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Abstract The shear strength of rock joints is an important

factor to be considered when analyzing the stability of

jointed rock mass. Rock joints tend to have smaller shear

resistances in the reverse shearing than that of the forward

shearing. A conceptual model describing the general shear

behavior of rock joints under cyclic loading and the Bar-

ton–Bandis joint model considering the surface roughness

degradation are implemented into the two-dimensional

discontinuous deformation analysis (DDA) model. The

modified DDA model is empirically validated by cyclic

shear tests on two types of rock joints. Numerical simula-

tions agree well with the experimental results, indicating

that the DDA model is capable of describing the varying

shear behaviors of rock joints subjected to cyclic loading

conditions.

Keywords Cyclic loading � Surface roughness

degradation � Barton–Bandis joint model � DDA �
Reverse shearing

List of symbols

Rn Normal component of the contact force

kn Stiffness of the normal springs

dn Penetration in normal direction

Rs Shear component of the contact force

ks Stiffness of the shear springs

ds Relative shear displacement of the contact

; Joint friction angle

c Cohesion per unit length

lc Computed length of the contact

rn Normal stress acting on the joint

;r Residual friction angle

;b Base friction angle

M Damage parameter

Rs;peak Peak shear force of the angle-edge contact

ds;peak Shear displacement required to reach the peak

shear strength Rs;peak

Abbreviations

DDA Discontinuous deformation analysis

JRC Joint roughness coefficient

JCS Joint compressive strength

JRCmob Mobilized joint roughness

JRCpeak Peak JRC value before degradation

1 Introduction

Many studies have been carried out on rock joints under

monotonic loading (Tang et al. 2014; Xia et al. 2014; Fathi

et al. 2016) and under cyclic loading (Plesha 1987; Hutson

and Dowding 1990; Huang et al. 1993; Jing et al. 1993; Lee

et al. 2001). For rock joints under cyclic loading, joints will

dilate in forward shearing and contract in the reverse
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shearing in the normal direction, due to the presence of

asperities on the joint surface. The term forward shearing

refers to that the joint is sheared away from its original

position, whereas the term reverse shearing means that the

joint is moved toward its original position. One noticeable

feature of the shear stress versus shear displacement curve

of rock joints under cyclic loading is the smaller shear

stress for the reverse shearing than that of the forward

shearing. Reversal of the shear direction could be caused

by earthquakes, blasting, rock bursts, and thermal loads

(Ghosh et al. 1995). Failure to account for the decreased

joint shear strength for the reverse shearing will overesti-

mate the stability of fractured rock mass.

Discontinuous deformation analysis (DDA) is a

numerical analysis method proposed by Shi (1988) to

model the behavior of discontinuous medium. It takes into

account the deformation of individual blocks as well as the

interaction of blocks along discontinuities. Discontinuous

blocky systems in DDA are formed by assembling discrete

blocks together, and the motions of contacting blocks are

governed by stiff springs. A dual form of DDA is devel-

oped by Zheng et al. (2016) where the contact forces rather

than the displacements are used as the basic variables and

contact springs are not involved.

Rock joints can significantly influence the strength of

jointed rock mass. Mohr–Coulomb criterion is used in

DDA to control the shearing movements between con-

tacting blocks. When joints are subjected to compressive

loading, the contacting blocks are initially ‘locked’ in the

shearing direction until the generated inter-block shear

forces of the joint contact are larger than the peak shear

strength defined by Mohr–Coulomb’s law in DDA. In the

state of ‘sliding,’ the shear springs would be removed from

the contact positions and blocks are ‘sliding’ along the

joint. The joint shear force is computed by Mohr–Cou-

lomb’s law where cohesion is completely removed and the

friction angle is maintained the same. Improper removal of

cohesion when the joint contact shifts from ‘locked’ to

‘sliding’ might lead to incorrect assessment of the stability

of geotechnical structures (Zheng et al. 2013; Wang et al.

2013). In order to overcome these problems, Wang et al.

(2013) suggested a displacement-dependent shear strength

criterion in which cohesion and friction angle are decreased

along with the relative movements between the contacting

blocks. Interfacial shear strength degradation of rock joints

has also been proposed to provide more realistic simula-

tions in DDA (Sitar et al. 2005; Bakun-Mazor et al. 2012).

Despite these studies on joint shear behavior in DDA, very

few studies have been reported in the use of DDA for

modeling rock joints subjected to cyclic loading where

shear loading direction is repeatedly reversed.

A number of constitutive models have been proposed for

shear behaviors of rock joints (Patton 1966; Ladanyi and

Archambault 1969; Plesha 1987; Barton and Bandis 1982;

Jing et al. 1993; Lee et al. 2001). Most of these models are

developed for monotonic shear loading. Barton–Bandis’

empirical model (Barton and Bandis 1982) has been widely

used as it is easy to apply and adopts several important

factors of joint properties. Plesha (1987) proposed a con-

stitutive model for both monotonic and cyclic shear loading

in the framework of the classical plastic theory, in which

the asperity angle is mobilized as a function of the work

dissipated by the frictional sliding. Lee et al. (2001)

modified Plesha’s model by considering the asperity angle

as the sum of the first- and second-order asperity angles.

Jing et al. (1993) presented a conceptual model to describe

the general behaviors of rock joints under cyclic shear

loading. Based on this conceptual model, Jing et al. (1993)

proposed a constitutive model for rock joints subjected to

both monotonic and cyclic shear loading.

Jing et al. (1993)’s conceptual model took into account

the assumption that the rock joint will dilate in the for-

ward shearing and will contract during the reverse

shearing. It is worth noticing that this assumption is not

always correct. For instance, when rock joint with a low

strength is subjected to a high normal stress, the asperity

plane might be completely sheared off during the forward

shearing process in the first loading cycle, and hence,

there may be no obvious dilation in the forward shearing.

Rock joints would not contract during the reverse shear-

ing. The shearing behavior of rock joints depends on not

only the joint profile, but also the joint strength and the

normal stress.

This study is based on the assumption that the rock joint

will dilate in the forward shearing and will contract during

reverse shearing. The Barton–Bandis joint model together

with the conceptual model proposed by Jing et al. (1993) is

implemented into the DDA code to predict the behaviors of

rock joints under cyclic loading conditions.

2 Two-Dimensional Discontinuous Deformation
Analysis Method

Shi (1988) proposed discontinuous deformation analysis

(DDA) by minimizing the total potential energy of a dis-

continuous block system. Every block in DDA method has

six basic variables which includes three rigid body motion

terms and three constant strain terms. The displacement

vector of block i can be expressed by:

Di ¼ u0; v0; r0; ex; ey; cxy
� �T ð1Þ

where (u0; v0) refers to the rigid block translation of a

specific point (x0; y0) in the block, r0 is the rotation angle of

the block with respect to the point (x0; y0), ex and ey refer to

the normal strain components in the x and y directions,
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respectively, and cxy refers to the shear strain component.

The displacement u; vð Þ of any point (x, y) in the block is:

u

v

� �
¼

1 0 � y� y0ð Þ x� x0ð Þ 0 y� y0ð Þ=2

0 1 x� x0ð Þ 0 y� y0ð Þ x� x0ð Þ=2

� �

u0

v0

r0

ex
ey
cxy

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

ð2Þ

The simultaneous equilibrium equations for a blocky

system consisting of n blocks can be represented by:
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� � � K2n
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. ..
.
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. .
. ..

.
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¼
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..

.

Fn

2

6664

3

7775
; ð3Þ

where Kii is a 6 � 6 sub-matrix determined by the material

parameters of block i, Kij i 6¼ jð Þ is a 6 9 6 sub-matrix

representing the contacts between blocks i and j, Di is a

6 9 1 sub-matrix representing the displacement vector of

block i, and Fi is 6 9 1 sub-matrix representing the load

vector of block i.

Once the block system deforms, the displacement vector

Di can be computed by solving the equilibrium equations.

Based on the obtained results, the requirements of non-

penetration and non-tension are checked. Very stiff springs

will be added at the contacts in the normal direction in the

occurrence of the block penetration or removed in the case

of tension failure.

There are three possible types of contacts in two-di-

mensional (2D) DDA method, namely angle-to-angle

contact, angle-to-edge contact, and edge-to-edge contact,

as shown in Fig. 1. An edge-to-edge contact can be con-

verted to two angle-to-edge contacts. For instance in

Fig. 1c, the p1p2–p3p4 contact can be treated as angle p1 to

edge p3p4 contact and angle p4 to edge p1p2 contact. There

are three contact states in 2D DDA which are listed in

Table 1. These contact states are governed by the pene-

tration degrees and shear strength of the joint.

In Fig. 2, an edge-to-edge contact of length L subjected

to normal compressive stress is converted into two angle-

to-edge contacts of length lc (L ¼ 2lc). Shear and normal

(a) (b) (c)

Fig. 1 Three possible contacts in 2D DDA: a angle-to-angle;

b angle-to-edge; and c edge-to-edge

Table 1 Three contact states in 2D DDA

State Normal component and shear

component of the contact force

Remarks

Open Rn ¼ �kndn � 0 The normal component of the contact force is tensile

Sliding Rn ¼ �kndn [ 0 and

Rs [Rn tan ; þ clc

The normal component of the contact force is compressive, and the mobilized shear force is

larger than the maximum resisting shear force

Locked Rn ¼ �kndn [ 0 and

Rs ¼ ksds �Rn tan ; þ clc

The normal component of the contact force is compressive, and the mobilized shear force is

less than or equal to the maximum resisting shear force

Rn is the normal component of the contact force; kn is the stiffness of the normal springs; dn is the penetration in normal direction; Rs is the shear

component of the contact force; ks is the stiffness of the shear springs; ds is the relative shear displacement of the contact; ; is the joint friction

angle; c is the cohesion per unit length; and lc is the computed length of the contact

Normal
Spring, 

Shear spring,

4

1 2

3
′1 ′2

4

1 2

3
′1 ′2

(a) (b)

Fig. 2 An edge-to-edge contact

a in state of ‘locked’ b in state

of ‘sliding’
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springs of these two angle-to-edge contacts are conceptu-

ally illustrated in Fig. 2. P1 and P2 on the upper block are

locked on P0
1 and P0

2, respectively, in the shear direction on

edge P3P4. For an angle-to-edge contact, i.e., P1-to-P3P4,

the movement of P1 relative to P0
1 is controlled by a shear

spring along the edge P3P4 according to the Mohr–Cou-

lomb’s law. The mobilized shear force of P1-to-P3P4 is

computed by Rs ¼ ksds. When the Mohr–Coulomb’s law

allows sliding (Rs [Rn tan ; þ clc), the shear spring is

removed from the contact and the shear strength of the

contact is governed by the friction between the contacting

blocks (Rs ¼ Rn tan ;). Once the contact state changes from

‘locked’ to ‘sliding,’ cohesion is completely removed,

while the friction angle is maintained the same.

In this paper, the displacement-dependent Barton–Ban-

dis joint model is used for the shear failure evaluation of

each contact. The Barton–Bandis joint model does not

include cohesion, and its shear strength is characterized by

the wall-roughness parameter JRC (joint roughness coef-

ficient) and wall-strength parameter JCS (joint compressive

strength).

3 Barton–Bandis Joint Model and Its
Implementation in DDA

Based on the experimental shear tests, Barton (1973) pre-

sented a nonlinear shear strength criterion for rock joints.

s ¼ rn tan JRC log10

JCS

rn

� 	
þ ;r

� 	
ð4Þ

where: rn denotes the normal stress acting on the joint; ;r

denotes the residual friction angle, which equals to the base

friction angle ;b in the case of unweathered joint surfaces;

JRC is the joint roughness coefficient; and JCS is the joint

compressive strength.

Barton and Bandis (1982) recommended the use of

mobilized roughness JRCmob in Eq. (4), where the value of

JRC is gradually decreased to account for asperity degra-

dation during shear process. The ratio of JRCmob/JRCpeak is

a function of the ratio of current shear displacement to peak

shear displacement, ds=ds;peak.

The peak shear force of the contact in DDA is controlled

by Eq. (5) which is modified from Eq. (4).

Rs;peak ¼ Rn tan JRCpeak log10

JCS
Rn

lc

 !

þ ;r

 !

ð5Þ

where lc is the computed angle-edge contact length, which

is half of the whole joint length; Rs;peak is the peak shear

force of the angle-edge contact; Rn is the normal force of

the contact; and JRCpeak denotes the peak JRC value before

degradation.

For joint contacts subjected to compressive loading, each

angle-edge contact has two states: ‘locked’ and ‘sliding.’ In

the case of Rs �Rs;peak, i.e., the contact is ‘locked,’ the shear

force of the contact is calculated by the shear spring stiffness

and the relative shear displacement of the contact:

Rs ¼ ksds ð6Þ

The shear spring stiffness of joint contact ks can be

computed by

ks ¼ Rs;peak=ds;peak ð7Þ

where ds;peak refers to the shear displacement required to

reach the peak shear strength Rs;peak of the contact.

When the developed shear force is larger than the peak

shear strength (Rs [Rs;peak), the shear spring is removed

from the contact position and the joint starts to slide. The

shear force of the angle-to-edge contact will be computed

by the Barton–Bandis model in which the displacement-

dependent JRCmob is used.

Rs ¼ Rn tan JRCmob log10

JCS
Rn

lc

 !

þ ;r

 !

ð8Þ

Barton (1982) proposed an equation to represent the

mobilized tangent dilation angle dt during the shear

process.

dt ¼
1

M
JRCmob log10

JCS

rn

� 	
ð9Þ

where M is a damage parameter which equals to 1 and 2

under low and high normal stresses, respectively. When

implementing Eq. (9) into DDA code, rn is replaced by Rn

lc
.

The dilation increment Ddn can be computed by the

shear displacement increment and the tangent dilation

angle:

Ddn ¼ Dds tan dt: ð10Þ

4 Jing et al. (1993)’s Conceptual Model for Cyclic
Loading and Its Implementation in DDA

Jing et al. (1993)’s conceptual model for rock joints under

cyclic shear loading conditions and constant normal stress

is modified and adopted in this study. Figure 3 shows the

idealized shear behaviors of the conceptual model for rock

joints under the first cycle and subsequent cycles. A com-

plete shear cycle is divided into six different stages

including three forward stages and three backward stages:

forward advance stage (path OABC); forward unloading

stage (path CD); forward return stage (path DE); backward

advance stage (path EFGH); backward unloading stage

(path HI); and backward return stage (path IJ).
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1. Forward advance stage (path OABC)

Starting from the original point O, the shear stress

increases linearly to the peak point A when the joint is

sheared away from its original position. As the forward

shear advances, the shear stress decreases to point B and

reaches the residual shear stress at point C. In DDA, the

joint contacts for the segment OA are in the state of

‘locked.’ The slope of OA is the joint shear stiffness ks

which is used together with Eq. (6) to calculate the shear

forces for segment OA. Once reaching the peak point B, the

joint contacts start ‘sliding’ with the shear forces for ABC

being computed by Eq. (8). JRCmob is mobilized down-

wards along the shear displacement.

The prominent peak shear stress shown in the shear

stress versus shear displacement curve for the first shear

cycle is disappeared in subsequent shear cycles where the

joint contacts are maintained in the state of ‘sliding.’ Fig-

ure 3b shows the corresponding dilation path O0A0B0C0

where the rate of dilation is gradually decreased.

2. Forward unloading stage (path CD)

Upon the shear direction reversal at point C, the shear

stress decreases proportionally along the shear displace-

ment, which is represented by the segment CD in Fig. 3a.

In the forward unloading stage, the shear stress decreases to

zero and subsequently increases in the negative direction

until point D. The segment CD has the same slope ks as that

of the segment OA. For the dilation behavior shown in

Fig. 3b, the rock joint contracts with a constant dilation

rate, which is represented by the segment C0D0.
In this stage, the contact state is switched from ‘sliding’

to ‘locked’ in DDA. Shear springs are added in the contact

with the spring distance ds;c being computed by:

Fig. 3 A conceptual model for

rock joints under cyclic loading

and constant normal stress,

modified from Jing et al. (1993).

a Shear stress versus shear

displacement curves; b dilation

versus shear displacement

curves

Displacement control, v

400 

20
0 

100 

40
 

Fig. 4 Schematic sketch of DDA numerical model for cyclic shear

test, in millimeters

Table 2 Parameters of DDA numerical model

Parameters Value

Normal penalty value, kn (N/m) 5e11

Young’s modulus (Pa) 5e9

Poisson’s ratio 0.25

Dynamic control parameter 0

Time-step size (s) 0.001
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ds;c ¼
Rs;c

ks

ð11Þ

where Rs;c is the current shear force at point C which is

inherited from the forward advance stage; ds;c is the cor-

responding spring distance at point C.

3. Forward return stage (path DE):

The rock joint in the forward return stage shows smaller

shear resistances in comparison with that of the forward

advance stage. During this stage, joint is returned to its

original position. At point D, the shear springs are removed

and the joint contacts in DDA are changed to the state of

‘sliding.’ The shear forces for path DE are determined by

Eq. (8). The mobilized dilation angle, represented by

JRCmoblog10
JCS
Rn
lc

� 	
in Eq. (8), becomes negative value in

this stage as the joint recovers and contracts in the reverse

shearing.

For the dilation curves in this stage, the joint contracts

continuously at a steeper slope [the segment D0E0 in

Fig. 3b] than that of the previous unloading path C0D0.

4. Backward advance stage (path EFGH), backward

unloading stage (path HI), and backward return stage

(path IJ)

When sheared in the negative direction from the original

point, the joint will experience three backward stages (i.e.,

backward advance stage, backward unloading stage, and

backward return stage). The joint shear behavior in these

backward stages has similar characteristics as in forward

stages except that the backward advance stage (path

EFGH) does not have the linear shear stress versus shear

Table 3 Parameters used in

DDA simulations of Lee et al.

(2001)

Rock type JCS (MPa) ;r (�) rn (MPa) sp (MPa) ds;peak (mm) JRCpeak Rn (N) ks (N/m) M

Granite 151 34.6 1 1.92 1.25 12.8 1e5 7.68e7 1

Marble 72 38.3 0.5 1.13 0.3 12.9 5e4 1.88e8 1

Fig. 5 Experimental and numerical shear stress versus shear dis-

placement curves for the granite joint. a First shear cycle; b second

shear cycle

Fig. 6 Experimental and numerical dilation versus shear displace-

ment curves for the granite joint. a First shear cycle; b second shear

cycle

1210 S. Ma et al.

123



displacement relationship as the forward advance stage.

The shear forces for the backward unloading stage (path

HI) and backward return stage (path IJ) can be calculated

according to the details given for paths CD and DE,

respectively.

In the DDA modeling, Eq. (10) is used to calculate

the joint dilation in the normal direction for all the

shearing stages. The subsequent shear cycles shown in

Fig. 3 have the similar shear behaviors as the first cycle

except for the absence of the peak shear stress in the

forward advance stages and backward advance stages.

The shear forces for the subsequent cycles can be

computed according to the procedures given for the first

cycle. The asperity degradation during the shearing

process is represented by the relationships of

JRCmob=JRCpeak and ds=ds;peak.

5 Validation of the Joint Model in DDA

A 2D DDA model consisting of two blocks as shown in

Fig. 4 is employed for the numerical cyclic shear tests. The

lower block is fixed in all directions. The normal force is

applied in the middle of the upper block. After that,

directional displacement constraint is applied on the upper

block which is displaced at a constant velocity. The

parameters used in these cyclic shear tests are listed in

Table 2. Shi (1993) recommended that the normal penalty

value kn should be 10–100 times the elastic modulus of

Table 4 Relationships of

JRCmob=JRCpeak and ds=ds;peak

for forward stages of the granite

joint

ds=ds;peak JRCmob=JRCpeak

Forward advance

stage of first cycle

Forward return

stage of first cycle

Forward advance

stage of second cycle

Forward return

stage of second cycle

0 0 -0.4 0 -0.38

1 1 -0.38 0.3 -0.3

2 0.5 -0.3 0.3 -0.3

4 0.3 -0.3 0.3 -0.3

8 0.15 -0.3 0.3 -0.3

20 0.15 -0.3 0.3 -0.3

Table 5 Relationships of

JRCmob=JRCpeak and ds=ds;peak

for backward stages of the

granite joint

ds=ds;peak JRCmob=JRCpeak

Backward advance

stage of first cycle

Backward return

stage of first cycle

Backward advance

stage of second cycle

Backward return

stage of second cycle

-20 0.15 -0.3 0.3 -0.3

-8 0.2 -0.3 0.3 -0.3

-4 0.4 -0.3 0.3 -0.3

-2 0.45 -0.4 0.3 -0.3

-1 0.5 -0.4 0.1 -0.3

Fig. 7 Experimental and numerical shear stress versus shear dis-

placement curves for the marble joint. a First shear cycle; b second

shear cycle
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blocks in order to reach acceptable displacements and

stresses.

Lee et al. (2001) conducted a series of cyclic shear tests

on two types of rock joints (granite and marble joints)

under constant stress. Two tests (granite joint under the

normal stress of 1 MPa and marble joint under the normal

stress of 0.5 MPa) were selected from Lee et al. (2001)’s

study to verify the proposed model. The used parameters in

the DDA simulations are listed in Table 3. JRCpeak value

for peak point A was back-calculated based on the exper-

imental results. The normal force Rn and shear spring

stiffness ks were calculated and are also given in Table 3.

The remaining parameters in Table 3 were obtained based

on Lee et al. (2001)’s experimental tests. The value of M in

Eq. (9) for the two tests was 1 due to the low normal

stresses applied on joints (0.5 and 1 MPa for the two tests,

respectively).

5.1 Validation against Cyclic Shear Behaviors

of Rough Granite Joint

The first two cycles of Lee et al. (2001)’s cyclic shear tests

on rough granite joint subjected to the normal stress of

1 MPa was simulated by the DDA model. The obtained

shear forces of the joint from the DDA simulation were

converted to shear stresses. The shear stress versus shear

displacement curves and the dilation versus shear dis-

placement curves predicted by the DDA model are com-

pared with those of experimental results as shown in

Figs. 5 and 6, respectively. It can be seen that the proposed

DDA model yields good predictions on the shear behaviors

of rock joints for the first two consecutive cycles. The DDA

model successfully reproduces the peak shear stress, the

shear stress variation, dilation and contraction in advance,

and unloading and return stages. The linear shear stress–

shear displacement relationship caused by the shear

direction reversal is also well represented by the DDA

model.

The phenomenon of joint roughness degradation is

governed by the relationships of JRCmob=JRCpeak and

ds=ds;peak, which are given in Tables 4 and 5. Table 4 is for

forward stages and Table 5 is for backward stages. The

relative shear displacement ds for the joint contact is

recorded in the DDA code. The current JRC value of the

joint contact can then be obtained based on the computed

Fig. 8 Experimental and numerical dilation versus shear displace-

ment curves for the marble joint. a First shear cycle; b second shear

cycle

Table 6 Relationships of

JRCmob=JRCpeak and ds=ds;peak

for forward stages of the marble

joint

ds=ds;peak JRCmob=JRCpeak

Forward advance

stage of first cycle

Forward return

stage of first cycle

Forward advance stage

of second cycle

Forward return stage

of second cycle

0 0 0 0.11 0

1 1 -0.1 0.2 -0.1

2 0.8 -0.3 0.25 -0.1

4 0.7 -0.55 0.5 -0.2

8 0.6 -0.45 0.45 -0.35

20 0.35 -0.45 0.35 -0.35

80 0 -0.26 0 -0.25
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ds and the relationship of JRCmob=JRCpeak and ds=ds;peak.

The mobilized dilation angle represented by

JRCmoblog10
JCS
Rn
lc

� 	
is negative in the forward–backward

return stages, which is consistent with the study of Lee

et al. (2001).

5.2 Validation Against Cyclic Shear Behaviors

of Rough Marble Joint

The first two cycles of Lee et al. (2001)’s cyclic shear tests

on rough marble joint subjected to the normal stress of

0.5 MPa was also numerically modeled. Figures 7 and 8

show comparisons of numerical and experimental results for

shear stress versus shear displacement curves and dilation

versus shear displacement curves, respectively. Figure 7

shows that the predicted shear stresses match well with the

measured shear stress of the experimental results for the two

consecutive shear cycles. Despite the discrepancy between

the predicted and measured dilation results as shown in

Fig. 8, the DDA model still reproduces reasonable predic-

tions of dilation behaviors for rough marble joints.

The relationships of JRCmob=JRCpeak and ds=ds;peak for

the two consecutive shear cycles on marble joints are given

in Tables 6 and 7. Table 6 is for forward stages and

Table 7 backward stages. The mobilized dilation angle for

marble joints’ cyclic shear tests is also negative for return

stages.

6 Blocks Sliding Under Horizontal Seismic
Loading

A multiple-block system subjected to horizontal seismic

loading is simulated to demonstrate the application of the

modified DDA model. The sliding plane is inclined at an

extremely small angle of 2�. This situation (the sliding

angle of 2�) was encountered in a landslide triggered by the

Table 7 Relationships of

JRCmob=JRCpeak and ds=ds;peak

for backward stages of the

marble joint

ds=ds;peak JRCmob=JRCpeak

Backward advance

stage of first cycle

Backward return

stage of first cycle

Backward advance

stage of second cycle

Backward return

stage of second cycle

-80 0.25 -0.4 0.3 -0.45

-20 0.35 -0.4 0.4 -0.45

-8 0.5 -0.4 0.4 -0.4

-4 0.55 -0.4 0.3 -0.2

-2 0.3 -0.2 0.1 -0.1

-1 0.2 -0.1 0 -0.1

700

100

70

(a)

(b)

J1 J1 J1 J1

J2 J2 J2 J2 J2

(c)

Fig. 9 Multi-block sliding modeling. a The model configuration

before loading (unit: meter); b the configuration at the end of loading;

c the input horizontal displacement time histories

Table 8 Parameters of DDA numerical model

Parameters Value

Normal penalty value, kn (N/m) 5e11

Shear penalty value, ks (N/m) 3e7

Density (kg/m3) 2000

Poisson’s ratio 0.25

Dynamic control parameter 1

Time-step size (s) 0.005

Table 9 Parameters of joint materials

Joint materials Frictional angle (�) Cohesion (MPa) Tensile strength (MPa) ;r (�) ds;peak (m) JRCpeak JCS (MPa)

J1 20 0 10 NA NA NA NA

J2 Equivalent of 8� 0 0 1 0.164 3.98 80

NA not applicable
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2008 Iwate–Miyagi earthquake (Miyagi et al. 2011; Irie

et al. 2009). The occurrence of the landslide with a very

small sliding angle might be due to the reduction in the

internal friction angle caused by the cyclic loading (Irie

et al. 2009).

The configuration of the multi-block sliding model is

illustrated in Fig. 9a. The parameters of the DDA model are

listed in Table 8. Two joint materials J1 and J2 were used in

the numerical simulation as shown in Fig. 9a. Joints between

the upper blocks and the base block adopted the Barton–

Bandis joint material, J2, while joints between the five upper

blocks used the joint material J1. The parameters of the joint

materials J1 and J2 are given in Table 9. The friction angle of

J2 is equivalent to 8�. The shear resistance of joint J2 was

decreased according to the relationship in Table 10. The

degrading coefficients in the second row of Table 10 were

simply mobilized down with the changes in the shear

direction as shown in the third row of Table 10.

Ning and Zhao (2013) pointed out that applying the

seismic accelerations as constraint displacement time his-

tories to the base could produce the same results as the

theoretical solutions. In the multi-block modeling, a hori-

zontal constraint displacement time history shown in

Fig. 9c was applied to the base block. The relative dis-

placement of the third upper block to the base was mea-

sured during the modeling. The results are shown in

Fig. 10. It can be seen that the upper blocks stayed almost

still in the first 5 s. Afterward, the upper blocks started

moving downward and the displacements increased

rapidly, as the shearing resistance between the upper blocks

and the base was reduced due to the cyclic loadings.

7 Conclusions

In the original DDA model, the Mohr–Coulomb’s model

often leads to an unrealistic prediction for shearing

behaviors of rock joints under monotonic and cyclic shearT
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Fig. 10 The upper block relative sliding displacement to the base
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loadings. This paper makes an attempt to improve the DDA

joint model so as to better capture the cyclic shearing

behavior. Rock joints tend to have smaller shear strength

during the reverse shearing phase than that in the forward

shearing phase, and this phenomena impact on the real

behavior of rock joints when subjected to drilling- and

blasting-induced loads, and thermal and earthquake loads.

The proposed model is able to represent the joint behaviors

in both forward and reverse shearing movement, and the

correct reverse shearing model can avoid overestimating

the stability of slopes.

This paper provides a method to model the shear

behaviors of rock joints under cyclic shear loading in 2D

DDA. Jing et al. (1993)’s conceptual model combined with

Barton–Bandis joint model was implemented into the DDA

code. The shear stress versus the shear displacement curve

for each shear cycle is divided into six different stages and

discussed in detail. The phenomenon of asperity degrada-

tion is described by the relationships of JRCmob=JRCpeak

and ds=ds;peak. Once the shear direction is reversed, the

joint contact is switched to the state of ‘locked’ with shear

springs being added on the contact positions and the shear

forces of the joint contacts are determined by the shear

springs during unloading stages.

The proposed DDA joint model was validated by cyclic

shear tests conducted by Lee et al. (2001). Comparisons

between the DDA simulation and the experimental results

indicate that the DDA joint model is capable of predicting

the varying shear stress and dilation behaviors of rock

joints under cyclic shear loading.

A multiple-block sliding model was carried out by

applying a horizontal seismic loading to the base block.

The interfacial shearing resistance was mobilized down-

wards due to the seismic loading. The upper blocks started

sliding after 5 s of seismic loading, which explains the

possibility of the occurrence of a landslide with a small

sliding angle when subjected to an earthquake.
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