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Abstract To reveal the mechanical response of a multi-

pillar supporting system under external loads, compressive

tests were carried out on single-pillar and double-pillar

specimens. The digital speckle correlation method and

acoustic emission technique were applied to record and

analyse information of the deformation and failure pro-

cesses. Numerical simulations with the software pro-

gramme PFC2D were also conducted. In the compressive

process of the double-pillar system, if both individual pil-

lars have the same mechanical properties, each pillar

deforms similarly and reaches the critical stable state

almost simultaneously by sharing equal loads. If the two

individual pillars have different mechanical properties, the

pillar with higher elastic modulus or lower strength would

be damaged and lose its bearing capacity firstly. The load

would then be transferred to the other pillar under a load

redistribution process. When the pillar with higher strength

is strong enough, the load carried by the pillar system

would increase again. However, the maximum bearing load

of the double-pillar system is smaller than the sum of peak

load of individual pillars. The study also indicates that the

strength, elastic modulus, and load state of pillars all

influence the supporting capacity of the pillar system. In

underground space engineering, the appropriate choice of

pillar dimensions and layout may play a great role in pre-

venting the occurrence of cascading pillar failure.

Keywords Pillar system � Load transfer � Bearing
capacity � System behaviour

List of symbols

DSCM Digital speckle correlation method

PFC2D Two-dimensional particle flow code

AE Acoustic emission

RIO Region of interest

EMR Elastic modulus rate

LCR Load-carrying rate

P The force acting on single-pillar system

a, b, c, d, e The load state of pillar in single-pillar

system

a0, b0, c0, d0, e0 The cumulative AE counts state of pillar

in single-pillar system

aI, cI, eI The load state of pillar I in double-pillar

system

a0I; c
0
I; e

0
I The cumulative AE counts state of pillar I

in double-pillar system

aII, cII, eII The load state of pillar II in double-pillar

system

a0II; c
0
II; e

0
II The cumulative AE counts state of pillar

II in double-pillar system

EI, EII The elastic modulus of pillar I, pillar II,

respectively

LI, LII The load carried by pillar I, pillar II,

respectively

FI?II, FI, FII The limit bearing capacity of double-

pillar system, pillar I and pillar II,

respectively

m The start point of load redistribution

n The endpoint of load redistribution
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u, uI, uII The displacement increment of double-

pillar system, pillar I and pillar II,

respectively

PI?II, PI, PII The forces acting on double-pillar

system, pillar I and pillar II, respectively

f(uI), f(uI) The stiffness coefficient of pillar I, pillar

II, respectively

A, B, C The local extreme load value state of

double-pillar system

1 Introduction

Rock pillars are used, either temporarily or permanently, as

major and important structural elements to support the

overburden in mines and many other underground projects

(Martin and Maybee 2000; Chen et al. 2009). As time

passes, these pillars could become deteriorated under the

direct or indirect influence of the atmosphere, underground

water, blasting vibration, etc. (Bérest et al. 2008; Poulsen

and Shen 2013). When any individual pillar loses its

bearing capacity inadvertently, its load transfers to adjacent

pillars and overloads those pillars successively. This pro-

gressive overloading process leads to a cascading pillar

collapse with a ‘domino’ effect, which happens with little

or no precursor and poses a serious risk to underground

projects (Zipf and Mark 1997).

By now, a great deal of effort has been devoted to the

stability study of a single pillar. Pillar strength was firstly

estimated based on engineering experience (Hustrulid

1976). Some empirical formulas of pillar strength were

then established by analysing the database of failed pillars

and considering various factors (Van-der-Merwe 2003a;

Esterhuizen et al. 2011). Van-der-Merwe (2003a) analysed

the database of failed coal pillars and presented a strength

formula for South African coal mines. Esterhuizen et al.

(2011) developed a pillar strength equation by considering

the potential impact from discontinuities. Meanwhile, Fang

and Harrison (2002) developed a local degradation model

to describe the pillar strength. Van-der-Merwe (2003b)

further developed a method to predict the lifetime of coal

pillars. Mortazavi et al. (2009) investigated the relationship

between pillar geometry and pillar strength. Poulsen et al.

(2014) investigated the strength reduction of coal pillars for

water saturation. Recently, probabilistic (Ghasemi et al.

2014), logistic regression (Wattimena 2014) and artificial

neural network (Musa et al. 2015) methods have been

employed to analyse and predict the pillar stability.

In fact, rock pillars in underground projects are far from

being ‘stand-alone’ systems. The supporting function is

performed through their multi-interaction effect rather than

their individual capacities, which is indicated by the fact

that some pillars fail despite being considered stable with a

safety coefficient[1 (Esterhuizen et al. 2011). Meanwhile,

cascading pillar failure usually occurs when one pillar fails

and the overburden is transferred to the adjacent pillars

(Cording et al. 2015). Thus, the mechanical behaviour of

multi-pillars should be studied. However, there are still few

results about this behaviour. Recently, Chen et al. (1997)

and Kaiser and Tang (1998) provided a numerical double-

rock sample to simulate its progressive failure process.

Wang et al. (2011) carried out further numerical analysis

on a double-rock sample and revealed that factors includ-

ing stiffness, elastic modulus and uniaxial compressive

strength played important roles in controlling the failure

process of pillars. These pioneer works offered good

insight to the failure mechanism of multiple rock pillars.

However, the existing research was mainly conducted with

the numerical method and concentrated on the overall

strength. The load transfer and redistribution between pil-

lars, which triggers the massive collapse of a pillar system,

has not been investigated.

In this study, load transfer and redistribution between

pillars is studied by laboratory compression tests on single-

pillar and double-pillar specimens. The information of

displacement, load and acoustic emission was recorded,

and the load transfer characteristics between pillars were

analysed. Numerical analyses with distinct element code

PFC2D were also carried out to further reveal the failure

mechanism of the multi-pillar system.

2 Laboratory Tests and Results

2.1 Experiment Scheme and Preparation

Single-pillar and double-pillar specimens were prepared

for testing. In the single-pillar tests, two types of specimens

with different bearing capacities were arranged. There are

three specimens in each type, as shown in Table 1. In the

double-pillar tests, two sets of tests were arranged. In the

first set, two individual pillars of the double-pillar speci-

men were chosen from the same type and had similar

mechanical properties, as shown in Table 2. In the second

set, the two pillars were chosen from different types and

had different mechanical properties, as shown in Table 3.

There are also three specimens in each set of tests.

Table 1 Laboratory results of single-pillar specimens under uniaxial

compression

Specimen no. Peak load (kN) Specimen no. Peak load (kN)

A-1 93.25 B-1 141.29

A-2 98.68 B-2 138.35

A-3 91.17 B-3 135.74
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All specimens were made of concrete material, which

has a similar behaviour to rocks. The size of a single-pillar

specimen was 50 9 50 9 100 mm. Each pillar in the

double-pillar specimen had the same size as a single-pillar

specimen. Specimens with different mechanical properties

were made with different mix proportions of concrete. For

the first type of pillar specimen, the mix proportion of

cement:water:sand was 2:1:10. For the second type, the

mix proportion was 3:1:10. The specimens were put in a

standard curing chamber for 28 days before tests.

All tests were conducted on an INSTRON1346 servo-

control testing machine. As shown in Fig. 1, double-pillar

tests were conducted by putting two individual pillars

between the indenters in parallel. To monitor the load of

each pillar, a pressure sensor was set under each pillar. A

displacement-control model was used to give the load. The

failure information of the specimens was observed with the

help of the acoustic emission (AE) equipment of Physical

Acoustics Corporation. Four Nano30 sensors were

employed to detect AE signals. The frequency range of the

sensors was 125 Hz to 750 kHz. A 40 dB pre-amplification

was set, and AE signals whose amplitude exceeds 50 dB

were collected. At the same time, the digital speckle cor-

relation method (DSCM) measurement was conducted to

analyse the deformation characterization. A side of each

pillar specimen was selected to be sprayed with black paint

as underpainting and then speckled with white spots

according to the DSCM method (Guo et al. 2008). The

Table 2 Laboratory results of double-pillar specimens with pillars with similar properties

Test no. Pillar no. Peak load (kN) Pillar no. Peak load (kN) Overall peak load (kN) Sum of peak load

of both pillars (kN)

S-1 I-S-1 137.79 II-S-1 141.14 277.25 278.93

S-2 I-S-2 135.25 II-S-2 137.25 271.04 272.50

S-3 I-S-3 140.71 II- S-3 137.03 275.15 277.74

Table 3 Laboratory results of double-pillar specimens with pillars with different properties

Test no. Pillar no. Peak load (kN) Pillar no. Peak load (kN) Overall peak load (kN) Sum of peak load

of both pillars (kN)

D-1 I-D-1 99.25 II-D-1 135.27 218.75 234.52

D-2 I-D-2 95.04 II-D-2 143.05 209.27 238.09

D-3 I-D-3 90.75 II- D-3 139.31 203.51 230.06
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Fig. 1 Schematic diagram of

test arrangement. ROI-region of

interest. a Single-pillar and

b double-pillar
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charge-coupled device of the plane array camera (Basler

PiA2400-17gm) was used. Resolution of 2000 9 1500

pixels and a 10-Hz acquisition frame rate of photography

were set to catch the deformation image. The size of the

region of interest (ROI) of 46 9 48 mm was selected for

analysis by a post-processor.

2.2 Uniaxial Compressive Tests on Single-Pillar

Specimens

The single-pillar specimens were tested according to the

layout shown in Fig. 1a. Some of the load results are

shown in Table 1. Figure 2 shows typical curves of the

axial load and cumulative AE counts versus time of the

single-pillar specimens. It can be found that the whole

deformation process of the single-pillar specimens could

be divided into three phases. The first phase was the

compaction and elastic deformation stage, which occurred

from the compression start to state a. In this phase, only a

few AE events could be recorded. The second phase was

the plastic deformation stage, which occurred from a to

b and from b to c. The stage from a to b was the stress

stiffening stage, and the stage from b to c was the stress

softening stage. In this phase, the bearing capacity

increased to the peak value and then began to decrease.

The load–time curve deviated from the straight line

gradually, but the cumulative AE events increased slowly.

This result indicated that the internal stress of the pillar

was still not strong enough to trigger the outburst of the

micro-cracks (Martin and Chandler 1994). The third phase

was the crack evolution stage, which occurred from c to

d and from d to e. In this phase, the inner damage of the

pillar developed, which induced the AE counts to increase

rapidly. The load curve then declined quickly, and the AE

counts accelerated rapidly after point d, which indicated

that the ultimate bearing capacity of the pillar decreased

rapidly.

Figure 3 shows some typical strain ex pictures of spec-
imen B-1 from the DSCM measurement. At 890 and

1050 s, the specimen stayed at the first and second phases

of the deformation, respectively. The DSCM pictures show

that the specimen mainly experienced uniform deformation

firstly. At 1150 s, the specimen reached the crack evolution

stage, and an obvious shear fracture band could be

observed, which indicated that the deformation mode of the

specimen changed from the uniform deformation to strain

localization. The shear fracture band was mainly caused by

the inner crack coalescence, which is also defined as fault

nucleation or a fracture process zone (Lockner et al. 1991;

Morgan et al. 2013). Finally, with an abrupt stress drop at

point d in Fig. 2, a macro-slip occurred at 1210 s as shown

in Fig. 3.

Figures 2 and 3 also indicate that there is an equilibrium

between the external load and the bearing capacity of a

pillar. In the deformation process, although the displace-

ment-control model was used by the testing machine dur-

ing compression, a large amount of strain energy still could

be accumulated and stored in the specimen and the indenter

of the machine. Once the pillar was not powerful enough to

tolerate the external load of the testing machine and failed,

the indenter would release the stored strain energy quickly.

This action might cause the crack to expand quickly and

the pillar to lose its bearing capacity suddenly at the crack

evolution stage.

2.3 Compressive Tests of Double-Pillar Specimens

with Same Mechanical Property

The compressive tests of the double-pillar specimens with

the same mechanical properties were conducted according
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to the way as shown in Fig. 1b. Figure 4 shows some

typical test results of specimen S-1, where the axial load of

the overall system and each pillar was demonstrated. The

cumulative AE counts–time curve was also recorded, and

Fig. 5 shows the corresponding DSCM results.

During the compression process of the double-pillar

specimen with the same mechanical properties, the change

tendency of the bearing capacity, the AE evolution and

failure model of each individual pillar were similar to that

of a single-pillar specimen. The pillar experienced a

compaction and elastic deformation stage (from the start to

state aI or aII in Fig. 4), plastic deformation stage (from

state aI or aII to state cI or cII in Fig. 4) and crack evolution

stage (from state cI or cII to state eI or eII in Fig. 4). At the

beginning, few AE events occurred. After point cI, the

cumulative number of AE counts increased rapidly, and the

bearing capacity of pillars declined quickly. Finally, shear

bands formed in both pillars of the specimen, as observed

at the time of 1170 s in Fig. 5.

In the whole compression process, each individual pillar

of the double-pillar specimen seemed to share the load

equally. The overall peak load was almost double that of

any individual pillar, as shown in Table 2. As each indi-

vidual pillar deformed simultaneously, when one pillar lost

its bearing capacity, the other one failed at once. Thus,

abrupt failure of the double-pillar system could be found at

its crack evolution stage.

2.4 Compressive Tests of Double-Pillar Specimens

with Different Mechanical Properties

The compressive tests of double-pillar specimens with

different mechanical properties were also performed

according to the layout shown in Fig. 1b. Figures 6 and 7

show the results of the axial load, cumulative AE counts

and strain ex pictures of the representative specimen D-1.

Some of the load results are shown in Table 3. It can be

seen that, during the beginning stage of loading, the strain

ex of both pillars was almost uniform in all areas at 683 s,

as shown in Fig. 7. Both pillars almost undertook the same

external load until point aI. After point aI, the bearing

capacity of the individual pillar I-D-1 deteriorated gradu-

ally; however, the pillar II-D-1 still remained in the elastic

deformation stage. The AE signal also showed the same

results. For pillar I-D-1, the cumulative AE counts

increased sharply after point a0I, but there were few AE

events in pillar II-D-1 until point c0II. Moreover, Fig. 7

shows that a failure zone occurred in pillar I-D-1 at 995 s,

while the pillar II-D-1 maintained uniform deformation at

this time. Between points cI and cII, when the pillar I-D-1

reached the post-peak stage, the overall bearing force of the

specimen D-1 decreased gradually. Because the pillar II-D-

1 still remained in the plastic deformation stage, the system

did not fail abruptly. After point cII, the pillar II-D-1 also

reached its peak strength, the overall bearing capacity

began to deteriorate rapidly, and an abrupt drop of the load

curve could be monitored. At this time, a shear band

formed in both pillars, and the system finally lost its sup-

porting function.

Figure 6 and Table 3 also show that the overall bearing

capacity of the double-pillar system was different from the

sum of the peak load of individual pillars. For specimens

D-1, D-2 and D-3, the sums of the peak loads of their

individual pillars were 234.52, 238.09 and 230.06 kN,

while the peak bearing loads of the double-pillar system

were 218.75, 209.27 and 203.51 kN, respectively. The

systematic bearing load was smaller than the sum of the

peak loads of individual pillars. This result indicates that

890 s 1050 s

1150 s 1210 s

Fig. 3 Strain ex pictures of specimen B-1 in ROI

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

)
Nk(

dao
L

Time (s)

0

3

6

9

12

15

C
um

ul
at

iv
e 

A
E

 c
ou

nt
s  

(n
/1

04 )

'
Ia

Ia Ic

'
Ic

Ie

'
Ie

'
IIa

IIa

'
IIc

IIc

IIe

'
IIe

Cumulavtive
AE countsI-S-1

Cumulavtive
AE countsII-S-1

PII-S-1

PI-S-1

PS-1

Fig. 4 Load and cumulative AE counts versus time for specimen S-1

Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple… 999

123



there is an overestimation of the overall bearing capacity of

a multiple-pillars support system in the prevailing pillar

design practice without considering the system effect.

The pillar I-D-1 of specimen D-1 and specimen A-1 had

similar material compositions and design strength, so they

should have a similar mechanical behaviour. However,

when pillar I-D-1 was compressed together with pillar II-

D-1, a difference was observed at the crack evolution stage.

The specimen A-1 failed abruptly at the crack evolution

stage in Fig. 2a, while pillar I-D-1 of specimen D-1 dete-

riorated gradually in Fig. 6. This result was also observed

in the AE information. In Fig. 2a, the cumulative number

of AE counts of specimen A-1 increased rapidly between

point c0 and point e0. However, the cumulative AE counts

of pillar I-D-1 increased gradually between points c0I and e0I
in Fig. 6. This result indicates that the mechanical beha-

viour of an individual pillar in a multi-pillar system may be

different from that of a single pillar. And this result can be

explained as follows: When there is only one pillar in a

system, its failure will cause a direct collapse of the whole

system, while in a system with multiple pillars, when one

pillar fails, its overburden spreads to the adjacent pillars. In

Fig. 6, when pillar I-D-1 reached its peak strength and

failed, the load was transferred from pillar I-D-1 to II-D-1

gradually. A gentle decline of bearing capacity other than a

sudden catastrophic failure of the system occurred. Only

when the bearing capacity of pillar II-D-1 deteriorated

greatly, as after point eII in Fig. 6, did overall failure occur.

3 Numerical Analyses

In recent years, the numerical method has shown great

advantages in revealing the inner information of complex

systems and can yield results more easily and quickly. In

bFig. 5 Failure characteristics of specimen S-1. a The strain ex
pictures in ROI and b failure mode
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this study, a discrete element numerical software PFC2D

was used to further investigate the bearing characteristics

of pillar systems. PFC2D software could simulate the

mechanical behaviour of materials by using a dense

packing of non-uniformly sized circular particles bonded

together at their contact points. The mechanical behaviour

of the PFC model is described and controlled by the

movement of each particle and the force and moment

acting at each contact. Newton’s laws of motion provide

the fundamental relation between particle motion and the

resultant forces and moments causing that motion (Itasca

2008). With this code, particles and contacts have been

used instead of elements and meshes. Potyondy and Cun-

dall (2004) proved that PFC2D can simulate the formation,

growth and eventual interaction of micro-cracks success-

fully, which govern the mechanical behaviour of rocks.
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851 s 1116 s

995 s 1156 s

Pillar I-D-1 Pillar II-D-1

Pillar I-D-1 Pillar II-D-1 Pillar I-D-1 Pillar II-D-1
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Fig. 7 Failure characteristics of specimen D-1. a The strain ex pictures in ROI and b failure mode
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3.1 PFC2D Model

The double-pillar model shown in Fig. 8 was established

by PFC2D. The Augmented PFC FishTank, which is a

special language provided by Itasca to help users perform

PFC modelling (Itasca 2008), was utilized to automatically

record the loads and calculate the elastic modulus. Both

pillars were designed to be rectangular with a width of

50 mm and a height of 100 mm. Since the model in the

simulation was two-dimensional, a thickness of 50 mm, the

same as that of the real specimen in laboratory, was

assumed when calculating the load. During the tests, the

pillars were loaded by moving the boundary walls towards

one another at a specified velocity. The stress in each pillar

was measured with measurement circles in it. The load on

each pillar was then calculated by multiplying the mea-

sured stress and the cross-sectional area. The overall

bearing load of the double-pillar system was obtained from

the counterforce of the boundary walls.

3.2 Numerical Test Plan

Firstly, the numerical validation test was carried out to

calibrate the micro-parameters of the numerical models

(Itasca 2008; Li et al. 2014; Zhou et al. 2014). According to

the experimental results of specimen B-1 in Fig. 2b, a

numerical counterpart (pillar 7 in Table 5) of specimen B-1

was found from the validation procedure. Its basic micro-

parameters are listed in Tables 4 and 5 (pillar 7). The other

eight pillar specimens were established with different val-

ues of strength and modulus for simulation, as shown in

Table 5.

The basic pillar specimens were then combined into

different numerical models of double-pillar specimens. In

this work, two series of numerical models were investi-

gated. In the first series, the double-pillar system was

designed with individual pillars of the same strength but

different elastic modulus. One of the pillars was set to have

an elastic modulus of 3 GPa and a maximum bearing

capacity of 150 kN, and the other pillar, in cases 1–5, was

chosen to have the same bearing capacity of 150 kN and

elastic modulus of 3, 4, 5, 6 and 7 GPa, respectively. In the

second series, pillars of the double-pillar specimen were

designed with the same elastic modulus but different

bearing capacities. One of the pillars, in cases 6–10, was

set to have an elastic modulus of 3 GPa and a maximum

bearing capacity of 100 kN, and the other pillar was chosen

to have the same elastic modulus of 3 GPa and bearing

capacities of 100, 125, 150, 200 and 250 kN, respectively.

3.3 Numerical Results

3.3.1 Numerical Results for the First Series

Figure 9 gives the numerical results of specimens from the

first series, where the individual pillars of the specimens

have the same bearing capacity but different elastic mod-

ulus. For case 1, both pillars of the double-pillar specimen

had the same mechanical properties, so they deformed and

deteriorated at the same time as in the laboratory tests.

When one pillar failed, the other pillar failed simultane-

ously. Because there was no load transfer between pillars,

the overall failure was abrupt and violent.

For cases 2–5, pillar I had an elastic modulus of 3 GPa,

and pillar II had elastic modulus of 4, 5, 6 and 7 GPa,

respectively. Figure 9 shows that the two individual pillars

deformed differently and carried different loads during the

deformation. The pillar with the higher elastic modulus

tended to fail firstly. And the overall bearing capacity

increased until the pillar with the higher elastic modulus

reached its peak load. This peak load is denoted by point

m. The system continued to deform, and the overall bearing

capacity decreased gradually. At point n, the pillar with a

higher elastic modulus actually lost its supporting function,

and the whole overburden of the system was completely

transferred to the pillar with a lower elastic modulus.

In order to express the influence of the elastic modulus

of pillars, the elastic modulus rate (EMR) is defined as

follows:

1
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Measurement circles

Wall

Wall
Pillar I Pillar II

Fig. 8 Numerical model of double-pillar system

Table 4 Some basic micro-parameters for numerical models

Parameters Value

Minimum ball radius (Rmin/m) 3.5 9 10-3

Ball size ratio (Rmax/Rmin) 1.5

Ball density (g cm-3) 2630

Ball stiffness ratio (kn/ks) 4

Particle friction coefficient (fc) 0.5
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EMRi ¼
Ei

EI þ EII

� 100%; i ¼ I or II ð1Þ

where EI and EII are the elastic modulus of pillar I and

pillar II, respectively.

At the same time, to quantitatively evaluate the load-

carrying states of the two pillars in the system, the load-

carrying rate (LCR) is defined as follows:

LCRi ¼
Li

LI þ LII
� 100%; i ¼ I or II ð2Þ

where LI and LII are the load carried by pillar I and pillar II,

respectively.

Because a displacement-control model is used in this

study, the values of LCR and EMR are the same before any

of the individual pillars fails. When pillar failure occurs,

the LCR curve instead of the EMR curve is used to eval-

uate the load-carrying states of the pillar in the system.

With the help of the LCR curves, Fig. 9 shows that

before state m, the values of LCRII, the same as those of

EMRII, are 0.5, 0.571, 0.625, 0.666 and 0.7 from cases 1–5,

respectively. This result indicates that, in a double-pillar

system, the higher elastic modulus of a pillar is the larger

load it should bear. At the state m, the load of pillar II

reached the peak value firstly and damage took place in it.

The pillar II then lost its load-carrying capacity gradually.

From the state m, the LCRII started to decline while LCRI

began to increase. This observation indicates that the load

transfer and redistribution process occurred at this stage.

After the state n, the majority of the external load is

transferred to pillar I. Especially, when the elastic modulus

of one pillar is significantly greater than the other one, as

shown in cases 4 and 5 in Fig. 9d, e, the pillar with the

higher elastic modulus might lose its supporting function

totally at this stage with an LCRII value of approximately

0. Meanwhile, pillar I, with a lower elastic modulus, did

not fail at this point and would bear most of the external

load of the system.

By putting overall load–displacement curves of this series

together in Fig. 10, two local maximum load points in the

load–displacement curves of cases 2, 3, 4 and 5 are

observed. The first local maximum value appeared at point

m, where the pillar with a higher elastic modulus reached its

peak load. The second maximum value was reached when

the pillar with a lower elastic modulus reached its peak load.

There is a valley at point n. The first local maximum values

of cases 2, 3, 4 and 5 are approximately 265, 245, 226 and

215 kN, respectively, and the second local maximum values

have almost the same value, 152 kN.

Interestingly, it is found that the maximum bearing

capacity of the double-pillar system of this series always

occurred at the first local maximum load point of m and

could be calculated by the following equation:

FIþII ¼ FII=EMRII
ð3Þ

where FII is peak load of the pillar with the higher elastic

modulus.

3.3.2 Numerical Results for the Second Series

For the second series, individual pillars of the double-pillar

specimens had the same elastic modulus but different

maximum bearing capacities. In cases 6–10, pillar I of the

double-pillar specimen had the bearing capacity of 100 kN,

while pillar II had the bearing capacities of 100, 125, 150,

200 and 250 kN.

Figure 11 gives the curves of the load and load-carrying

rate versus displacement of each pillar during deformation.

For case 6, two individual pillars of the specimen had the

Table 5 Micro-parameters of specimens for different simulation cases

Pillar

number

Designed pillar

parameters

Microscopic parameters of the numerical models

Young’s

modulus

(GPa)

Peak

load

(kN)

Ball–ball contact Young’s

modulus (Ec/GPa)

Young’s modulus of

parallel bond (Ec=GPa)

Parallel bond normal

strength (rc/MPa)

Parallel bond shear

strength (s=MPa)

Pillar 1 3 100 2.84 2.84 37.20 18.60

Pillar 2 3 125 2.81 2.81 46.00 25.50

Pillar 3 3 150 2.81 2.81 57.00 28.50

Pillar 4 3 200 2.81 2.81 74.00 37.00

Pillar 5 3 250 2.80 2.80 91.20 45.60

Pillar 6 4 150 3.76 3.76 54.90 27.45

Pillar 7 5 150 4.72 4.72 55.40 27.70

Pillar 8 6 150 5.60 5.60 55.00 27.50

Pillar 9 7 150 6.55 6.55 55.00 27.50
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same mechanical properties; the bearing characteristics and

failure mechanism of the specimen were similar to those of

case 1. For cases 7–10, because both individual pillars had

the same elastic modulus, they deformed and carried equal

loads at the beginning. At point m, the pillar with lower

bearing capacity failed firstly. After failure, the system

continued to deform and the overall bearing capacity

decreased gradually. For cases 8–10, there are also two

local maximum load points in the load–displacement

curves. The bearing capacity of the double-pillar system

reached a local minimum value at point n. After point n,

pillar II bores almost all overburden of the system. The
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Fig. 9 Load and load-carrying rate versus displacement of pillars for cases 1–5. a Case 1, b case 2, c case 3, d case 4 and e case 5
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stage from state m to state n also can be regarded as a load

redistribution process, during which the load on pillar I was

gradually transferred to pillar II. This observation is also

supported by the change tendency of the LCR curves of

both pillars.

In the first series of numerical tests shown in Figs. 9

and 10, when the load curve of the system passed point n,

the overall load would increase but never surpass the first

local maximum load value at point m. However, for the

second series of tests shown in Fig. 11, when the load

curve of the system passed point n, the overall loads of

specimens in case 9 and case 10 would increase and had

larger values than that of point m.

By putting all load–displacement curves of the double-

pillar specimens of this series together in Fig. 12, two local

maximum load points in load–displacement curves are

apparent when the two individual pillars have different

properties, except in case 6 and case 7. At the first local

maximum load point ofm, all specimens have the same load

value of 200 kN, which is double the peak load value of the

pillar (with a lower peak strength) that failed firstly. When

one pillar fails, the load is transferred to the other pillar. The

bearing capacity of the system would then be determined by

the remaining pillar. If the remaining pillar is strong enough,

the system still can have good supporting performance even

when some of the pillars fail in the system.

4 The Bearing Characteristic of Double-Pillar
System

As shown in Fig. 13, a simple double-pillar system was

compacted by a rigid indenter that was assumed to main-

tain its shape during the whole compressive process. Thus,

when a vertical displacement increment of u acted on the

system, pillar I and pillar II of the system will have vertical

displacement increment values of uI and uII, respectively.

Static equilibrium gives:

u ¼ uI ¼ uII: ð4Þ

Assuming that the forces acting on pillar I and pillar II

are PI and PII, respectively. They can be calculated by the

following equations:

PI ¼ f uIð ÞuI ð5Þ
PII ¼ f uIIð ÞuII ð6Þ

where f(uI) and f(uII) are the stiffness coefficients of pillar I

and pillar II, respectively.

And the bearing load of the double-pillar system can be

estimated by

PIþII ¼ PI þ PII: ð7Þ

As mentioned previously, the individual pillars of the

system may not reach their limit bearing capacities

simultaneously. Thus, the bearing capacity of the double-

pillar system cannot be calculated by adding up the max-

imum peak loads of individual pillars directly.

Assuming that the limit bearing capacities of the double-

pillar system, pillar I and pillar II, are FI?II, FI and FII,

respectively, only when the all mechanical properties of the

individual pillars are almost the same, the bearing capacity

of the system can be estimated by:

FIþII � FI þ FII: ð8Þ

This assumption can be confirmed by the results shown

in Tables 2 and 6. When the mechanical properties of the

two individual pillars of the double-pillar specimens were

almost the same, they reached their limit bearing capacity

and failed simultaneously. The overall bearing capacity of

the system is approximately the sum of the peak loads of

the individual pillars.

However, for the pillar system with individual pillars of

different mechanical properties (elastic modulus or

strength), Eq. (8) cannot be satisfied.

For the series of double-pillar systems with individual

pillars of the same strength but different elastic modulus,

the load–displacement response of the system can be pro-

filed as shown in Fig. 14. As discussed in Sect. 3.3.1, pillar

II with a higher elastic modulus would carry a greater load

during the deformation at the beginning stage. When the

pillar II reached its peak load (FII), the first local maximum

load value of the system occurred. At this time, the pillar I

did not yet reach its limit bearing capacity. The load it

bears can be determined using Eqs. (4), (5), (6) and (7), as

follows:
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Fig. 10 Overall load–displacement curve of specimens with two

pillars of the same strength but different elastic modulus
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PI ¼ FII

f uIð Þ
f uIIð Þ\FI: ð9Þ

Consequently, the overall load of the double-pillar sys-

tem at this time can be estimated by

PIþII ¼ FII þ FII

f uIð Þ
f uIIð Þ : ð10Þ

The load of the system is then redistributed. The load–

displacement curve declines from point A to point B and
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Fig. 11 Load and load-carrying rate versus displacement of pillars for cases 6–10. a Case 6, b case 7, c case 8, d case 9 and e case 10
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then increases to point C. At point C, pillar I reaches its

limit bearing capacity. At this time, the overall load of the

double-pillar system can be expressed by

PIþII ¼ FI: ð11Þ

Because the two individual pillars have the same peak

strength, the overall load of the double-pillar system at

point C is lower than that at point A. Thus, the first local

maximum load value, as calculated by formula (10), is the

peak load of the double-pillar system. That is,

FIþII ¼ PIþII ¼ FII þ FII

f uIð Þ
f uIIð Þ : ð12Þ

It can be found that the maximum bearing load of the

double-pillar system, FI?II, is smaller than the sum of the

values of FI and FII.

Furthermore, as shown in Fig. 9b–d, when the pillar I of

the system reached its peak load, the displacements of

pillar II were approximately 1.41, 1.17, 0.942 and

0.813 mm. The local maximum load values of the double-

pillar system were approximately 265, 245, 226 and

215 kN, respectively. These data indicate that as the elastic

modulus of pillar II increases, the time the pillar taken to

fail and the load the double-pillar system withstanding both

decrease.

Analogously, for the series of a double-pillar system

with individual pillars of the same elastic modulus but

different strengths, the load–displacement response of the

system can be profiled as shown in Fig. 15. As discussed in

Sect. 3.3.2, when the strength of pillar II is higher than that

of pillar I, during the initial loading stage, the load of the

double-pillar system is equally shared by both pillars due to

the even deformation. With increasing external load, the

pillar I reaches its limit bearing capacity, and the first local

maximum load value of the system appears. At this time,

the overall load of the double-pillar system can be

expressed by:

PIþII ¼ 2� FI: ð13Þ

Then there is a load redistribution stage, and the load–

displacement curve decreases from point A to point B.

After the load adjustment, the overburden of the system is

carried by the pillar II, and there is then an increase to point

C for the load–displacement curve. Of course, if the peak
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Fig. 12 Overall load–displacement curve of specimens with two

pillars with the same elastic modulus but different strengths

Pillar I
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Fig. 13 Schematic of double-pillar system with certain displacement

Table 6 Bearing capacity of double-pillar system and individual pillars

Simulation

no.

Peak load of

Pillar I (kN)

Peak load of

Pillar II (kN)

Peak load of double-pillar

system (kN)

Sum of peak load of

both pillars (kN)

With same mechanical

parameters

Case 1 150 150 300 300

Case 6 100 100 200 200

With different

mechanical parameters

Case 2 150 150 265 300

Case 3 150 150 245 300

Case 4 150 150 226 300

Case 5 150 150 215 300

Case 7 100 125 201 225

Case 8 100 150 201 250

Case 9 100 200 206 300

Case 10 100 250 254 350
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load of pillar II is far less than 2FI and loses its supporting

function in the load redistribution process, the system tends

to fail directly, as shown in Fig. 11b. Consequently, only

one local maximum load value exists, and it is smaller than

the sum of the values of FI and FII. However, if pillar II is

strong enough and has a peak load greater than 2FI, the

load–displacement curve of the system tends to reach a

new local maximum load value at point C, as shown in

Fig. 11d, e. The overall load of the double-pillar system at

this point is

PIþII ¼ FII: ð14Þ

The second local maximum load value of the pillar

system at point C can even exceed the first local maximum

load value at point A. Of course, because the value of FII is

smaller than the sum of FI and FII, the maximum bearing

load of the double-pillar system, FI?II, is still smaller than

the sum of the values of FI and FII. That is, FIþII\FI þ FII.

Based on the above analyses, the peak load of the

double-pillar system with individual pillars of the same

elastic modulus but different strengths can be expressed as:

FIþII ¼
2FI

FII

�
FII � 2FI

FII [ 2FI
: ð15Þ

5 Conclusions

In this study, the bearing and failure characteristics of

single-pillar and double-pillar specimens were investigated

with laboratory tests and numerical simulation. The fol-

lowing conclusions can be drawn:

1. When the overburden is applied to a single-pillar

system, plastic yield and micro-crack evolution will

cause the pillar to lose its bearing capacity. The pillar

usually fails in an unstable, violent manner. However,

when there are two or more pillars with different

properties in the supporting system, if one pillar fails,

the load it bears can be transferred to the adjacent

pillars, and the failure process can occur in a stable,

nonviolent manner. As a result, multiple pillars can

show system behaviour while playing their supporting

functions in underground projects.

2. In the compressive process of a double-pillar system,

if two individual pillars have the same mechanical

properties, they will bear equal loads and deform

similarly. However, once any individual pillar fails,

the system will experience unstable failure. When

the two individual pillars have different mechanical
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Fig. 14 Load–displacement of
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pillars of the same strength but

different elastic modulus.
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properties, the pillar with larger elastic modulus or

lower peak strength will fail earlier. The system will

then fail in a relatively gentle manner. Usually, for a

double-pillar supporting system, there are two local

maximum load points in the load–displacement

curves. When the first pillar fails, the first local

maximum value appears. The load transfer and

redistribution then occur. If there is a very strong

pillar in the system, the second local maximum

value may even exceed the first local maximum

load.

3. For a pillar system, the overburden is shared by all

pillars, but it is not necessary that the bearing capacity

of the system equals the sum of the peak strength

values of all individual pillars. Only when all individ-

ual pillars of a system have identical properties, the

bearing capacity of the system is approximately equal

to the sum of the peak load of all individual pillars.

When the individual pillars of a system have different

properties, the bearing capacity of the system is found

to be less than the sum of the peak loads of the

individual pillars.

4. For a pillar system, the strength, elastic modulus and

load state of pillars all have an influence on the

supporting effect. When designing pillars to bear the

overburden in underground engineering, not only the

pillar strength but also the elastic modulus should be

considered to avoid the occurrence of large-scale

collapse. The load state of pillars should also be paid

great attention. When some individual pillars or a

small group of pillars fail, the load they bear will be

transferred to the adjacent pillars. When all pillars are

designed with same size and strength, a violent

cascading failure will occur. However, if the pillars

are designed with different geometry or material

conditions, the failure process of the system will

become gentle. Especially, according to Fig. 15,

because barrier pillars of a mining panel usually have

greater strength than others, they may increase the

overall supporting performance of the system even

when a pillar fails. Thus, the appropriate layout of

barrier pillars is effective in preventing the under-

ground space from sudden large-scale disaster and

domino-type collapse.
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