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Abstract Orthogonal intersecting fracture sets form frac-

ture networks that affect the hydraulic and mechanical

integrity of a rock mass. Interpretation of elastic waves

propagated through orthogonal fracture networks is com-

plicated by guided modes that propagate along and

between fractures, by multiple internal reflections, as well

as by scattering from fracture intersections. The existence

of some or all of these potentially overlapping modes

depends on local stress fields that can preferentially close

or open either one or both sets of fractures. In this study, an

acoustic wave front imaging system was used to examine

the effect of bi-axial loading conditions on acoustic wave

propagation in isotropic media containing two orthogonal

fracture sets. From the experimental data, orthogonal

intersecting fracture sets support guided waves that depend

on fracture spacing and fracture-specific stiffnesses. In

addition, fracture intersections have stronger effects on

propagating wave fronts than merely the superposition of

the effects of two independent fractures because of energy

partitioning among transmitted/reflected waves, scattered

waves and guided modes. Interpretation of the properties of

fractures or fracture sets from seismic measurements must

consider non-uniform fracture stiffnesses within and

among fracture sets, as well as considering the striking

effects of fracture intersections on wave propagation.

Keywords Fractures � Rock mechanics � Wave

propagation � Geophysics

1 Introduction

Many engineering activities require knowledge of the iso-

topic or anisotropic properties of rock for the design of

underground excavations, foundations, and adits, as well as

for rock strength analysis (Amadei 1996). Stress deter-

mined from strain measurements can be misinterpreted if

an anisotropic rock is assumed to be isotropic. For exam-

ple, Amadei and Goodman (1982) showed for overcoring

techniques that the magnitude and direction of stress for a

transversely isotropic medium would be misinterpreted by

as much as 50 % and 100 degrees, respectively, if isotropy

was assumed. One method used to interpret the anisotropic

nature of rock is from the measurement of compressional

and shear wave velocities that depend on the elastic moduli

of a sample. While many investigations have studied the

effects of single fractures, a set of parallel fractures and

orthogonal fractures on elastic wave velocities and elastic

properties (Abell et al. 2014; Bakulin et al. 2000; Carcione

and Picotti 2012; Fuck and Tsvankin 2006; Hood and

Schoenberg 1989; Pyrak-Nolte et al. 1990a, b; Schoenberg

1980; Schoenberg and Douma 1988; Schoenberg and

Helbig 1997), the effect of intersections on a propagating

wave has been largely ignored.

Intersecting fractures occur in nature when two or more

fractures have different orientations. Orthogonal fracture

sets are a special case of mutually perpendicular (dihedral

angle *90�) sets that typically occur in horizontal strata.

The formation of orthogonal fracture sets has been attrib-

uted to bi-axial tectonic extensions, bending of a system

from local loading or differential compaction of a rock unit
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with a set of parallel fractures, elastic Poisson cross-strain

effect, or from a triaxial remote loading (Bai et al. 2002;

Mandl 2005). While orthogonal fractures sets are com-

monly observed (Bai et al. 2002; Braun and Kelemen 2002;

Gross 1993; Hobday and Worthington 2012; Hodgson

1961; Mandl 2005; Stearns 1972), research on elastic wave

propagation in fractured media has mostly focused on

single fractures and sets of parallel fractures. Single frac-

tures have been shown, theoretically and experimentally, to

delay and attenuate waves (Angel and Achenbach 1985;

Choi et al. 2014; Gu et al. 1996; Lubbe and Worthington

2006; Nakagawa et al. 2000a; Pyrak-Nolte et al. 1990b;

Schoenberg 1980). The magnitude of the delay and the

attenuation depend on the frequency of the signal, x,
fracture-specific stiffness, j, (inverse of fracture compli-

ance) and the seismic impedance (Z = density 9 phase

velocity) of the rock matrix. Fracture-specific stiffness

captures the state of coupling between the fracture walls

and depends on the amount of contact between the two

surfaces as well as on the aperture distribution (Cook 1992;

Goodman et al. 1968; Hopkins 1990; Kendall and Tabor

1971; Myer 2000; Petrovitch et al. 2013; Petrovitch et al.

2014). Single fractures also support fracture interface

waves (coupled Rayleigh waves) that are guided along a

fracture plane (Gu 1994; Murty and Kumar 1991; Pyrak-

Nolte and Cook 1987; Pyrak-Nolte et al. 1992; Shao and

Pyrak-Nolte 2013). The existence and velocity of fracture

interface waves also depend on Z, x, and j.
For a set of parallel fractures, each individual fracture

affects a propagating three-dimensional wave front and can

introduce additional wave interference effects (e.g., stop-

band behavior) that arise from the spacing between frac-

tures and that depend on Z, x, and j of the fractures in the

set (Nakagawa et al. 2000b). Wave-guiding can also occur

between two fractures (Nakagawa et al. 2002; Nihei et al.

1994, 1999; Shao et al. 2015; Xian et al. 2001). While

wave-guiding is known to arise from impedance contrasts

in layered media, parallel fractures in isotropic media have

also been shown to produce guided modes (Xian et al.

2001). Parallel fractures form planar wave-guides that trap

energy between fractures. A wave propagating parallel to

the fractures is internally reflected between the fractures,

leading to constructive and destructive interference with

the direct wave. The existence and strength of such guided

modes depend on the wavelength of the signal, on the

fracture-specific stiffness and on the spacing between two

consecutive fractures. Shao et al. (2015) demonstrated

experimentally and theoretically that compressional-wave-

guided modes supported by a set of parallel fractures in an

anisotropic layered medium can obscure the presence of

layering. From their study, the number of guided modes

and the delay for each mode depended not only on x and j,

but also on the orientation of the fracture set relative to the

layering in an anisotropic medium.

An additional level of complexity is encountered in

media with two orthogonal fracture sets. First, the wave-

guides formed by the fractures are rectangular. The shape

of a wave-guide affects arrival time, phase shifts, and

amplitudes of the guided modes. In sedimentary rocks,

orthogonal or cross fracture sets form rectangular wave-

guides with a wide range of horizontal/vertical fracture

spacings from 10 mm to 1 m (Gross 1993). Second,

intersections exist between the fractures. For an orthogonal

fracture network, intersections are long linear features that

can lead to additional scattering and energy loss. Although

some numerical studies showed that intersections have

little or no influence on elastic wave propagation (Grechka

and Kachanov 2006), recent theoretical work demonstrated

that fracture intersections can support guided modes that,

just like single fractures, depend on frequency and the

coupling at the intersection (Abell 2015; Abell and Pyrak-

Nolte 2013). Furthermore, Abell (2015) showed experi-

mentally that fracture intersections support guided modes

that are highly localized to the intersection and exhibit

distinct particle motions. Orthogonal fracture networks

may be subjected to non-uniform stress fields depending on

local tectonic conditions or subsurface engineering activi-

ties, which can result in different specific stiffnesses

between two fracture sets and/or among the fractures in

each set. The existence of some or all of these potentially

overlapping structural features, the existence of attenua-

tion/scattering mechanisms and the effect of local stress

fields that can preferentially close or open either one or

both sets of fractures or intersections, will contribute to the

measured wave field and affect the interpretation of the

data.

In this study, we demonstrate, experimentally, that (1)

orthogonal fracture sets support guided modes, (2) non-

uniform stiffnesses among the fractures result in non-uni-

form delays and attenuation of the propagating wave front,

and (3) fracture intersections attenuate and delay propa-

gating modes more than that expected from the superpo-

sition of the effects of 2 fractures, and hence intersections

constitute a new structural element that must be included

explicitly in seismic scattering studies.

2 Experimental Approach

2.1 Samples

Four cubic aluminum samples (100 mm 9 100 mm 9

100 mm) were used to investigate the effect of two

orthogonal fracture sets on a propagating acoustic wave

4034 S. Shao, L. J. Pyrak-Nolte

123



front. Three of the samples contained horizontal and ver-

tical fracture (Fig. 1). Samples F2020 and F1010 have

equal fracture spacings in the two orthogonal directions of

20 and 10 mm, respectively (Fig. 1a, b). Sample F1020 has

a horizontal fracture spacing of 20 mm and a vertical

spacing of 10 mm (Fig. 1c). The fractures were cut with a

band saw and machined to be smooth. An intact aluminum

block with the same external dimensions as the samples

with fracture networks (Fig. 1d) was used as a standard.

2.2 Acoustic Wave Front Imaging

Acoustic wave front imaging is a traditional method for

recording the distribution of energy in an arriving wave

front and to visualize the effect of textural and structural

components of a sample on a propagating wave front

(Abell et al. 2014; Hauser et al. 1995; Nagy et al. 1995;

Oliger et al. 2003; Pyrak-Nolte et al. 1996; Shao et al.

2015; Xian et al. 2001). Most previous studies examined

Fig. 1 Sketches of aluminum samples: a F2020 with horizontal and

vertical fracture spacings both equal to 20 mm, b F1010 with both

horizontal and vertical fracture spacings equal to 10 mm, c F1020

with vertical and horizontal fracture spacings of 10 and 20 mm,

respectively, d an intact sample with no fractures. Red lines indicate

the locations of fractures (color figure online)
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wave propagation on samples either subjected to no load or

to a uniaxial load. Working with orthogonal fracture sets

requires bi-axial loading conditions to maintain the cohe-

siveness of the sample and to change the specific stiffness

of the fractures in both sets. A wave front imaging system

with bi-axial load-control was designed and used for this

study (Fig. 2). The system consists of (a) A Soil Test

445kN load frame to apply a normal load on the horizontal

fracture set; (b) a custom built, manually controlled 222 kN

load frame with a Parker actuator and an Interface, model

1220AF-50 K-B, 222 kN load cell to apply a load normal

to plane of the vertical fracture set; (c) an aluminum tank

with pistons to hold the water needed for water-coupling

during the acoustic measurements; (d) two linear actuators

(Newport Model 850B) to translate the receiver, controlled

by a Newport ESP 300 motion controller; (e) two spheri-

cally focused water-coupled piezoelectric transducers

(broadband with a central frequency of 1 MHz) to send and

receive the signals; (f) a pulse generator (Panametrics

model 5077PR) to generate signals; and (g) a digital

oscilloscope (NI USB-5133) to record signals that are

stored on a computer. Additional details can be found in

(Shao 2015).

To perform an experiment, the sample is first sealed

with clear tape to prevent water invasion along fracture

planes as samples are submerged in water in the aluminum

tank during testing. Sample corners and tape seams were

also sealed with Coghlans 8880 Airstop, a commercial

liquid sealant, and dried for a least 1 h prior to testing. The

intact sample was also sealed in the same manner to

quantify any effects of sealing on the wave front. During

the experiments, equal loads were applied vertically from

face E to F (opposite to E, Fig. 1) and horizontally from

face B to D (opposite to B, Fig. 1). The source transducer

was held at a fixed position on the center of the sample

(Face A in Fig. 1), while the receiving transducer was

translated over a 60 mm by 60 mm region of the sample in

1-mm increments (on Face C which is opposite to Face A)

to map out the arriving wave front as a function of time. A

pulse generator sent an excitation pulse (400 V square

pulse) to the source transducer. The pulse width was 0.3 ls
with a repetition rate of 100 Hz. A transmitted wave signal

was recorded at each receiver position representing a

100-ls window with a fixed time delay (e.g., 30 ls) at a
sampling rate of 108 per second. 3600 signals were recor-

ded during each test. A 3D dataset of the transmitted wave

front was recorded with two spatial and one temporal

dimension (i.e., 60 mm 9 60 mm 9 100 ls).

3 Results

Examples of the type of information acquired with wave

front imaging are shown in Fig. 3 for the intact sample. In

this paper, the central waveforms (when the source and

receiver are aligned) from each data set are used to

examine the effect of fracture-specific stiffness and fracture

spacing on waves guided between fractures (Fig. 3b).

Snapshots of a wave front in time (x–y plane in Fig. 3a) are

used to determine the effect of fractures and fracture

intersections on a propagating wave front. The color rep-

resents the amplitude of the signal with blue representing

negative amplitudes and red positive amplitudes. Data

taken over one spatial dimension as a function of time are

used for determining the time delay caused by fractures and

fracture intersections (y-time plane or x-time plane in

Fig. 3a).

For the isotropic intact sample, the wave front spreads

out uniformly in all directions (Fig. 3a). Conversely, the

energy distribution in the fractured samples depends on

the fracture spacing, number of fractures, and the applied

loads. Figures 4, 5, and 6 show snapshots of the wave

front from samples F2020, F1010, and F1020, respec-

tively, for four applied stresses, 0.4, 2.0, 4.0, and

6.0 MPa. The snapshots were taken at the same time after

the first arrival for these samples. Under low-stress con-

ditions, the wave front is strongly confined and localized

to the central block in which the waves were launched.

The strong energy confinement occurs because the frac-

ture-specific stiffness or coupling between the fracture

surfaces is weak, and very little energy is transmitted

across the fractures. As more stress is applied to the

sample and fracture-specific stiffness increases, the
Fig. 2 Bi-axial loading components of the acoustic wave front

imaging system

4036 S. Shao, L. J. Pyrak-Nolte

123



transmission across the fractures increases and is observed

to propagate farther into the sample. For example, for

sample F1010, when the stress was increased to 2 MPa

(Fig. 5b), the energy is observed to propagate across the

fractures that define the central block into neighboring

blocks. When the stress was increased to 4 and 6 MPa

(Fig. 5c, d), the energy that propagated across the frac-

tures increased in amplitude. Phase contrasts between

neighboring blocks were clearly observed, and fracture-

network geometry or block size between fractures was

clearly delineated under high loading conditions (Figs. 4,

5, 6). The wave front images also show that energy

transmission was not uniform across the different frac-

tures in the network (e.g., sample F2020 in Fig. 4 or

samples F1010 or F1020 in Figs. 5 and 6). The variation

in transmitted amplitude indicates that fracture-specific

stiffnesses among the fractures in the network differed,

even for applied bi-axial loads with equal magnitudes.

Fig. 3 Data visualization of the

3D measured acoustic wave

fronts (a) and the central

waveform (b) from the intact

sample

Fig. 4 2D snapshots of the

acoustic wave front in time for

bi-axial stresses of a 0.4 MPa,

b 2.0 MPa, c 4.0 MPa, and

d 6.0 MPa for the F2020

sample. Dashed lines indicate

the fractures
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The effect of fracture intersections and the individual

fractures in the network on a propagating wave front is shown

in Fig. 7 from a comparison of signals propagated a fixed

distance from the source (Fig. 7, insets). Signals propagated

the same distance in the intact sample are shown in Fig. 7a,

and their locations are given by the red dots in Fig. 7a (inset).

As expected for a uniform isotropic sample, the arrival time

and amplitude of the direct wave (first arrival) are uniform.

Signals propagated across a single fracture (red signals) and

across a fracture intersection (blue signals) are shown in

Fig. 7b, c for sample F2020. The positions on the sample

where the signalswere recorded are shown by the red and blue

dots on the drawing of the imaged region of the sample (inset

in Fig. 7). The positions were selected to have the same travel

path length as that for the intact sample. Fracture intersections

strongly attenuated the amplitude of the signal at both low

(0.4 MPa) and high (4.0 MPa) bi-axial stresses, though a

slight increase in amplitude is observed at high stress. Signals

propagated across a fracture increased significantly with an

increase in stress. The fracture-specific stiffness differed

between the vertical and horizontal fractures as indicated by

the differences in amplitude and arrival time for waves

propagated across these fractures.

4 Discussion

The wave front imaging data showed that (a) energy is

confined in blocks defined by two orthogonal fracture sets,

(b) the fracture-specific stiffness varied among the frac-

tures within a set and between fracture sets, and (c) that

fracture intersections strongly attenuate and delay propa-

gating waves. In this section, we address these three

observations with currently available theoretical approa-

ches and analyses.

4.1 Wave-Guiding

Previous studies demonstrated theoretically and experi-

mentally that wave-guiding between parallel fractures is

controlled by the ratio of the acoustic wavelength to frac-

ture spacing, fracture-specific stiffness, and matrix prop-

erties (Shao et al. 2015; Xian et al. 2001). Wave-guiding

between two fractures is illustrated in Fig. 8. From theory,

the wave-guiding condition requires constructive interfer-

ence between the original wave and the twice-reflected

wave. A monochromatic plane wave with wavelength, k,
and phase velocity, v, is reflected from the upper fracture

Fig. 5 2D snapshots of the

acoustic wave front in time for

bi-axial stresses of a 0.4 MPa,

b 2.0 MPa, c 4.0 MPa, and

d 6.0 MPa for the F1010

sample. Dashed lines indicate

the fractures
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and then reflected a second time from the lower fracture

plane. This twice-reflected wave propagates in the same

direction as the original wave leading to constructive and

destructive interference. The wave-guiding condition

requires the phase difference between the original and the

reflected wave to be an integer multiple of 2p. For wave-
guiding between fractures, the phase difference includes a

geometrical component related to the path length of the

reflected waves and a dynamic component related to the

phase shift upon each reflection from a fracture (Shao et al.

2015; Xian et al. 2001). The phase shift upon reflection

depends on the matrix properties, the fracture-specific

stiffness, and the signal frequency. These previous studies

showed that as fracture-specific stiffness increases, the time

delay upon reflection decreases, the number of modes

decrease for a given frequency band, and less energy is

confined in the wave-guide as more energy is transmitted

across the fractures and out of the wave-guide. Guided

modes between fractures tend to be leaky.

While the theory for a rectangular wave-guide bounded

by fractures and intersections has not yet been derived,

signatures of wave-guiding are observed in the data from

the samples with orthogonal fracture sets. Figure 9 pro-

vides a comparison of the central signals from all three

fractured aluminum samples (F2020, F1010 and F1020) for

stresses of 0.4, 2.0, and 4.0 MPa. Fracture spacing (or

shape of the central block/wave-guide) affects the trans-

mitted signal. For example, the signal from F2020 exhibits

a strong first arrival that is not observed for samples F1010

and F1020. Also note that the succeeding wave packets for

all three samples differ in arrival times, frequency, and

amplitudes. These differences arise from the size and shape

of the waveguide, defined by the vertical and horizontal

fracture spacing, and from the stiffnesses of the fractures

that bound the rectangular wave-guide. The geometry of

the wave-guide affects the geometric component of the

time delay (i.e., differences in path length) that contributes

to the phase shift that causes constructive/destructive

interference and affects the amplitude of the guided mode.

The signal from sample F2020 exhibited the cleanest and

strongest first arrival because the geometric path length

was the largest of the three samples. In Sample F2020, the

Fig. 6 2D snapshots of the acoustic wave front in time for bi-axial stresses of a 0.4 MPa, b 2.0 MPa, c 4.0 MPa, and d 6.0 MPa for the F1020

sample. Dashed lines indicate the fractures
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lowest order mode was sufficiently delayed and did not

interfere with the first cycle of the direct wave. Strong

destructive interference between the direct wave and the

lowest order guided mode almost extinguishes the first

arrival in the signals from samples F1010 and F1020.

The time delay and amplitude of guided modes is also

affected by fracture-specific stiffness. The dynamic time

delay results from the phase shift upon reflection from the

fracture. For every reflection, the amount of energy that is

transmitted across the fracture depends on j. Studies on

Fig. 7 Transmitted signals taken from the same distance (20 mm) to center from a the Intact sample and b the F2020 sample at 0.4 and 4 MPa

stress conditions. In b the blue signals propagated across an intersection
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single fractures have shown that wave transmission across

a fracture increases as j increases (Far et al. 2014; Lubbe

et al. 2008; Pyrak-Nolte et al. 1990a, b; Shao et al. 2015;

Xian et al. 2001). By increasing the bi-axial loads on the

sample, the amount of energy confinement was reduced

because the stiffness of the fractures increased. Fracture-

specific stiffness increases when the contact between the

two fracture surfaces increases (Greenwood and Wil-

liamson 1966; Hopkins et al. 1990; Kendall and Tabor

1971; Pyrak-Nolte et al. 1987). More energy was trans-

mitted across the fractures at high stress than at low

stresses leading to a reduction in amplitude in the guided

modes with increasing stress.

The amplitudes of the different phases in the central

waveforms were examined to delineate signal components

associated with guided modes. Figure 10 shows peak-to-

trough (P2P) amplitudes as a function of stress for Peaks

2–6 (see inset in Fig. 10) for the central waveforms from

Sample F2020. The P2P amplitudes were normalized by

the amplitude from Peak 1 as a function of bi-axial external

stresses. Peak 1 is the direct bulk arrival (not reflected or

guided), whose amplitude is independent of the fracture-

Fig. 8 A schematic drawing of the wave-guiding condition for two parallel fractures (shown in red) (color figure online)

Fig. 9 Central waveforms for F2020, F1010 and F1020 for bi-axial stresses of a 0.4 MPa, b 2.0 MPa and c 4.0 MPa

Fig. 10 Normalized P2P amplitudes for Peak 2–6 (inset, normalized

by P2P amplitude of the first peak-direct arrival) as a function of bi-

axial external stresses for sample F2020
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specific stiffness. The amplitudes for Peaks 2–4 in the first

wave packet did not decrease with increasing stress as

dramatically as the amplitudes for Peaks 5 and 6 in the later

arriving wave packet. Later arriving signals have been

shown to contain higher-order guided modes in a system

with a single set of parallel fractures (Shao 2015). Higher-

order modes are more sensitive to fracture-specific stiffness

because these modes reflect off the fracture more times

than lower-order modes. Every time a mode is reflected off

of a fracture, it loses energy, i.e., a portion of the energy is

transmitted across the fracture where the amount trans-

mitted is a function of fracture-specific stiffness and signal

frequency. Lower-order guided modes (e.g., m = 0 or

m = 1, see (Shao et al. 2015)) reflect fewer times and often

overlap in time with the direct bulk arrival and can be

difficult to distinguish or separate from the direct wave for

short travel paths. Decoupling and quantifying time delays

for each mode require theoretical work on rectangular

wave-guides bounded by fractures. The solution for guided

modes will increase in complexity if the fracture-specific

stiffness of the two fracture sets is not equal and/or the

fracture-specific stiffnesses vary among the fractures in

each set.

4.2 Fracture-Specific Stiffness

As noted in the result section, snapshots of the acoustic

wave front showed that energy transmitted across each

individual fracture in a network was not uniform

(Figs. 4, 5, 6), suggesting a variation in fracture-specific

stiffness among the fractures in the network. An analysis

was performed on signals from sample F2020 to estimate

the specific stiffness of the fractures surrounding the

central wave-guide (Fig. 11a): horizontal upper (trans-

mitted to A), horizontal lower (transmitted to C), vertical

left (transmitted to B), and vertical right (transmitted to

D). For these four locations, the wave traveled from the

source focal point and was transmitted across a fracture

to the receiver collection point. The displacement dis-

continuity theory (Nakagawa 1998; Pyrak-Nolte 1996;

Pyrak-Nolte et al. 1990b; Schoenberg 1980) was used to

estimate the stiffness of these four fractures from the

data.

The benefits of using the displacement discontinuity

theory are (1) the discreteness of a fracture is maintained

such that waves are not delayed nor attenuated until

crossing the fracture, (2) fracture-specific stiffness is an

effective parameter that captures the complicated void

topology that is linked to the mechanical and hydraulic

response of a fracture (Petrovitch et al. 2013, 2014; Pyrak-

Nolte and Nolte 2016), (3) frequency dependent group time

delays, transmission and reflection coefficients arise from a

purely elastic model, and (4) energy partitioning of waves

into body waves arises and depends on fracture-specific

stiffness. A disadvantage of this theoretical approach is that

fractures are assumed to be infinite in extent and does not

yield scattered modes from the edges or fracture tips. This

disadvantage is often overcome in numerical methods by

incorporating displacement discontinuity representations of

finite-size fractures (De Basabe et al. 2010) or by explicit

modeling of the physical geometry of the fracture (Petro-

vitch 2013; Shao et al. 2015).

The P-wave transmission coefficient was calculated from

Eq. (1) as a function of frequency and fracture-specific

stiffness for an incident angle of 78.7�, and assuming the

seismic impedance, Z, of aluminum:

Fig. 11 a A snapshot of the

wave front in sample F2020.

b Fracture-specific stiffness for

the 4 fractures surrounding the

central wave-guide
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where h and u are the angles for the compressional, P, and

shear, S, waves, respectively, and subscript 1 represents the

medium that contains the incident and reflected waves, and

subscript 2 represents the medium containing the transmitted

waves. jz and jx represent the normal and shear stiffnesses

of the fracture, respectively. Experimental P-wave trans-

mission ratios were determined through spectral analysis, by

dividing the spectral amplitude from a transmitted signal by

that from the central signal, which only propagates in the

solid part of the sample. The assumption was made that very

little energy was lost when a wave propagated in the solid

aluminum. Experimental results were fitted to the theory for

a frequency range from 0.5 to 0.75 MHz, which spanned the

spectral peak (dominant frequency) for a single fracture and

was not significantly affected by other reflected/guided

modes. With this method, fracture-specific stiffnesses were

estimated for four fractures in sample F2020 (Fig. 11b) for

different bi-axial stresses (yet equal in the vertical and

horizontal directions). As the applied bi-axial load increased,

fracture-specific stiffness increased (Fig. 11b). This provides

a quantitative validation of the qualitative observation of the

difference in fracture-specific stiffnesses among the frac-

tures from the 2D snapshots in F2020 (Fig. 4b). For exam-

ple, the specific stiffness of the left vertical fracture (B in

Fig. 4a, b) is higher than the other three fractures (Fig. 11b).

In Fig. 4, the wave energy transmitted across the left vertical

fracture was observed to be higher than the energy trans-

mitted through the other three fractures, especially at 4 MPa

(Fig. 4c) and 6 MPa (Fig. 4d). At low stress, the stiffnesses

of fractures A, C and D were 30–40 % of the stiffness of

fracture B (Fig. 11b). At high stress, the stiffness of fractures

C and D increased to 70 % of the stiffness measured for

fracture B, while the stiffness for fracture A remained at

40 % of that measured for fracture B. The variation in

fracture stiffness among fractures in a network will result in

additional complexity in theoretical approaches for deter-

mining wave attenuation in fractured media.

4.3 Fracture Intersections

Recently, Abell (2015) showed theoretically and experimen-

tally that a fracture intersection supports guidedmodes that are

highly localized to the intersection and exhibit distinct particle

motions. These intersection waves, propagated along the

intersection, are sensitive to the coupling along the intersec-

tion and result in energy partitioning between bulk and

intersection waves. However, the effect of an intersection on

wave transmission across an intersection has not been previ-

ously studied experimentally. The acoustic wave front data-

sets obtained here enable the observation and quantification of

the effect of fracture intersections on the spectral content,

amplitude and time delay of a propagating wave.

The spectra of waves propagated across a single fracture

and across an intersection are compared to examine the

seismic response of an intersection. A wavelet transfor-

mation (Nolte et al. 2000) was applied to signals propa-

gated across an intersection, and across a single fracture

(Fig. 12). Fractures behave as low-pass filters with a

characteristic frequency xc = j/Z. As stress is applied to a

fracture, the fracture stiffness increases thus increasing xc

and enabling the transmission of higher frequency com-

ponents. This behavior is observed in the spectra for the

data from the single fracture (Fig. 12a) as well as in the

spectra from waves propagated across an intersection

(Fig. 12b). Waves propagated across a single fracture were

larger in amplitude and had a higher peak (or dominant)

frequency than the waves propagated across the fracture

intersection. The intersection also behaves as a low-pass

filter, but with a dominant frequency that is lower than that

of the single fracture by a factor of *2.

The increase in spectral amplitude of the waves propa-

gated across an intersection with increasing stress indicates

that the seismic response of an intersection is sensitive to the

coupling along the intersection indicating that there is an

effective ‘‘intersection stiffness.’’ The amplitudes of the

waves propagated across the intersection are smaller by a

factor of 10 or more than the amplitudes from waves prop-

agated across the single fracture. Theoretical calculations

were performed using Eq. (1) to determine whether the

observed attenuation across the intersection is simply equal

to wave transmission across two fractures (i.e., using TP
2 and

assuming angles of incidence of 78.7� and 82� for the single
fracture and the intersection, respectively). The analysis

found that for the estimated fracture stiffness (Fig. 11) and

frequency range of the data (Fig. 12), the amplitudes of the

waves transmitted across the intersection should be smaller

�jz cos h1 jz cos/1 �jz cos h2 þ ixZP cos 2/2 jz sin/2 � ixZS sin 2/2

�jx sin h1 �jx cos/1 jx sin h2 � ix
Z2
S

ZP
sin 2h1 jx cos/2 � ixZS cos 2/2

�ZP cos 2/1 ZS sin 2/1 ZP2 cos 2/2 �ZS sin 2/2

Z2
S

ZP
sin 2h1 ZS cos 2/1

Z2
S

ZP
sin 2h2 ZS cos 2/2

2
666664

3
777775

Rp

Rs

TP
Ts

2
664

3
775 ¼

�jz cos h1
jx sin h1
ZP cos 2/1

Z2
S
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sin 2h1

2
66664

3
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ð1Þ
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by a factor that ranges between 1.1 and 4 at most. The large

attenuation observed in the measured data for the intersec-

tion arises from the energy partitioning into, and interference

among, transmitted waves and guided waves (see Sect. 4.1).

Currently, no theory exists for a wave impinging on an

intersection that examines energy partitioning.

Single fractures delay propagating waves, and the mag-

nitude of the group time delay depends on the Z, x, and j.
The wave front imaging data were also used to examine the

effect of fracture intersections and individual fractures on

arrival times. Signal delays caused by the fractures in the

network were determined and compared to the delays

measured for waves propagated through the intact sample.

From the 3D wave front imaging datasets for the intact and

F2020 samples, the time delay for a series of waveforms

along a line for each sample were determined (Fig. 13). The

signals were taken from receiver positions along a vertical

line that is horizontally 10 mm away from the center of the

wave front (Fig. 13a). For the intact sample (Fig. 13b), the

signals have uniform amplitudes and also exhibit a clear

curvature in time delay that occurs because of the difference

in travel path length between the source and receivers

(Fig. 14a) as the signal delay increases for receiver posi-

tions farther from the center of the sample.

The effect of a single fracture and a fracture intersection

on a propagating wave front is also shown in Fig. 13. Sig-

nals from sample F2020 (for the same receiver positions as

for the intact sample) are shown in Fig. 13c–f for bi-axial

stresses of 4, 8, 10, and 14 MPa, respectively. The signals

shown in blue were recorded at the location of the fracture

intersections. Signals at the same positions as the intersec-

tion are also shown in blue for the intact sample for com-

parison. At low stress, signals (blue) collected at a fracture

intersection were significantly delayed compared to the

signals from the intact sample as well as at adjacent receiver

positions on the fracture sample. At 4 MPa, the signal is

delayed by half a cycle. As the bi-axial stress on the sample

increased, the amplitudes of the waves propagated across the

intersections increased and the arrival time decreased.

Relative time delays were quantified with respect to the

central waveforms in the Intact and F2020 samples to

determine the effect of intersections on time delays. The

change in the relative arrival time for the intact sample

(Fig. 13b) occurs because of the difference in the length of

the travel path between the source and receiver (Fig. 14a).

The source was held at a fixed location and the travel path

increased as the receiver was translated away from the

source position. Figure 14b, c shows the relative time

delays along a vertical line through the center of the wave

front and through a vertical fracture that is 10 mm from the

wave front center, respectively. The relative time delays in

Fig. 14b, c were corrected for the geometric delay by

subtracting the relative delay measured on the intact sam-

ple from the values for the fractured sample. In Fig. 14b,

the relative time delay is zero for positions from -8 mm to

?8 mm because the waves recorded between these posi-

tions only traveled in the intact portion of sample F2020.

When a wave propagated across a fracture (positions

-10 mm and ?10 mm), the signal was delayed. The delay

decreases for signals recorded below -10 mm and above

10 mm because the time delay decreases as the angle of

incidence on the fracture increases (Pyrak-Nolte et al.

1990a). As the fractures closed under stress, the time delay

across the fractures decreased.

A comparison of the group time delays for a single

fracture, two fractures, and two fracture intersections is

Fig. 12 Spectra from waves

propagated across left a single

fracture and right across an

intersection from sample F2020

for stresses of 2, 4 and 6 MPa
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given in Fig. 14c. The geometrically corrected relative

time delays are shown for signals recorded along a vertical

fracture that is 10 mm from the wave front center (see inset

in Fig. 14c). Signals for positions from -8 mm to ?8 mm

propagated across a single fracture, while signals from

positions less than -14 mm and greater than ?14 mm

Fig. 13 Compressional wave signals from the recorded wave front

taken at receiver positions along a a vertical line 10 mm from the

center of the sample (indicated by the red arrow) from the b the intact

sample, and c–f sample F2020 for bi-axial stresses that ranged form

4–14 MPa (color figure online)

Fig. 14 a Geometry used to calculate relative time delay across, b single fractures, and c across a single fracture and fracture intersections. The

red arrow indicates the direction of the position axis (color figure online)
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propagated across two fractures (one horizontal and one

vertical). As bi-axial stress was increased on the sample,

the signal delay decreased across the fractures as fracture-

specific stiffness increased. The specific stiffness of the

fractures varied by a factor of 2.5 between the delays

measured across the two fractures for positions less than

-14 mm and for those greater than ?14 mm. This differ-

ence in fracture-specific stiffness is consistent with the

observation of larger amplitudes in the lower left corner of

the snapshots of the wavefronts for sample F2020 in

Fig. 4c, d compared to the upper left region of the

snapshots.

At low stress, the time delays observed at the intersec-

tions (positions -11 mm and ?11 mm) are greater than

twice the delay caused by a single fracture or by two frac-

tures. At 4 and 6 MPa, the time delay from a single fracture

was 0.14 ls, and from two fractures the delays were 0.14

and 0.3 ls. The group time delays for the two intersections

were 0.5 and 0.6 ls, respectively, at low stress. As stress

increased on the sample, the time delays decreased but a

significant difference in delay at the intersections was still

observed. This observation provides additional evidence

that wave propagation across an intersection is sensitive to

coupling or ‘‘stiffness’’ of an intersection. The large time

delay observed in the measured data for the intersection

most likely arises from the energy partitioning into, and

interference among, transmitted waves, guided waves, and

other scattered modes (see Sect. 4.1).

5 Conclusions

Elastic waves propagated through a medium with orthog-

onal fracture sets have signals that are rich in information

related to fracture spacing, fracture-specific stiffness, and

mechanical coupling along fracture intersections. However,

interpretation of these signals requires the identification of

possible guided modes that propagate along fractures,

between fractures and along fracture intersections, and also

requires an understanding of the effect of fracture inter-

sections on body or bulk waves. From the data presented in

this paper, intersections between fractures were observed to

cause additional time delays and attenuation of the wave

front that were larger than would be expected simply from

the superposition of effects from two fractures acting alone.

New theories for wave propagation in rock with orthogonal

fracture sets are needed that account for energy partition-

ing, by the fractures and fracture intersections, into trans-

mitted/reflected waves, guided modes and other scattered

waves to explain the wave interference that gives rise to the

strong delays and attenuation observed in the experimental

data.

In addition, though the experiments were carried out

under uniform bi-axial loading conditions, fracture stiff-

nesses differed by *30–70 % among fractures within and

between fracture sets. Future theoretical work needs to

account for variation in fracture stiffness among fractures

within a network given the stress gradients in the Earth and

non-uniform stress conditions caused by anthropogenic

activities such as subsurface excavation, and extraction/

storage of fluids. Finally, orthogonal fracture sets formed

rectangular wave-guides that confined energy and gener-

ated leaky guided modes. The amount of energy that

‘‘leaks’’ out of a wave-guide depends on the frequency of

the signal and the stiffness of the fractures that define the

boundaries of the wave-guide. The arrival time and

amplitude of these guided modes were affected by the

shape of the rectangular wave-guide that was defined by

the fracture spacings of the vertical and horizontal fractures

sets. Further development of theoretical and numerical

tools is needed to account for the effect of fracture inter-

sections and non-uniform fracture stiffness on propagating

waves through fractured media. Ignoring the effect of

intersections on a propagating wave can lead to misinter-

pretation of fracture orientations, fracture-specific stiffness,

and effective moduli for a fractured medium. If the

observed large time delays from fracture intersections were

interpreted as simply arising from fractures, the interpreted

orientation of the fractures would be off 45� and affect the

estimation of elastic constants used in engineering design

analysis.
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