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Abstract Closed-form solutions for the stresses and defor-

mations induced in the ground and tunnel liner are provided for

a deep tunnel in a transversely anisotropic elastic rock, with

anisotropic permeability, when subjected to groundwater

seepage. Complex variable theory and conformal mapping are

used to obtain the solutions; additional complex functions,

necessary to prevent multiple solutions of the displacements,

are included.Theanalytical solutions are verifiedbycomparing

their results from those of a finite element method. Simplified

formulations are presented for tunnels with a perfectly flexible

and completely incompressible liner.A spreadsheet is included

that canbeused to obtain stresses anddisplacements of the liner

due to groundwater flow and far-field geostatic stresses.

Keywords Deep tunnel � Circular liner � Transversely
anisotropic rock � Groundwater flow � Complex variable

List of symbols

As, Is Cross section and moment of inertia of liner

Ex, Ey Young’s modulus of rock in x- and y-axis

Es, ms Young’s modulus and Poisson’s ratio of the

liner

Gxy Shear modulus of rock

R Distance to far-field boundary

kx, ky Permeability of rock in x- and y-axis

r, h Polar coordinates

ro Radius of the tunnel

t Liner thickness

Ts, Ms Axial force and moment of liner

Ur, Uh Displacement of the rock in polar

coordinates

Ur
s, Uh

s Displacement of the liner in polar

coordinates

U Pore pressures

uff Pore pressure at far-field

uo Pore pressure at tunnel wall

x, y Cartesian coordinates of axes of elastic

symmetry

z Complex number, zk = x ? lky, k = 1, 2

ax, ay Biot’s constants in x- and y-axis

exx, eyy, cxy Axial and shear strains in x- and y-axis

fk Complex number that depends on zk through

conformal mapping

/(zk), /0(zk) Stress function and its derivative

l1, l2 Roots of compatibility equation

l3 Root of permeability equation

mxy, mxz, myz Poisson’s ratios of rock

rv, rh, svh Normal and shear stresses at the far-field

along axes of elastic symmetry

rx, ry, sxy Total normal and shear stresses in Cartesian

coordinate system

rr, rh, s Total normal radial, tangential, shear

stresses in polar coordinate system

rr
s, rh

s , ss Stresses of the liner in polar coordinates

1 Introduction

The presence of groundwater affects the response of the

ground during construction, as well as the forces acting on

the liner. It has been shown that the tunnel advance rate
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changes the seepage forces ahead of the face of the tunnel,

thus impacting face stability (Lee and Nam 2001, 2004)

and shield loading (Ramoni and Anagnostou 2011). In

addition, the tunnel support has to withstand not only the

forces arising from the surrounding ground, but also those

from the water (Bobet 2003; Lee et al. 2006). Clearly,

ground and liner permeability are two driving factors

determining the seepage regime around the tunnel. A per-

fectly impermeable liner preserves existing groundwater

conditions, while a permeable liner induces seepage toward

the excavation. The two conditions result in very different

stresses in the ground (Bobet 2001; Nam and Bobet

2006, 2007), which are associated with different ground

deformations (Bobet 2001, 2007).

The interaction between tunnel construction, ground and

tunnel support is complex and may require sophisticated

numerical methods that capture the inherent three-dimen-

sional nature of the problem, as well as the ground and

support response under complex loading (Bobet and Einstein

2008; Ibrahim et al. 2015; Pachoud and Schleiss 2015).

Analytical formulations, however, while limited due to the

restrictions imposed by the assumptions needed to reach a

solution, have a number of advantages over numerical

methods such as (Bobet 2010): (1) they provide insight into

the problem, (2) are very useful to identify the most

important variables for a given problem, (3) contribute to the

understanding of the excavation–rock liner interaction

problem, and (4) can be used to verify and calibrate complex

numerical models. A number of analytical solutions have

been obtained that account for the interplay that exists

between ground and support (Einstein and Schwartz 1979;

Carranza-Torres and Fairhurst 2000; Bobet 2010) and

between ground, water and support (Bobet 2001, 2010; Nam

and Bobet 2010). These solutions assume that the ground is

isotropic. It is also interesting to explore how the ground and

the support stresses and deformations are affected when the

tunnel is excavated in a layered material (transversely ani-

sotropic ground), with or without the presence of water

(Bobet 2011, 2016). Closed-form solutions were obtained

for the ground and the liner when the ground is dry or when

there is no drainage at the ground–liner interface.

The paper expands the analysis presented by Bobet

(2011, 2016) and presents an analytical solution for the

stresses and deformations induced in the ground and sup-

port due to drainage at the ground–liner interface; that is,

when seepage forces exist in the ground; see Fig. 1a for

problem definition. The following assumptions are made:

(1) The tunnel is deep and so far-field stresses, uff, can be

assumed as uniform and the magnitude of the vertical stress

can be taken as the unit weight of the rock times the depth

of the center of the tunnel; (2) the cross section of the

tunnel is circular; (3) the rock is porous and elastic; (4) the

rock has transverse anisotropy; (5) the principal axes of

elastic anisotropy, x and y in Fig. 1, coincide with the

principal axes of permeability; (6) the liner is elastic and

has a small thickness compared to the radius of the tunnel;

(7) plane strain conditions apply along the axis of the

tunnel.

2 Theoretical Framework

Figure 1a shows the problem to be solved, where the axes

of elastic symmetry, x and y, are inclined at and angle b
with respect to the horizontal and vertical directions. For

convenience, the problem is rotated such that the axes

x and y are horizontal and vertical, respectively; see

Fig. 1b. This is consistent with the approach taken by

Bobet (2011, 2016) for dry ground. Note that the pore

pressures remain unchanged with the rotation.

The solution must satisfy the following conditions:

equilibrium, constitutive model, strain compatibility, flow

through the porous medium and boundary conditions.

Equilibrium, in two dimensions, is expressed as:

orxx
ox

þ osxy
oy

¼ 0

oryy
oy

þ osxy
ox

¼ 0

ð1Þ

where rxx, ryy, sxy are the total stresses along the x- and y-

axis and the shear stresses, respectively, and x and y are the

Cartesian coordinates of the axes of elastic symmetry. The

axis z is taken along the axis of the tunnel and is also an

axis of elastic symmetry.

The constitutive model is given by the equations of

poro-elasticity, which in plane strain are given by (e.g.,

Detournay and Cheng 1993; Cheng 1998; Wang 2000):

exx ¼ a1rxx � a2ryy þ b1u

eyy ¼ �a2rxx þ a3ryy þ b2u

cxy ¼
sxy
Gxy

a1 ¼
1� m2xz
Ex

a2 ¼
ð1þ mxzÞ myx

Ey

a3 ¼ 1� Ex

Ey

m2yx

� �
1

Ey

b1 ¼ a1ax � a2ay
b2 ¼ �a2ax þ a3ay

ð2Þ

where exx, eyy and cxy are the strains in the x and y direc-

tions, Ex and Ey are the Young’s modulus in the x and

y directions, mxz and myx are the Poisson’s ratios in the xz

and yx directions, respectively (mxy = myx Ex/Ey because of
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the symmetry of the strain tensor), Gxy is the shear mod-

ulus, ax and ay are the Biot’s constants in the x and y di-

rections (Biot 1941, 1956), and u is the pore pressure (for

incompressible fluid, compressible solid matrix and iso-

tropic properties, ax = ay = 1). Note also that the elastic

properties in the z and x directions are the same.

Pore pressures, for steady-state conditions, must obey

the following field equation:

kx
o2u

ox2
þ ky

o2u

oy2
¼ 0 ð3Þ

where kx and ky are the permeabilities in the x and y axes,

respectively.

The equilibrium equations can be satisfied if a stress

function F(x, y) is found such that (Lekhnitskii 1963):

rx ¼
o2F

oy2

ry ¼
o2F

ox2

sxy ¼ � o2F

oxoy

ð4Þ

The compatibility equation can be written, in terms of the

function F(x, y), as:

a1
o4F

oy4
þ a3

o4F

ox4
þ 1

Gxy

� 2a2

� �
o4F

ox2oy2

¼ �b1
o2u

oy2
� b2

o2u

ox2
ð5Þ

Lekhnitskii (1963) introduced the complex variable

zk = x ? lky, where lk is a complex number. Expressing

(5) as a function of the complex variable zk, one obtains:

a1l
4
k þ

1

Gxy

� 2a2

� �
l2k þ a3

� �
o4 F

oz4
¼ �b1

o2 u

oy2
� b2

o2 u

ox2

ð6Þ

Defining /(zk) = F0(zk) = qF/qzk, the stresses are:

rxx ¼ 2Re l21/
0
1ðz1Þ þ l22/

0
2ðz2Þ

� �
þ o2Fo

oy2

ryy ¼ 2Re /0
1ðz1Þ þ /0

2ðz2Þ
� �

þ o2Fo

ox2

sxy ¼ �2Re l1/
0
1ðz1Þ þ l2/

0
2ðz2Þ

� �
� o2Fo

oxoy

ð7Þ

where Fo is a particular solution of (6) and l1 and l2 are

complex numbers that are the roots of the equation:

a1l
4
k þ

1

Gxy

� 2a2

� �
l2k þ a3 ¼ 0 ð8Þ

Displacements and stresses of the liner, in polar coordi-

nates, are related by (Flügge 1966):

d2Us
h

dh2
þ dUs

r

dh
¼�

1� m2s
� 	
EsAs

r2os
s

dUs
h

dh
þUs

r þ
Is

r2oAs

d4Us
r

dh4
þ 2

d2Us
r

dh2
þUs

r

� �
¼

1� m2s
� 	
EsAs

r2or
s
r

ð9Þ

where Ur
s and Uh

s are the radial and tangential displace-

ments of the liner, rr
s and ss are the radial and shear stresses

at the liner–ground contact, ro is the tunnel radius, Es and ms
are the Young’s modulus and Poisson’s ratio of the liner, As

and Is denote the area and moment of inertial of the liner

(i.e., As = t and Is = 1/12 t3, where t is the thickness of the

liner; note that it is assumed that t � ro), and h is the

tangential coordinate (see Fig. 1b).

The thrust load Ts and moment distribution Ms in the

liner are:

ro
dTs

dh
� dMs

dh
¼ � r2os

s

ro T
s þ d2Ms

dh2
¼ r2or

s
r

ð10Þ

ro

y x

u ff

β
y

x

ro

u o

u ff

u ff

u o

u ff

r

θ

(a) (b)Fig. 1 Deep tunnel in

transversely anisotropic rock

with flow, a problem definition,

b problem definition after

rotation
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First, the problem of a deep opening subjected only to

seepage forces is solved. The solution is then used to find

the forces and deformations imposed on the tunnel liner

due to the groundwater flow.

3 Unsupported Opening

The problem to be solved is shown in Fig. 2. It depicts a

circular opening, at depth, with far-field pore pressure uff
and internal pressures uo. The problem, Fig. 2a, is

decomposed into two: the tunnel with internal and far-field

pore pressures uff, Fig. 2b; and the tunnel with internal

pressure uo - uff, Fig. 2c. The solution of the first problem

is trivial, with the entire medium subjected to uniform pore

pressures uff. The following provides the solution for the

second problem.

The pore pressure distribution in the ground due to the

groundwater flow established in the second problem has

been provided by Bobet and Yu (2015). For a circular

opening, it is given by the following expression:

u ¼ � uo � uff

lnR
Re ln

13
R

h i
ð11Þ

where R denotes the location where far-field pore pressures

are restored and f3 is a complex variable defined as

follows:

z3 ¼ xþ l3y ¼
1

2
ro 1� il3ð Þ13 þ

1

2
ro 1þ il3ð Þ 1

13

l3 ¼ i

ffiffiffiffi
kx

ky

s ð12Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
. The flow Q into the opening can be

obtained from (11):

Q ¼ �2p
uo � uff

cw lnR

ffiffiffiffiffiffiffiffi
kxky

p
ð13Þ

The solution of the compatibility Eq. (6) can be

decomposed into a general solution and a particular

solution. The particular solution is discussed first and is

given by:

F00
o ¼ d2F

dz23
¼ uo � uff

lnR
Re N ln

13
R

h i

N ¼ l23b1 þ b2

a1l43 þ 1
Gxy

� 2a2
� �

l23 þ a3

ð14Þ

Note that N given (12) is a real number. The stresses

associated with the particular solution induce displace-

ments that are not unique because the logarithm function

in (14) yields different results when approaching the x-

axis from the positive y-axis or from the negative y-axis.

Hence, additional expressions are needed to remove the

multiple solutions. To accomplish this, the medium is

divided into two half spaces (Atkinson and Clements

1977; Clements 1973; Aköz and Tauchert 1972; Bobet

and Yu 2015): one for y C 0 and the other for y B 0, and

then compatibility of stresses and displacements at the

common boundary y = 0 is imposed. We try the fol-

lowing stress functions:

/
0

1 ¼
1

2

uo � uff

lnR
A1 ln

11
R

/
0

2 ¼
1

2

uo � uff

lnR
A2 ln

12
R

ð15Þ

where A1 and A2 are complex constants and

zk ¼ xþ lky ¼
1

2
ro 1� ilkð Þ1k þ

1

2
ro 1þ ilkð Þ 1

1k
k ¼ 1; 2

ð16Þ

and lk are the complex roots of Eq. (8). Stresses and dis-

placements for the upper half space are:

= +

uff

uo

uff

u ff u -uo ff

y

x

(a) (b) (c)

Fig. 2 Deep unsupported tunnel, a tunnel with far-field flow, b no flow, c tunnel with flow
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rþxx ¼
uo � uff

lnR
Re Aþ

1 l
2
1 ln

11
R
þ Aþ

2 l
2
2 ln

12
R
þ Nl23 ln

13
R

h i

rþyy ¼
uo � uff

lnR
Re Aþ

1 ln
11
R
þ Aþ

2 ln
12
R
þ N ln

13
R

h i

sþxy ¼ � uo � uff

lnR
Re Aþ

1 l1 ln
11
R
þ Aþ

2 l2 ln
12
R
þ Nl3 ln

13
R

h i

Uþ
x ¼ � uo � uff

lnR
Re

a1l
2
1 � a2

� 	
Aþ
1 ro 1� il1ð Þ11�z1 1þ ln

11
R

� �h i

þ a1l
2
2 � a2

� 	
Aþ
2 ro 1� il2ð Þ12 � z2 1þ ln

12
R

� �h i

þ a1l
2
3N � a2N � b1

� 	
ro 1� il3ð Þ13 � z3 1þ ln

13
R

� �h i

2
666664

3
777775

Uþ
y ¼ uo � uff

lnR
Re

a2l1 �
1

l1
a3

� �
Aþ
1 ro 1� il1ð Þ11 � z1 1þ ln

11
R

� �h i

þ a2l2 �
1

l2
a3

� �
Aþ
2 ro 1� il2ð Þ12 � z2 1þ ln

12
R

� �h i

þ a2l3N � 1

l3
a3N þ 1

l3
b2

� �
ro 1� il3ð Þ13 � z3 1þ ln

13
R

� �h i

2
666666664

3
777777775

ð17Þ

and for the lower half,

r�xx ¼�uo� uff

lnR
Re

A�
1 l

2
1 ln �11

R

� �
þA�

2 l
2
2 ln �12

R

� �
�Nl23 ln �13

R

� �h i

r�yy ¼�uo� uff

lnR
Re

A�
1 ln �11

R

� �
þA�

2 ln �12
R

� �
�N ln �13

R

� �h i

s�xy ¼
uo� uff

lnR
Re

A�
1 l1 ln �11

R

� �
þA�

2 l2 ln �12
R

� �
�Nl3 ln �13

R

� �h i

U�
x ¼ uo� uff

lnR
Re

a1l
2
1� a2

� 	
A�
1 ro 1� il1ð Þ11� z1 1þ ln �11

R

� �� �h i

þ a1l
2
2� a2

� 	
A�
2 ro 1� il2ð Þ12� z2 1þ ln �12

R

� �� �h i

� a1l
2
3N� a2N�b1

� 	
ro 1� il3ð Þ13� z3 1þ ln �13

R

� �� �h i

2
6666664

3
7777775

U�
y ¼�uo� uff

lnR
Re

a2l1�
1

l1
a3

� �
A�
1 ro 1� il1ð Þ11� z1 1þ ln �11

R

� �� �h i

þ a2l2�
1

l2
a3

� �
A�
2 ro 1� il2ð Þ12� z2 1þ ln �12

R

� �� �h i

� a2l3N� 1

l3
a3Nþ 1

l3
b2

� �
ro 1� il3ð Þ13� z3 1þ ln �13

R

� �� �h i

2
6666666664

3
7777777775

ð18Þ

Note that the new stress functions satisfy the far-field

boundary condition of no stresses only when R ? ?; that

is, when the far-field boundary is very distant from the

tunnel. The constants A1
?, A2

?, A1
- and A2

- are found

imposing compatibility of displacements and stresses at the

common boundary, i.e., at y = 0. Thus,

rþyy





y¼0

¼ r�yy





y¼0

sþxy





y¼0

¼ s�xy





y¼0

Uþ
x




y¼0

¼ U�
x




y¼0

Uþ
y





y¼0

¼ U�
y





y¼0

ð19Þ

The constants are obtained from the following system of

four equations:

A12þA22 ¼ 0

l12A11þl11A12þl22A21þl21A22 ¼�l32N

a1 l211�l212
� 	

�a2
� �

A12þ2l11l12A11

þ a1 l221�l222
� 	

�a2
� �

A22þ2l21l22A21

¼ 0

a2þ
a3

l211þl212

� �
l12A11þ a2�

a3
l211þl212

� �
l11A12

þ a2þ
a3

l221þl222

� �
l22A21

þ a2�
a3

l221þl222

� �
l21A22 ¼� 1

l32
a2l

2
32Nþa3N�b2

� 	

Aþ
1 ¼�A�

1 ¼A1 Aþ
2 ¼�A�

2 ¼A2

ð20Þ

In (20), the following notation is used: Xi = Xi1 ? iXi2,

where Xi1 and Xi2 are real numbers. Additional stress

functions are needed to satisfy the boundary conditions at

the perimeter of the tunnel, i.e., to make the radial stresses

equal to uo - uff. They are:

/1 z1ð Þ ¼ 1

l1 � l2

1

2
uo � uff
� 	

ro

� iRe l21A1 þ l22A2 þ l23N � 1
� 	�

�l2Re A1 þ A2 þ N � 1ð Þ� 1
11

/2ðz2Þ ¼ � 1

l1 � l2

1

2
uo � uff
� 	

ro

� iRe l21A1 þ l22A2 þ l23N � 1
� 	�

�l1Re A1 þ A2 þ N � 1ð Þ� 1
12

zk ¼ xþ lky ¼
1

2
ro 1� ilkð Þ1k þ

1

2
ro 1þ ilkð Þ1�1

k

ð21Þ

The complete solution is found using (17) and (21). For the

upper half space, stresses and displacements are:
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rxx¼
uo�uff

lnR
Re A1l

2
1 ln

11
R
þA2l

2
2 ln

12
R
þNl23 ln

13
R

h i

þ2Re l21/
0
1 z1ð Þþl22/

0

1 z2ð Þ
h i

ryy¼
uo�uff

lnR
Re A1 ln

11
R
þA2 ln

12
R
þN ln

13
R

h i

þ2Re /
0

1 z1ð Þþ/
0

1 z2ð Þ
h i

sxy¼�uo�uff

lnR
Re A1l1 ln

11
R
þA2l2 ln

12
R
þNl3 ln

13
R

h i

�2Re l1/
0

1 z1ð Þþl2/
0

1 z2ð Þ
h i

Ux¼�uo�uff

lnR
Re

a1l
2
1�a2

� 	
A1 ro 1� il1ð Þ11�z1 1þ ln

11
R

� �h i

þ a1l
2
2�a2

� 	
A2 ro 1� il2ð Þ12�z2 1þ ln

12
R

� �h i

þ a1l
2
3N�a2N�b1

� 	
ro 1� il3ð Þ13�z3 1þ ln

13
R

� �h i

2
666664

3
777775

þ2Re a1l
2
1�a2

� 	
/1 z1ð Þþ a1l

2
2�a2

� 	
/2 z2ð Þ

� �
�p
2

uo�uff

lnR
Re i a1 l31A1þl32A2þl33N

� 	
�l3b1

� �� �
y

Uy¼
uo�uff

lnR
Re

a2l1�
1

l1
a3

� �
A1 ro 1� il1ð Þ11�z1 1þ ln

11
R

� �h i

þ a2l2�
1

l2
a3

� �
A2 ro 1� il2ð Þ12�z2 1þ ln

12
R

� �h i

þ a2l3N� 1

l3
a3Nþ 1

l3
b2

� �
ro 1� il3ð Þ13�z3 1þ ln

13
R

� �h i

2
666666664

3
777777775

�2Re a2l1�
1

l1
a3

� �
/1 z1ð Þþ a2l2�

1

l2
a3

� �
/2 z2ð Þ

� �

ð22Þ

where /1(z1) and /2(z2) are given in (21) and /0
1(z1) and

/2
0(z2) are the derivatives. The last term of the Ux dis-

placements satisfies the boundary condition of zero hori-

zontal displacements at x = 0. As mentioned, the solution

is correct when the far-field boundary is located far from

the tunnel, i.e., when R ? ?. In other words, the solution

provides accurate results in the vicinity of the opening, i.e.,

when r � R. It is interesting to find the displacements at

the perimeter of the opening, i.e., at r = ro (note that at

r = ro, fk = cos h ? isin h, k = 1, 2, 3). The algebra is

tedious, but there are no difficulties in finding the following

expressions for the radial and tangential displacements:

Ur ¼ � 1

2
uo � uffð Þro R1 þ R2 cos 2hð Þ

Uh ¼
1

2
uo � uff
� 	

roR2 sin 2h

R1 ¼ 1þ l1l2ð Þ l3 � l1ð Þ l3 � l2ð Þa1N þ ia1 l1 þ l2ð Þ
� 1� l23N � l1l2 1� Nð Þ
� �

� ia1 l1 þ l2ð ÞRe l1 � l2ð Þ l1A1 � l2A2ð Þ½ �
� 2l1l2a1 þ 2a2 þ b1 þ b2ð Þ

R2 ¼ a1N 1� l1l2 � i l1 þ l2ð Þ½ �Re l3 � l1ð Þ l3 � l2ð Þ½ �
þ ia1 l1 þ l2ð Þ 1þ l1l2ð Þ þ b2 � b1

ð23Þ

Note that R1 and R2 are real numbers.

The accuracy of the solution is compared with the

results from the finite element method program ABAQUS

(ABAQUS 2015). The following input properties are used:

deep circular tunnel, with radius ro = 2 m, ground prop-

erties Ex = 7800, Ey = 2400 MPa, myx = 0.02, mxz = 0.22,

mzy = 0.07, Gxy = 830 MPa (from the bedded sedimentary

Waichecheng series, after Tonon and Amadei 2002), and

permeability kx/ky = 5. Figure 3 shows a sketch of the

discretization used. Eight-node isoparametric elements

with pore pressure at the corner nodes are used between the

tunnel perimeter and the external boundary, while infinite

elements are placed at the external boundary. The use of

infinite elements and the shape of the external boundary are

adopted to approximate the assumptions made for the

derivation of the analytical solution, as the results are

sensitive to the location and geometry of the far-field

boundary. Figure 4 provides a comparison between the

results obtained from the analytical solution and ABAQUS,

in terms of the normalized tangential stresses and radial

and tangential displacements at the perimeter of the tunnel.

As one can see, the differences between the two results are

small.

4 Supported Tunnel

Figure 5a shows a deep tunnel subjected to far-field

stresses, including far-field pore pressure uff and pore

pressure uo at the interface between the liner and the

ground. Note that for convenience, the horizontal or x-axis

is taken along the direction of one of the axes of elastic

symmetry. The problem is decomposed into two: Problem

I, Fig. 5b, has the far-field stresses and the pore pressures at

the ground–liner interface equal to uff, the far-field pore

pressures; and Problem II, with the same geometry as

Problem I, but with zero pore pressures in the far-field and

uo - uff pore pressures at the ground–liner interface,

Fig. 5c. Clearly, the sum of the solutions of Problems I and

II provides the solution of the complete problem. Problem I

is that of a deep tunnel with no drainage and has been

solved by Bobet (2011, 2016). What follows is the solution

of Problem II that provides any additional stresses and

displacements that are induced in the liner and ground

because of the seepage forces in the medium due to the

flow gradient established.

Problem II can be further decomposed into Problem IIa:

an unsupported opening with flow, Fig. 5d; Problem IIb

that considers the interaction between the ground and the

liner, Fig. 5e; and Problem IIc that deals with the stresses

and deformations of the liner, Fig. 5f. The unknown

stresses of Problem IIb, Drr and Ds, are found by imposing
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solution and FEM ABAQUS. ro = 2 m, Ex = 7800, Ey = 2400 MPa,

myx = 0.02, mxz = 0.22, Gxy = 830 MPa, kx/ky = 5, a normalized

tangential stresses, b normalized displacements
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compatibility of stresses and deformations at the contact

between the liner and the ground.

For a tied interface (the displacements of the liner are

those of the ground in contact),

Us
r ¼ UIIa

r þ UIIb
r

Us
h ¼ UIIa

h þ UIIb
h

ð24Þ

Problem IIa is analogous to that of the unsupported open-

ing, already discussed, except that there are no stresses at

the tunnel perimeter. Equations (22) apply, with the fol-

lowing stress functions:

/1ðz1Þ ¼
1

l1 � l2

1

2
uo � uffð Þro

� iRe l21A1 þ l22A2 þ l23N
� 	

� l2Re A1 þ A2 þ Nð Þ
� � 1

11

/2ðz2Þ ¼ � 1

l1 � l2

1

2
uo � uffð Þro

� iRe l21A1 þ l22A2 þ l23N
� 	

� l1Re A1 þ A2 þ Nð Þ
� � 1

12

zk ¼ xþ lky ¼
1

2
ro 1� ilkð Þ 1k þ

1

2
ro 1þ ilkð Þ 1�1

k

ð25Þ

The displacements at the opening are found from (22), (25)

and are:

Ur ¼ � 1

2
uo � uffð Þro R1 þ R2 cos 2hð Þ

Uh ¼
1

2
uo � uffð ÞroR2 sin 2h

R1 ¼ 1þ l1l2ð Þ l3 � l1ð Þ l3 � l2ð Þa1N þ i l1 þ l2ð Þ
� l1l2 � l23
� 	

a1N

� ia1 l1 þ l2ð ÞRe l1 � l2ð Þ l1A1 � l2A2ð Þ½ �
� b1 þ b2ð Þ

R2 ¼ 1� l1l2 � i l1 þ l2ð Þ½ � l3 � l1ð Þ l3 � l2ð Þ
� a1N � b1 � b2ð Þ ð26Þ

It is helpful, to understand the effects of groundwater flow,

to find the displacements at the perimeter of the opening for

the case of anisotropic flow with isotropic ground proper-

ties. In this case, l1, l2 ? i, and so (26) reduces to:

Ur ¼ �2
1þ mð Þ 1� 2mð Þ

E
uo � uffð Þro

l32 � 1

l32 þ 1
cos 2h

Uh ¼ 2
1þ mð Þ 1� 2mð Þ

E
uo � uffð Þro

l32 � 1

l32 þ 1
sin 2h ð27Þ

The displacements, as one can see, strongly depend on the

anisotropic permeability of the medium, given that

l32 ¼
ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
. The groundwater flow, given by (11), is not

radial due to the different permeabilities. As a result, the

seepage forces in the rock are not radial, and so the ground

= +

σrΔ
τΔ

τΔ

ro

σrΔ

+

σ
v

σ
h

τ vh
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uff

uff
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+
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Fig. 5 Supported deep tunnel with groundwater flow, a tunnel with far-field loading, b Problem I: no flow, c Problem II: flow only, d Problem

IIa: no liner, e Problem IIb: ground–liner interaction, f Problem IIc: liner
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deformations produced by the groundwater flow are not radial,

as in the case of isotropic medium. This is confirmed by the

displacement field in (27).With the assumption of kx[ ky, i.e.,

l32[0, the radial displacements at the springline, i.e., at

h = 0�, are outward when there is inward flow (uo\uff) and

are inward, with the same magnitude, at the crown, h = 90�.
The tangential displacements are clockwise when the flow is

toward the opening. This is due to the seepage forces that, as

mentioned, are no longer radial and have a tangential compo-

nent that is clockwise in this case due to the larger horizontal

permeability. The tangential seepage forces induce larger

compression at the springline thanat the crown,which results in

the displacement pattern given by (27). Another interesting

observation is that the displacements are zero when the flow is

isotropic, i.e., when kx = ky which makes l32 = 1. In this

particular case, the flowestablished due to different pressures at

the tunnel perimeter and the far-field does not induce defor-

mations at the tunnel perimeter, and thus, it does not induce

deformations in the liner. This conclusion was already reached

by Bobet (2001) who showed that the displacements and

stresses in the linerwere independent of thedrainage conditions

at the liner–ground interface. What is worth noting is that

groundwater flow does not affect the displacements at the

tunnel wall and the stresses of the liner only when the medium

has isotropic elastic properties and isotropic permeability, and

the tunnel is deep (fromBobet 2001). In all other cases, the flow

regime at the liner–ground contact, from no drainage to full or

partial drainage, affects the response of the liner.

Problem IIb is concerned with the stress and displace-

ment fields produced in the ground due to the (unknown)

radial and shear stresses that are present at the ground–liner

interface, Drr and Ds. Due to the symmetry of the problem,

the interface stresses must be of the form:

rsr ¼ Drr ¼ ro þ
X1

n¼2;4;6

rn cos nh

ss ¼ Ds ¼
X1

n¼2;4;6

sn sin nh

ð28Þ

Stresses and displacements can be obtained from the fol-

lowing stress functions:

/1ðz1Þ¼
1

l1�l2

X1
m¼1

1

2
bm�l2am
� 	

1�m
1

/2ðz2Þ¼� 1

l1�l2

X1
m¼1

1

2
bm�l1am
� 	

1�m
2

a1¼roro�
1

2
r2�s2ð Þro

am¼
1

2m
rm�1�rmþ1þsm�1þsmþ1ð Þro m¼3;5;7. ..

b1¼ iroroþ i
1

2
r2�s2ð Þro

bm¼ i
1

2m
rm�1þrmþ1þsm�1�smþ1ð Þro m¼3;5;7. . .

ð29Þ

At the tunnel perimeter, the displacements are:

Ur¼2R5roroþR3 r2�s2ð Þro

þ1

3
6R3roþ3R4 r2�s2ð ÞþR5 r2þs2ð Þ½

þR3 r4�s4ð Þ�ro cos2h

þ
X1

n¼4;6;8

R3

n�1
rn�2þsn�2ð Þþ 1

n2�1
nþ1ð ÞR4þ n�1ð ÞR5½ �rn

þ 1

n2�1
n�1ð ÞR5� nþ1ð ÞR4½ �snþ

R3

nþ1
rnþ2�snþ2ð Þ

8>><
>>:

9>>=
>>;
ro cosnh

Uh¼� 2R3roþ
1

3
3R4�R5ð Þr2�

1

3
3R4þR5ð Þs2�

1

3
R3 r4�s4ð Þ

� �
ro sin2h

�
X1

n¼4;6;8

R3

n�1
rn�2þsn�2ð Þþ 1

n2�1
nþ1ð ÞR4� n�1ð ÞR5½ �rn

� 1

n2�1
nþ1ð ÞR4þ n�1ð ÞR5½ �sn�

R3

nþ1
rnþ2�snþ2ð Þ

8>><
>>:

9>>=
>>;
ro sinnh

R3¼
1

4
i 1þl1l2ð Þ l1þl2ð Þa1

R4¼
1

4
2l1l2þ i 1�l1l2ð Þ l1þl2ð Þ½ �a1þ

1

2
a2

R5¼�1

4
2l1l2� i 1�l1l2ð Þ l1þl2ð Þ½ �a1�

1

2
a2

ð30Þ

The displacements and stresses or forces in the liner

(Problem IIc) are obtained from (9) and (10), given (28).

The solution is:

Us
r ¼

1� m2s
EsAs

ror
2
o þ

1� m2s
EsIs

r4o

X1
n¼2;4;6

1

n2 � 1ð Þ2
rn �

1

n
sn

� �
cos nh

Us
h ¼ � 1� m2s

EsIs
r4o

X1
n¼2;4;6

1

n n2 � 1ð Þ2

� rn �
1

n
sn �

n2 � 1ð Þ2

n

Is

Asr2o
sn

 !
sin nh

Ts ¼ roro � ro
X1

n¼2;4;6

1

n2 � 1
rn � nsnð Þ cos nh

Ms ¼ r2
o

X1
n¼2;4;6

1

n n2 � 1ð Þ sn � nrnð Þ cos nh

ð31Þ

The values of the unknown stresses due to liner–ground

interaction, ro, rn and sn in (28), are obtained from (24) by

making the radial and tangential displacements equal term

by term, i.e., constant term, sin h, cos h, sin 2h, cos 2h, etc.
The higher the term, the smaller the contribution to the

solution, so only a few terms are needed to obtain an

accurate result. A comparison between the analytical

solution and ABAQUS is presented in Fig. 6. The case

analyzed is the same as that shown in Fig. 4, except that the

tunnel is supported with a liner with the following prop-

erties: Es = 20,000 MPa, ms = 0.3 and t = 0.2 m. The

figure is a plot of the normalized normal and shear stresses,

Fig. 6a, and displacements, Fig. 6b, at the interface. As one

can see, the comparison is very good, which brings confi-

dence in the approach taken and on the validity of the

solution.
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If one assumes that the liner is flexible and yet fairly

incompressible; e.g., shotcrete or segmental liner, a simpler

solution is obtained by taking the liner stiffness EsIs ? 0

and compressibility EsAs ? ?. The following provides a

two-term approximation of the liner response, which can be

used as a first estimate.

Drr ¼
1

2
P uo � uffð Þ 3R4 þ 5R5ð Þ cos 2hþ 3R3 cos 4h½ �

Ds ¼ P uo � uffð Þ 3R4 þ 5R5ð Þ cos 2hþ 6R3 cos 4h½ �
Us

r ¼ �2P uo � uffð Þ
� ro 3R2

3 � 3R4R5 � 5R2
5

� 	
cos 2h� 2R3R5 cos 4h

� �
Us

h ¼ P uo � uffð Þro 3R2
3 � 3R4R5 � 5R2

5

� 	
cos 2h� R3R5 cos 4h

� �
Ts ¼ roDrr
Ms ¼ 0

P ¼ R2R5 � R1R3

3R4 þ 5R5ð Þ R2
3 � R4R5 � 3R2

5

� 	
þ 9R2

3R5

ð32Þ

For a frictionless interface (the shear stresses at the liner–

rock contact are zero),

Us
r ¼ UIIa

r þ UIIb
r

Ds ¼ 0
ð33Þ

Problem IIa in Fig. 5 remains unchanged, and so Eqs. (26)

still apply. The liner–ground interaction stresses, given that

the interface is frictionless, are those of Eq. (28), except

that the shear stresses, as shown in (33), are zero. The

solution for Problem IIb is still given by (29) and (30), but

with sn = 0 for n C 2. The equations for the liner, Problem

IIc, are now given by:

Us
r ¼

1� m2s
EsAs

ror
2
o þ

1� m2s
EsIs

r4o

X1
n¼2;4;6

rn
n2 � 1ð Þ2

cos nh

Us
h ¼ � 1� m2s

EsIs
r4o

X1
n¼2;4;6

rn
n n2 � 1ð Þ2

sin nh

Ts ¼ roro � ro
X1

n¼2;4;6

rn
n2 � 1

cos nh

Ms ¼ � r2
o

X1
n¼2;4;6

rn
n2 � 1ð Þ cos nh

ð34Þ

Verification of the analytical solution is done by comparing

the results from the closed-form solutions with those from

ABAQUS. The same problem chosen for the tied interface

(Fig. 6) is used for the comparison, except that the contact

between the liner and the ground is frictionless. Figure 7

shows the results, in terms of normalized stresses at the

liner–ground interface and liner displacements. The dif-

ferences between the two solutions are small, which pro-

vides confidence in the equations obtained. Comparison of

the data shown in Figs. 6 and 7 indicates that a frictionless

interface is associated with smaller stresses at the interface,

and thus with smaller displacements and smaller stresses in

the liner (not shown in the figures). If the liner can be

considered perfectly flexible and completely incompress-
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Fig. 6 Supported tunnel. No slip. Normalized interface stresses and

displacements. Comparison between analytical solution and FEM

ABAQUS. ro = 2 m, Ex = 7800, Ey = 2400 MPa, myx = 0.02,

mxz = 0.22, Gxy = 830 MPa, kx/ky = 5, Es = 20,000 MPa, ms = 0.3,

t = 0.2 m, a normalized interface stresses, b normalized

displacements
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ible (EsIs ? 0 and EsAs ? ?), the liner response is

obtained with the following, much simpler equations:

Drr ¼
1

4

R1

R5

uo � uffð Þ

Ds ¼ 0

Us
r ¼

1

2

R1R3 � R2R5

R5

uo � uffð Þro cos 2h

Us
h ¼ � 1

4

R1R3 � R2R5

R5

uo � uffð Þro sin 2h

Ts ¼ 1

4

R1

R5

uo � uffð Þro

Ms ¼ 0

ð35Þ

Equations (35) show that the liner is subjected to uni-

form contact radial stresses and no shear, which results in

uniform axial load and no bending moments, and radial

deformations that are the same at the springline and at the

crown, with opposite sign. This result is in agreement with

Peck’s concept of a flexible liner (Peck 1969), where the

liner has a pressure distribution and a deflected shape such

that the bending moments at all points in the liner are

negligible.

5 Discussion

Inspection of Eqs. (26), (30) and (31) or (34) shows that the

solution, when ax = ay = 1, can be expressed as a function

of the following non-dimensional parameters: t/ro, kx/ky, a2/

a1, a3/a1, 1/(a1Gxy), (1 - ms
2)/(1 - mxz

2 )Ex/Es. Neglecting

the effects of the Poisson’s ratios, which are generally

small, and also of Ex/Gxy, the solution is a function of: t/ro,

kx/ky, Ex/Ey, and Ex/Es. The effect of these non-dimensional

parameters is explored in the following through a (limited)

parametric analysis where all variables except one are kept

constant, while the other variable is changed within a

reasonable range of values. The following is the base case,

around which the material properties, loading and geome-

try are explored: deep tunnel with circular cross section

with radius ro = 2 m, rock properties Ex = 7800,

Ey = 2400, Gxy = 830 MPa, mxz = 0.22, myx = 0.02, kx/

ky = 5.0, liner properties Es = 20,000 MPa, ms = 0.30

with thickness t = 0.2 m and tied rock–liner interface.

The effects of anisotropic flow are explored by com-

puting the loading and displacements of the liner for iso-

tropic rock, E = 7800 MPa and m = 0.22, and for a range

of permeabilities kx/ky = 1, 2, 5 and 10. Figure 8a is a plot

of the normalized axial force, Ts/(uo - uff)/ro, and nor-

malized moment, Ts/(uo - uff)/ro
2, of the liner for the dif-

ferent permeabilities, and Fig. 8b of the normalized radial

and tangential displacements Ur,h Es/(1 - ms
2)/(uo - uff)/ro.

As one can see, the normalized axial force and, to a much

smaller extent, the normalized moment acting on the liner

increase as the permeability becomes more anisotropic.

The normalized axial force is positive at the springline and

negative at the crown, which for, e.g., flow toward the

tunnel, uo - uff\ 0, induces compression at the springline

and tension at the crown. This results in a displacement

pattern of negative normalized radial displacements at the
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Fig. 7 Supported tunnel. Full slip. Normalized interface stresses and

displacements. Comparison between analytical solution and FEM

ABAQUS. ro = 2 m, Ex = 7800, Ey = 2400 MPa, myx = 0.02,

mxz = 0.22, Gxy = 830 MPa, kx/ky = 5, Es = 20,000 MPa, ms = 0.3,

t = 0.2 m, a normalized interface stresses, b normalized

displacements
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springline (outward displacements with flow toward the

tunnel) and positive at the crown (inward displacements

with flow toward the tunnel) with increasing in magnitude

with flow anisotropy. The normalized tangential displace-

ments are always positive (clockwise with flow toward the

tunnel) and increase with the anisotropy of the flow. As

explained in the preceding section, the groundwater flow

creates seepage forces inside the ground that, due to the

anisotropy, have a tangential component that increases in

magnitude as the kx/ky ratio increases. The tangential

seepage forces are those responsible for the differences of

loading and displacements between the springline and the

crown. Because of the symmetry of the problem along the

45� direction, the solution is also symmetric with respect to

this direction.

The loading and displacements of the liner due to the

relative stiffness between the rock and the liner, given by

the Ex/Es ratio, are explored by conducting a number of

numerical experiments using the base case and changing

the relative stiffness ratio as Ex/Es = 0.1, 0.39 (the base

case), 0.8, 1.0. This has been accomplished by keeping Ex

constant and changing Es. Figure 9a shows that as the liner

becomes softer, or as the rock gets stiffer, the normalized

loading of the liner decreases. This is an expected result as

a softer liner attracts less loading and so a larger portion of

the load is taken by the rock. The corresponding normal-

ized displacements, Fig. 9b, are larger, again because the

rock is taking more load, and thus deforming more.

The effects of the relative anisotropy of the rock, Ex/Ey,

are displayed in Fig. 10. The figure plots the normalized

forces and moments, Fig. 10a, and the normalized

displacements, Fig. 10b of the liner, for the base case with

Ex/Ey = 1.0, 3.25 (the base case), 5.0 and 10.0. This is

done by keeping Ex constant and changing Ey. As the rock

becomes softer in the y direction, the normalized radial

displacements at the crown increase while the normalized

radial displacements at the springline remain mostly

unchanged. The normalized tangential displacements

increase as the Ex/Ey ratio increases. This deformation

pattern is associated with a reduction in radial stresses at

the crown, where the rock is softer, and an increase in

radial stresses at the springline (not shown in the figure), as

Ey decreases with respect to Ex. For the liner, this results in

smaller normalized axial force at the crown and larger

force at the springline. Interestingly, the normalized

moment is not much affected, suggesting that changes in

relative stiffness of the rock affect mostly the axial force of

the liner.

Figure 11 is a plot of the normalized loading, Fig. 11a,

and normalized displacements, Fig. 11b, of the liner when

t/ro = 0.05, 0.1 (base case), 0.2 and 0.25. The results are as

expected, with the liner taking larger load and deforming

less when it is thicker (the simulations are run with ro
constant).

Finally, the effects of the interface, either no slip or full

slip, are explored in Fig. 12. Two scenarios are presented:

isotropic ground (same properties as those of Fig. 8) and

anisotropic ground (base case), each with a no slip inter-

face (no relative movements between the rock and the liner

at the contact; that is, a tied interface) and full slip interface

(no shear stresses at the rock–liner contact). The main

observations are similar for each scenario. A full slip
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Fig. 8 Isotropic case. Effect of anisotropic flow on liner loading and displacements. ro = 2 m, E = 7800 MPa, m = 0.22, Es = 20,000 MPa,

ms = 0.3, t = 0.2 m, a normalized axial force and moment, b normalized radial and tangential displacements
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interface decreases the normalized axial force of the liner

compared to the no slip/tied interface and dramatically

decreases the moment of the liner, resulting in an almost

uniform normalized axial force. This is associated with

somewhat of an increase in normalized radial displace-

ments and a decrease in normalized tangential displace-

ments. The reason for this behavior can be found in how

the load is transferred from the rock to the liner. As the

interface becomes less constrained, i.e., the rock can

deform in the tangential direction independently of the

liner and cannot transfer shear stresses for the full slip case,

the rock is less capable of transferring load to the liner, it

carries more load and deforms more. As a consequence, the

liner is less loaded and it is less constrained to deform,

which results in reduced bending.

A spreadsheet is included with this paper that can be

used to compute the rock–liner interface stresses and the

liner loading and deformations due to groundwater flow,

using the formulation presented, as well as due to geostatic

stresses, using the closed-form solutions obtained by Bobet
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Fig. 9 Anisotropic case. Effect of relative stiffness between rock and liner. ro = 2 m, Ex = 7800, Ey = 2400 MPa, myx = 0.02, mxz = 0.22,

Gxy = 830 MPa, kx/ky = 5, ms = 0.3, t = 0.2 m, a normalized axial force and moment, b normalized radial and tangential displacements
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Fig. 10 Anisotropic case. Effect of stiffness anisotropy of rock. ro = 2 m, Ex = 7800 MPa, myx = 0.02, mxz = 0.22, Gxy = 830 MPa, kx/ky = 5,

Es = 20,000 MPa, ms = 0.3, t = 0.2 m, a normalized axial force and moment, b normalized radial and tangential displacements
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(2011, 2016) for a deep tunnel in transversely anisotropic

rock.

6 Summary and Conclusions

The paper addresses the problem of a deep tunnel in a

transversely anisotropic medium subjected to seepage for-

ces. It provides closed-form solutions for the case of an

unsupported tunnel and for the case of a supported tunnel

with a liner. The work complements the analytical for-

mulation that exists for a deep tunnel in transversely ani-

sotropic ground, for dry conditions or for saturated ground

with no drainage at the liner–ground interface (Bobet

2011, 2016). It provides the additional deformations and

stresses in the ground and liner due to the seepage forces

that exist in the ground when there is drainage at the

ground–liner interface.
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Fig. 11 Anisotropic case. Effect of liner thickness relative to tunnel radius. ro = 2 m, Ex = 7800, Ey = 2400 MPa, myx = 0.02, mxz = 0.22,

Gxy = 830 MPa, kx/ky = 5, Es = 20,000 MPa, ms = 0.3, a normalized axial force and moment, b normalized radial and tangential displacements

-4.0 10-1

-3.0 10-1

-2.0 10-1

-1.0 10-1

0.0

1.0 10-1

2.0 10-1

3.0 10-1

4.0 10-1

-4.0 10-2

-3.0 10-2

-2.0 10-2

-1.0 10-2

0.0

1.0 10-2

2.0 10-2

3.0 10-2

4.0 10-2

0 15 30 45 60 75 90

isotropic, no slip

isotropic, full slip

anisotropic base case, no slip

anisotropic base case, full slip

N
or

m
al

iz
ed

 A
xi

al
 F

or
ce N

orm
alized M

om
ent

T = white symbols     M= black symbols

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 15 30 45 60 75 90

isotropic, no slip

isotropic, full slip

anisotropic base case, no slip

anisotropic base case, full slip

N
or

m
al

iz
ed

 R
ad

ia
l D

is
pl

ac
em

en
ts

N
orm

alized T
angential D

isplacem
ents

U
r
= white symbols        U = black symbols

(a) (b)

Fig. 12 Anisotropic case. Effect of contact between liner and rock.

ro = 2 m, Ex = 7800, Ey = 2400 MPa, myx = 0.02, mxz = 0.22,

Gxy = 830 MPa, kx/ky = 5, Es = 20,000 MPa, ms = 0.3, t = 0.2 m,

a normalized axial force and moment, b normalized radial and

tangential displacements
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A number of assumptions are made to reach a solution

and include: transversely anisotropic elastic ground and

isotropic elastic liner; plane strain conditions; deep tunnel;

circular cross section; thin liner. For the supported tunnel,

two situations are addressed: tied contact and full slip

between the liner and ground. The formulation presented

has been verified by comparing its predictions with the

results obtained with the finite element code ABAQUS,

where boundary conditions and type of elements have been

chosen such that they match the assumptions made to

develop the analytical formulation, e.g., elements with

coupled displacements and pore pressures, far-field

boundary geometry that matches the analytical formulation

for groundwater flow and infinite elements.

An important observation is that seepage forces induce

displacements at the tunnel wall, which in turn produce

stresses and deformations of the liner when the ground has

anisotropic mechanical properties or anisotropic perme-

ability. The analytical solution confirms the previous finding

(Bobet 2011, 2016) that the liner experiences no additional

deformations or stresses when the groundwater regime

changes from no drainage to drainage, or vice versa, at the

ground–liner interface, but only when the ground has both

isotropic elastic and permeability properties.

In addition to the general formulation for cases with tied

(no slip or relative movement between liner and rock) or

for frictionless interface (full slip between liner and rock),

the paper also presents equations to estimate the liner

deformations and load when the liner can be considered

flexible and incompressible. For the full slip case, the result

agrees with the concept of flexible liner put forward by

Peck (Peck 1969), where the liner experiences a uniform

radial pressure at the contact with the ground and a dis-

placement distribution such that the bending moments in

the liner are zero.

A limited parametric analysis explores the effects of

different variables on the load and displacements of the

liner. As the anisotropy of the ground increases, either

because the permeability ratio, kx/ky, or the stiffness ratio,

Ex/Ey, increases, the loading of the liner increases and its

deformations increase. The study also provides findings

that are consistent with those obtained for isotropic rock in

that, as the relative stiffness of the rock with respect to the

liner, Ex/Es, increases or the relative thickness of the liner,

t/ro, decreases, in other words as the liner becomes softer,

the load transferred from the rock to the liner reduces, and

thus, the loading that the liner has to carry decreases.

A spreadsheet is included that can be used to obtain the

stresses and deformations of the liner of a deep tunnel in

anisotropic rock subjected to geostatic (far-field) stresses

and groundwater flow, and for a no slip/tied or full slip

interface. It is provided as is and free to use. ‘‘Appendix’’

section contains a short summary about how to use the

spreadsheet. While an effort has been made to ensure that

the results provided in the spreadsheet are correct, the

author would welcome any corrections, suggestions and

improvements.

Appendix

This ‘‘Appendix’’ is intended to be a ‘‘user manual’’ for the

spreadsheet included with the publication. It also provides

a very short summary of the assumptions made to obtain

the solution. This information is also included in the

spreadsheet, by clicking the ‘‘green’’ button ‘‘Read Me

First.’’

Assumptions Transversely anisotropic elastic ground and

isotropic elastic liner; plane strain conditions; deep tunnel;

circular cross section; thin liner; simultaneous tunnel

excavation and liner installation. Rock–liner interface: full

slip (no shear stresses at the interface) or no slip (tied

interface).

Fig. 13 Problem definition,

a original loading, b modified

loading after rotation
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Solution The spreadsheet gives the total radial and shear

stresses at the rock–liner interface, rr and s; the axial force
and moment in the liner, Ts, Ms; and internal and external

tangential stresses in the liner, rh
s . The solution is given in

terms of the angle h, as defined in Fig. 13. Tension is

positive, and compression is negative.

Methodology The solution is obtained after the following

steps:

1. Input problem geometry, rock and liner elastic prop-

erties, rock permeability, far-field loading (in total

stresses) and pore pressures in the designated cells in

Sheet 1.

2. Click the red button labeled ‘‘Click to find solution.’’

3. Solution it is given as a function of the angle h in

Fig. 13. It is given separately for the contribution of

groundwater flow and for far-field stresses. The final

result, i.e., the sum of the two contributions, is also

provided.

Other information Sheet 1 includes the input and output.

This is the input/output user interface. Sheet 2 contains

calculations for groundwater flow, and Sheet 3 contains

calculations for far-field stresses. Note that any modifica-

tions by the user to cells in Sheets 2 and 3 may result in

erroneous results.

Disclaimer The spreadsheet is provided as is and free to

use. The user is requested to acknowledge the source of the

work and that any modification and/or improvement made

should be shared with the author and with the community.
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