . . .; an � bð Þ ¼ 0 ð5Þ

In order to implement the FORM in slope stability studies,

the first step is to define a limit state or failure function,

g(Xi). The initial studies of reliability-based slope stability

analysis were based on limit equilibrium methods. The

limit equilibrium methods investigate the equilibrium of

the driving forces of the slope mass with the resistance
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forces. Accordingly, this definition can be applied to gen-

erate the failure function of a slope due to limit equilibrium

assumptions:

g Xið Þ ¼ R Xið Þ � S Xið Þ ð6Þ

where R(Xi) denotes the resistance forces on the slope mass

and S(Xi) denotes all the driving forces on the slope.

Alternatively, g(Xi) can also be written as:

g Xið Þ ¼ FOS Xið Þ � 1 ð7Þ

where FOS(Xi) denotes the function of the factor of safety

(FOS) for the slope with all RV affecting the performance

of the slope (Xi). According to the different failure criteria

for the rock mass of the slope as well as different failure

mechanisms, the g(Xi) may vary from case to case.

The limit state function is easy to define explicitly in

limit equilibrium techniques. However, in case a reliability

analysis is desired to be performed based on numerical

simulations for the slope stability assessment, it is not

possible to directly define an explicit g(Xi) based on the

RV. RSM can be implemented to generate an explicit

function for FOS(Xi) when the slope is not simulated by

limit equilibrium methods. Integrating the reliability anal-

ysis and numerical simulations can provide a better inter-

pretation of the slope’s performance.

3 Response Surface Method (RSM)

RSM was first introduced by Box and Wilson (1951), as a

technique in empirical study of relationships between

responses of parameters to a group of variables. The basic

idea of the RSM is to develop an adequate functional

relationship between a response of interest (output vari-

able) influenced by several variables (input variables)

based on a group of carefully designed mathematical and

statistical experiments. An experiment is a series of tests or

runs, in which changes are made in the input variables in

order to identify the reasons for changes in the output

response. In general, the structure of the relationship

between the input and output (response) is unknown but

can be truly approximated by the RSM in which the con-

vergence to the real relation improves by a number of

smooth functions (Khuri and Mukhopadhyay 2010). The

RSM is performed by following two major steps, namely

design and estimation (Wong 1985). The estimation step is

the calculations of fitting an approximate response to the

real surface based on a number of wisely selected sample

points on the space. The design step deals with how to

select the best sample points at which experiments will be

run so that the fitting of the surface to the true one is

satisfied. According to the estimation step, it is assumed

that the true response, G(Xi), of a system depends on i

number of input variables, X1, X2, …, Xi, as:

G Xið Þ ¼ f X1;X2; . . .;Xið Þ þ e ð8Þ

where the function f is the true unknown and complicated

response function, and e is treated as a statistical error.

There are several methods proposed to approximate G(Xi)

(Wong 1985; Bucher and Bourgund 1990; Rajashekhar and

Ellingwood 1993; Kim and Na 1997; Zheng and Das

2000). The most common approach is the low-degree

quadratic polynomial (Bucher and Bourgund 1990), due to

their advantages of being simple and known properties.

According to this approach, if G(Xi) represents the real

response surface of a system, the approximated surface

based on quadratic polynomial is:

Ĝ Xið Þ ¼ aþ
Xn

i¼1

biXi þ
Xn

i¼1

ciX
2
i ð9Þ

where Ĝ Xið Þ is the approximate response surface function;

Xi is the ith RV (i = 1, 2,…, n); n is the number of RV; and

a, bi, ci are the polynomial coefficients which must be

calculated. Based on Eq. (9), 2n ? 1 number of experi-

ments is required to obtain the polynomial coefficients.

According to Box and Draper (1987), the most important

Fig. 1 Graphical representation

of the FORM approximation
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part of the RSM is the design of experiments (DoE). The

objective of DoE is the selection of the points where the

response should be evaluated. Among various sampling

methods (Myers and Montgomery 1995; Montgomery

1997), a common approach is to evaluate G(X) at 2n ? 1

combinations of central point, Xi, and along the line par-

allel to each coordinate axes at Xi � frXi
. Parameters Xi

and rXi
denote the mean and the standard deviation of the

ith RV. f is usually set to be 1 for most of the approxi-

mations. However, there are several studies in which the

importance of f is discussed (Youliang et al. 2008). It is to

be noted that the main limitation of the RSM is that it is a

local analysis method, where the developed response

function is invalid for regions other than the ranges of

designed experiments.

4 The Proposed Methodology

The limit state function of a slope can be defined as:

g Xið Þ ¼ FOS Xið Þ � 1 ð10Þ

FOS is a value that is used to examine the stability state of

slopes. Generally, a slope fails when its material shear

strength on the sliding surface is insufficient to resist the

applied in situ shear stresses. According to Anon (2013), a

‘‘FOS’’ index can be defined for any relevant problem by

taking the ratio of the calculated parameter value under given

conditions to the critical value of the same parameter, at

which the onset of an unacceptable outcomemanifests itself.

This requires to identify the actual and critical parameters. In

recent numerical techniques, this goal is achieved based on

parameter reduction techniques (Shen 2012). According to

this method, the actual parameter value is achieved by direct

resolution of the field and the constitutive equations gov-

erning the problem, while the critical parameter is calculated

by solving inverse boundary value problem. In numerical

simulations, this can be achieved using a trial-and-error

technique for a range of parameter values until the critical

value is found (Diederichs et al. 2007).

The calculation of the FOS in 3DEC is performed based

on strength reduction method. The strength reduction

method is increasingly popular numerical technique to

evaluate FOS in geomechanics. According to this method,

the FOS is calculated by progressively reducing the shear

strength of the material to bring the slope to a state of

limiting equilibrium. The method is commonly applied

with the Mohr–Coulomb failure criterion. In this case, the

FOS is defined according to the following equations:

FOS ¼ s
strial

ð11Þ

where s is the actual strength being obtained from the

material properties and corresponding constitutive models,

and strial is the critical strength of the problem. strial is
obtained from:

strial ¼ Ctrial þ rn tanutrial ð12Þ

Ctrial ¼
1

SRF
C ð13Þ

;trial ¼ arctan
1

SRF
tan ;

� �

ð14Þ

where SRF is strength reduction factor that is obtained by a

series of simulations using trial values of the SRF to reduce

the cohesion, C, and friction angle, u, until slope failure

occurs.

Once the function of FOS(Xi) is generated, FORM can

easily be performed. However, unlike limit equilibrium

methods, it is not possible to directly define an explicit

function for FOS in slopes simulated by numerical meth-

ods. In such cases, RSM can be used to find the mathe-

matical relationship between the parameters of slope

stability and FOS. Considering the RSM as a local analysis

technique, it is important to correctly find the surface

where FOS(Xi) = 1 is satisfied. Figure 2 illustrates the

developed methodology in which the satisfactory conver-

gence to the true limit state surface of FOS can be obtained.

The proposed approach consists of five steps, where there

are iterations through step 2 to step 5.

Step 1: This step is for obtaining statistical parameters of

the RV. Any reliability analysis, in which the uncertainties

in the involved parameters are quantified, requires the sta-

tistical parameters of the RV. The statistical parameters of

each RV can be obtained from laboratory tests and field

observations, as well as the literature studies. The statistical

parameters of RV depend on the probability distribution

function fitted to the RV. For example, if a normal distri-

bution is the best fitting distribution then mean and standard

deviation are required. In an ideal case, this is carried out by

performing several number of laboratory tests or field

observation depending on how the value of the parameter is

measured. In most of the real cases, it may not be possible to

conduct sufficient number of tests or collect data from the

field. Such situations does not prohibit the use of proba-

bilistic methods as given distribution functions and amount

of variability in the literature can be used in a Bayesian

statistical approach to predict the statistical parameters.

Step 2: It mainly involves integration of numerical

analysis and FORM through RSM. The approximation of

the surface where FOS(Xi) = 1 and can be performed by

combining RSM and FORM. The main idea is to gradually

converge to the true surface by iteratively fitting a number

of equations for the selected sample points. In each itera-

tion, FORM is responsible to provide the center point

where the other sets of random variables need to be
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designed around it, while RSM provides the corresponding

function fitted in the area of the center point.

The first iteration starts by designing the sample points

around the mean values of the RVs. For a quadratic

response function, 2n ? 1 number of sample points is

necessary to calculate the coefficients (ai, bi, ci). Once the

design of the points around the mean is performed, each set

is separately imported to the numerical simulation and the

corresponding FOS is computed. Equation (9) can easily

be generated by calculating the coefficients after the

response of each set is obtained (FOS).

Step 3: This step is for checking whether the obtained

FOS(Xi) satisfies the desired response, FOS(Xi) = 1. For

this purpose, FORM is used to examine the validity of the

generated function. Considering the definition of FORM,

the MPP (U�
i ) always locates on the limit state surface

G(Xi) after transferring it to the physical space (Xi). In other

words, if the generated function is the true limit state

surface, the calculated X�
i must provide the value of FOS ffi

1 in the numerical model. Hence, in order to check the

validity of the FOS(Xi) in the first iteration, the corre-

sponding X�
i is calculated by FORM and then imported to

the numerical simulation. When the obtained FOS is close

to 1.0, the first condition of the methodology is fulfilled.

Otherwise, the iteration must be continued up to the level

in which the obtained X�
i yields a value of FOS X�

i

� �
ffi 1:0.

Step 4: It consists of two stages, namely 4-a and 4-b. 4-a

is obtaining a new set of sample points in order to continue

the iteration. The new set should define a new region in

which FOS(Xi) is fitted. The region in each new level is

designed around the X�
i of the previous level. Hence, the

mean values as the center point must be substituted by the

X�
i calculated from the previous iteration. Step 2 and 3

must be repeated until FOS X�ð Þ ffi 1:0 is satisfied. 4-b is

for confirming the validity of the approximated limit state

function as fulfilling the condition of FOS X�ð Þ ffi 1:0 is not

sufficient. The reason is that any point on the real limit

state surface takes the value of FOS = 1.0; while, there is

only one valid MPP ðX�
i Þ on the real limit state function

according to FORM. On the other hand, the RSM is valid

only for the local in which it is studied. Accordingly, the

complete convergence only happens when the X�
i deter-

mined in a subsequent level approaches to the X�
i in the

preceding level. Therefore, the two conditions of the pro-

posed methodology to be fulfilled are given as:

FOS X�
i

� �
ffi 1:0 ð15Þ

X�
k ¼ X�

k�1; k ¼ number of iteration ð16Þ

Figure 3 shows a schematic illustration of the methodology

for a two variable problem. The origin of the axes repre-

sents the mean point of the random variables.

Step 5: As the final step of the methodology, once both

conditions in the previous steps are fulfilled, the function of

FOS(Xi) in the last level can be accepted as a true

approximation. Subsequently, the Pf of the slope under

consideration is calculated according to FORM.

5 Implementation of the Methodology

5.1 Study Area

In order to implement the proposed methodology and

investigate its computational efficiency, a rock slope from

YES YES

NO
           NO

Obtain statistical parameters of RV's 

Obtain set of points around mean values 
(DOE)

 Fit the response surface FOS(X i )

Find MPP (X*)  according to FORM

Accept the 
FOS(Xi) failure 

function and find 
P F

Check X*  in 3DEC, FOS(X*)=1 ?

Optain set of points around X*  (DOE)

 X* k  = X* k-1 ?

Perform numerical simulations and obtain FOS i  for each set

Step 1.

Step 2.

Step 3.

Step 4-a.

Step 4-b.

Step 5.

Fig. 2 Flowchart of the

developed methodology
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a historical site, the Sumela Monastery, is selected. The

Sumela Monastery located in the Altindere National Park

at Macka region of Trabzon in Turkey, is a Greek Orthodox

monastery dedicated to the Virgin Mary. It was founded in

AD 386 during the reign of the Emperor Theodosius I

(375–395) by two priests from Athens, Barnabas and

Sophronios (Miller 1968). The monastery is constructed in

a steep rock cliff at a height of about 200 m from the toe of

the cliff which is surrounded by the roads and settlements

of the local citizens (Fig. 4). The Sumela Monastery is one

of the major historical and touristic places of Turkey

hosting around 180,000 local and foreign visitors every

year (Gelisli et al. 2011). The rock formations are part of

the Northern Zone of the Eastern Pontide volcanic province

on the Black Sea coast, which is dominated by Late Cre-

taceous and Middle Eocene volcanics and volcaniclastic

rocks (Gelisli et al. 2011). The formation of the Northern

Zone consists of basaltic and andesitic lithic tuff, vol-

canogenic sandstone, shale, basaltic and andesitic lavas and

conglomerate deposited in a rift basin setting. According to

Gelisli et al. (2011), the region evolved into a carbonate

platform after the deposition of the Hamurkesen Formation

as a result of a decrease in tectonic activity and filling of

the rift basins, giving rise to the Berdiga Formation during

the Late Jurassic–Early Cretaceous. Alluvial deposits

composed of clay, silt, sand and gravel are widely dis-

played adjacent to the rivers in this region.

The structure of the monastery has been subjected to

several rockfalls from the cliff in the past couple of dec-

ades. In 2001, a hazardous rockfall event was reported

causing damages to the monastery buildings and facilities.

According to Gelisli et al. (2011), the fallen blocks were

detached from the crest of the cliff on top of the Monastery

structure following a path toward the settlements (Fig. 5).

According to the past evidences and field observations, a

wedge failure is detected in the vicinity of the monastery

which threatens the structure as well as the downhill set-

tlements. The potential wedge is shown in Fig. 5a. The

rockfall event happened in 2001 had also been detached

from the detected wedge. The wedge is highly fractured

causing small block instabilities, potential to fall. More

proofs of block detachments are obvious on the wedge. In

this study, it is tried to establish the probability of the

wedge failure in the area based on the proposed method-

ology. 3DEC is used to simulate the rock slope.

The laboratory and field studies are performed to char-

acterize the geomechanical properties of the region. Based

on the parameters of the rock mass classification system

(Bieniawski 1989) listed in Table 1, the quality of the rock

mass is classified as fair rock. On the basis of the data

obtained from discontinuity surveys, it is found that the

slope has two major joint sets (1 m:84�/182�–2 m:40�/
46�). The kinematic analysis shown in Fig. 6 validates the

formation of a wedge failure in the region. The statistical

parameters related to the intact rock and discontinuity

parameters are explained in Sect. 5.4.

In order to study the mechanical properties of the rock

material, tests are conducted for six samples. The

descriptive statistics related to the rock material properties

obtained from these tests (uniaxial compressive strength,

tensile strength (Brazilian), triaxial compressive strength)

are given in Table 3.

In order to study the problem in 3DEC, the model is

generated. A sensitivity analysis is performed to identify

the random and deterministic parameters of the problem.

Later, the Pf is calculated by defining the FOS(Xi) based on

RSM and FORM. In order to verify that the generated limit

state function for FOS truly represents the failure surface,

Fig. 3 Schematic illustration of the approximation of the real limit

state surface due to RSM and FORM in a two random variable space

Fig. 4 Structure of the Sumela

Monastery located inside a steep

cliff
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the slope behavior is monitored and the results are dis-

cussed. Moreover, MCS is performed on the same model in

3DEC to investigate the accuracy and efficiency of the

methodology.

5.2 Model Generation in 3DEC

The geometry of the slope in 3DEC is created by cutting an

original block in a way that the outcome represents

boundaries of physical features in the problem. A polygon

surface is created based on the topography of the study

area. The surface is then imported to 3DEC to create the

model boundaries. Once the discontinuity data are added to

the model, the final geometry is generated (Fig. 7). The

large potential wedge is located at height of approximately

200 m from the toe of the cliff with volume of about ten

million m3.

According to Anon (2013), when the problem is dealing

with unconfined set of hard rock blocks at low stress level,

such as shallow slopes in jointed rock where the move-

ments consist mainly of sliding and rotation of blocks, it is

reasonable to assume the infinite material rigidity in order

to let the discontinuities dominate the problem. Accord-

ingly, since the study area is comprised of unconfined

basaltic rock blocks, the behavior of the intact material is

assumed to be rigid rather than deformable. This let the

model be mainly governed by the joints and discontinuities,

which reflects the observed behavior in the field.

5.3 Identification of Random Variables (RV)

It is important to note that both numerical and probabilistic

analyses demand a high computational cost. Hence,

reducing the number of RV, which may have negligible

effect on model response, can considerably increase the

efficiency. Prior to start the main simulations to estimate

the Pf of the wedge, in order to define the deterministic and

random input variables, a sensitivity analysis is performed

to investigate how the uncertainty in each parameter may

affect the FOS. The mechanical parameters of intact rock

and discontinuities are assumed to be random at the initial

step. In order to have a better understanding of uncertainty

influence imposed by each variable, a constant coefficient

of variation (COV) of 0.5 is implemented to all random

variables. A total of 25 models are run in 3DEC. In each set

of models, the concerning random parameter is repeatedly

Potential 
wedge failure

Rockfall 
source area 
in 2001

Evidences of 
rock
detachment

(a) (b)

(c)

Fig. 5 a Potential wedge

failure and rockfall source

areas, b, c rockfall event in 2001
(Gelisli et al. 2011)

Table 1 Classification of the rock mass based on RMR system

(Bieniawski 1989)

Parameter Value Rating

1 UCS (MPa) 230 12

2 Rock quality designation (RQD) (%) 40 8

3 Spacing of discontinuities (m) [2 20

4.1 Discontinuity length (m) 5–10 2

4.2 Separation (mm) 20–30 0

4.3 Roughness smooth 1

4.4 Infilling [5 mm 0

4.5 Weathering Highly 1

5 Groundwater Damp 10

Total RMR rating 54

Class of the rock Fair rock
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changed while other parameters are kept constant in the

mean values and the corresponding FOS is recorded. It is

important to note that these simulations are only performed

in order to decrease the number of basic variables by

determining the response of the slope to the changes in the

variability of the involved parameters. Figure 8 reveals that

the variability in discontinuity cohesion (JC), normal

stiffness (Kn) and shear stiffness (Ks) have the highest

influence on FOS, respectively. The discontinuity friction’s

variability as it is also indicated in various probabilistic

studies (e.g., Duzgun et al. 2003; Haderbache and Laouami

2013) is less influential than the variability in the cohesion

and the stiffness parameters. This is mainly due to the

linear nature of the Coulomb criterion. For this reason,

variability of joint stiffness and cohesion is found to be the

most effective in changing the values of FOS. As the model

is generated in rigid form and the discontinuities are mainly

governing the problem rather than the intact rock blocks.

Therefore, as expected, the variability of intact parameters

does not exhibit significant contribution to FOS. For this

reason, they are considered to be deterministic.

5.4 Statistical Parameters of the Random Variables

(RV)

Although discontinuity properties are identified to be the

RV and the intact properties are considered to be deter-

ministic variables, their statistical parameters are given for

Fig. 6 Discontinuity distribution and kinematic analysis in the study region (RocScience 2015)
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Fig. 7 Geometry of the study area developed in 3DEC (Itasca 2013)
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the sake of completeness. Due to the fact that the study

area, Sumela Monastry, is a cultural heritage site, by law, it

is forbidden to collect suitable rock samples from the site.

For this reason, rock samples for obtaining intact rock

properties are collected from one of the neighboring fields

of the site, which has the same geological and rock mass

properties. It was not possible to collect reasonable number

of rock discontinuity samples during the field investiga-

tions. On the other hand, tilt tests on the saw cut surfaces

are performed in the laboratory. By using the tilt tests,

RMR values and the literature review (e.g., Kainthola et al.

2013; Schultz 1993), the mechanical properties of discon-

tinuities are described by assigning maximum and mini-

mum values. The discontinuity shear strength parameters in

the literature, which are similar to the case study, are

searched by considering similar geological and intact rock

properties. In this respect, although intact rock properties

are not directly used, they are utilized for obtaining

information for the characterization of the RV’s. For this

reason, their statistical parameters are also provided.

When a range of values are known for a random vari-

able, simple statistical distributions, like uniform (UD),

symmetric triangular (STD), upper triangular (UTD) and

lower triangular (LTD) distributions, can be used for pre-

dicting the statistical parameters of the random variables

(Ang and Tang 1984). Based on the predicted ranges for

mechanical properties of intact rock and discontinuity

properties and using the distributions given for ranges, the

statistics of mean, standard deviation and COV are

obtained. As the UD provides equal probability of

obtaining values between the given ranges, it is adopted in

this study. The equations of mean and COV for UD, STD,

UTD and LTD are given in Table 2. The statistical

parameters obtained for the intact properties of the rock are

given in Table 3. Similarly, the statistical parameters of

RV’s used in the reliability analysis based on UD, STD,

UTD and LTD are listed in Table 4. In the reliability

analyses, UD values in Table 4 are used.

As it can be seen from Table 4, the friction angle has the

least uncertainty, which is in line with the sensitivity

analysis results. The constitutive model used in the 3DEC

analysis is mainly built upon the values of the shear and

normal stiffness values which indicates in fact model

uncertainty. For this reason, their COV values are larger.

5.5 Reliability Analysis

In the proposed methodology, the response surface of FOS

must be adjusted around the mean values of the random

variables at the initial iteration. For this purpose, the set of

input points around the mean must be designed. Since this

study consists of three RVs, JC, Kn and Ks, seven sets of

points are necessary in each iteration. Once the set of input

parameters are defined, each set is simulated in 3DEC and

the corresponding FOS is obtained. Table 5 indicates the

results of simulations around the mean values of the RV.

According to Eq. (9), for the three RVs, seven coeffi-

cients must be calculated to generate the response surface

function of FOS. The coefficients can easily be obtained by

solving seven equations with seven unknowns based on

Fig. 8 Sensitivity analysis of

FOS to the uncertainty in rock

and discontinuity properties
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simulations listed in Table 5. Consequently, the response

function of FOS for the first iteration is:

FOS X1;X2;X3ð Þ ¼ 0:649ð Þ þ ð1:953 � X1Þ þ ð�0:445 � X2Þ
þ ð0:509 � X3Þ þ ð�0:143 � X2

1Þ
þ ð0:008 � X2

2Þ þ ð�0:023 � X2
3Þ

ð17Þ

Therefore, the failure limit state surface for the first itera-

tion can be written as:

Table 2 Means and COV’s

corresponding to different

distributions (Ang and Tang

1984)

PDF Mean value, �X COV

Uniform distribution (UD) 1
2
ðXl þ XuÞ 1ffiffi

3
p Xu�Xl

XuþXl

� �

Symmetric triangular distribution (STD) 1
2
ðXl þ XuÞ 1ffiffi

6
p Xu�Xl

XuþXl

� �

Upper triangular distribution (UTD) 1
3
ðXl þ 2XuÞ 1ffiffi

2
p Xu�Xl

2XuþXl

� �

Lower triangular distribution (LTD) 1
3
ð2Xl þ XuÞ 1ffiffi

2
p Xu�Xl

Xuþ2Xl

� �

X denotes mean of the UD, Xl denotes lower range of the RV and Xu denotes upper range of the RV

Table 3 Basic descriptive

statistics of the intact rocks

parameters

Variables Minimum Maximum Mean SD COV

UCS (MPa) 216.77 245.92 227.79 12.79 0.06

Tensile strength (MPa) 13.19 19.39 15.19 2.20 0.15

Young’s modulus (GPa) 71.00 78.00 73.25 3.30 0.05

Poisson’s ratio 0.22 0.29 0.26 0.03 0.11

Cohesion (c) (MPa) 60 71 65 3.85 0.06

Internal friction angle / (�) 29.00 33.00 31.00 1.41 0.05

Table 4 Statistical parameters

of RV
Random variables (RV) Probability density function (PDF) Mean SD COV

Discontinuity cohesion (JC) (MPa) UD 3.90 0.35 0.09

STD 3.90 0.24 0.06

UTD 4.10 0.28 0.07

LTD 3.70 0.28 0.08

Discontinuity friction angle (/d) (�) UD 30.00 1.73 0.06

STD 30.00 1.22 0.04

UTD 31.00 1.41 0.05

LTD 29.00 1.41 0.05

Normal stiffness (Kn) (GPa/m) UD 30.00 2.31 0.08

STD 30.00 1.63 0.05

UTD 31.33 1.89 0.06

LTD 28.67 1.89 0.07

Shear stiffness (Ks) (GPa/m) UD 12.50 2.02 0.16

STD 12.50 1.43 0.11

UTD 13.67 1.65 0.12

LTD 11.33 1.65 0.15

Table 5 Design of points around the mean and the corresponding

FOS

Parameter Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

X1 (JC) 4.5 6.3 2.7 2.7 2.7 2.7 6.3

X2 (Kn) 30 39 21 39 39 21 21

X3 (Ks) 12 14.4 14.4 14.4 9.6 9.6 14.4

FOS 2.93 4.22 1.45 1.82 2.04 1.7 3.35
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g X1;X2;X3ð Þ ¼ FOS X1;X2;X3ð Þ � 1

¼ 0:649ð Þ þ ð1:953 � X1Þ þ ð�0:445 � X2Þ
þ ð0:509 � X3Þ þ ð�0:143 � X2

1Þ
þ ð0:008 � X2

2Þ þ ð�0:023 � X2
3Þ � 1

ð18Þ

Once the limit state failure function is generated, FORM can

beperformed tofind theMPP ðX�
i Þ in this region. The response

function of FOS and corresponding failure limit state g(Xi) is

accepted when obtained MPP illustrates a FOS close to 1.0 in

3DEC. Table 6 lists the results ofMPP in the first iteration and

corresponding FOS in 3DEC. It is obvious that the iteration

must be continued until the first condition of themethodology

is satisfied. The similar procedure must be continued by

designing the input sets around the MPP X�
i

� �
of the previous

iteration instead of mean values until the first condition is

satisfied.Additionally, anypoint on the failure function takes a

value of FOS ffi 1:0. Since the RSM is locally valid, the true

regionmust also be verified. This is obtained by satisfying the

second condition of the methodology ðX�
k ¼ X�

k�1Þ in which

the convergence to the MPP is also obtained. Consequently,

the final failure function is obtained as:

g Xið Þ ¼ 5:124ð Þ þ ð�0:073 � X1Þ þ ð0:682 � X2Þ
þ ð�1:758 � X3Þ þ 0:147 � X2

1

� �

þ �0:016 � X2
2

� �
þ 0:066 � X2

3

� �
� 1

ð19Þ

Once the limit state surface is generated, any reliability

method can easily be utilized to calculate the Pf of the slope.

6 Results and Discussion

In order to confirm the validation of the converged function

of FOS, the response of the model is monitored in the

center point of each iteration by plotting the vertical

velocity and unbalanced force histories. The slope shows a

steady state when the iterations are in the safe region. It is

also observed that the slope starts to fail in 3DEC while

convergence to the limit state surface according to the

RSM is obtained. Figure 9 shows the history plots for

iteration one and eleven, respectively. It is shown that, at

the center point of the iteration one, where the FOS is

calculated to be 2.93, the velocity of the slope follows

almost constant rate of increase due to the execution of the

model (Fig. 9a); At the center point of the iteration eleven,

a sudden increase in the vertical velocity after 12,000 steps

occurs (Fig. 9b). Any sudden increase in displacement or

velocity of a model indicates a joint slip or block failure or

plastic flow within the model (Anon 2013). Moreover,

according to the maximum unbalanced force plots, not any

instability condition is observed in iteration one (Fig. 9c).

The unbalanced force follows a constant value which

indicates a constant movement within the model. However,

iteration eleven shows a large force imbalance in the model

after 14,000 steps (Fig. 9d).

The maximum vertical velocity in the center point of

each iteration is plotted in Fig. 10. It is clear that vertical

velocity increases by converging to the limit state surface.

Slope instability is quite obvious by the sudden increase in

the vicinity of the limit state surface where FOS is con-

verging to 1.0. As it can be seen from Fig. 10, the first

jump on velocity occurs after iteration 5 which is a valu-

able indicator for estimating the critical failure stage of the

slope. In fact this stage is the beginning of failure, which

can be used for monitoring purposes. The later stages

indicate sudden onset failure.

In order to investigate the accuracy and efficiency of the

proposed methodology, Pf of the slope is obtained by MCS

method after 300 simulations in 3DEC. According to

Table 7, in case of 300 attempts, the efficiency is increased

by 72%, while the accuracy is decreased with error of 24%.

In this case, since the slope is not dealing with low values

of Pf, the error can be ignored by considering the high

efficiency of the proposed methodology.

7 Conclusion

In this paper, a method to analyze reliability of rock slopes

using the RSM and numerical simulation is developed. The

numerical simulation which is usually expensive is repe-

ated only a limited number of times to give point estimates

of the response of FOS corresponding to the uncertainties

in the model parameters. A function is then fit to these

point estimates so that the response of FOS can be rea-

sonably approximated within the region of interest. The

approximation function, called the response surface, is

replaced by subsequent repetitive computations required in

Table 6 Results of the MPP and corresponding FOS

Iteration X�
1 X�

2 X�
3 FOS (X�)

1 3.85 28.3 12.6 2.72

2 3.11 26.4 12.9 2.42

3 2.88 25 12.6 2.2

4 2.75 24.1 13.2 1.92

5 2.62 21.9 13 1.64

6 2.53 21.2 13 1.47

7 2.46 20.8 13.3 1.25

8 2.39 20.5 13.2 1.2

9 2.27 19.9 13.4 1.13

10 2.18 19.1 13.3 1.09

11 2.17 19.4 13.4 1.05

12 2.06 18.9 13.5 1.07
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the reliability analysis. The procedure is applied to a large

potential wedge in a rock slope in the Sumela Monastery,

Turkey. It is concluded that:

• The challenging volume of simulations in MCS method

can be decreased by using the proposed methodology in

this paper.

• FORM can be used in cases with inexistence of

predefined explicit limit state functions.

• Instead of conventional limit equilibrium methods, it is

possible to define a function to FOS utilizing the state-

of-the-art numerical techniques. FOS function based on

effective random parameters of the slope is valuable in

engineering design and practices.

• By studying the slope behavior during the development

of the limit state function, it is possible to indicate the

Fig. 9 a History of vertical velocity in the center point of iteration

one, b history of vertical velocity in the center point of iteration

eleven, c history of maximum unbalanced force in the center point of

iteration one and d history of maximum unbalanced force in the

center point of iteration eleven

Fig. 10 Maximum vertical velocity in center points versus iteration

number

Table 7 Pf based on MCS and proposed methodology

Method Pf (%) Error (%) Number of simulations

MCS 13.1 – 300

Proposed approach 16.3 24 84

Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response… 2131

123



range of critical velocity or displacement zones.

Instrumentation and monitoring of slope stability in

the field along with generated information can provide

a good understanding of the slope stability hazards and

effective implementation of the protection measures.

• The Pf of a large wedge in Sumela Monastery, Turkey,

is calculated and compared with MCS method. Using

the proposed methodology, the efficiency is increased

by 72%, while the accuracy is decreased with error of

24%.

• The accuracy of the calculated Pf in this method is

lower considering the MCS technique. However, such

an accuracy difference can be tolerated for the given

order of magnitudes of Pf.

• It is to be noted that, unlike deterministic analyses

where acceptable values are established for the FOS,

probabilistic analyses lack acceptable limits of Pf, so

that the stability/instability assessment can be made by

the comparison of the computed Pf of the given slope

with acceptable values. Hence, the proposed approach

provides a rigorous basis for evaluating the calculated

Pf value in terms of safety.
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