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Abstract A rock mass includes a number of joints, which

govern the mechanical behavior of the rock mass and

greatly affect stress wave propagation. Generally, joints do

not parallel with each other, resulting in multiple wave

reflections between joints and complex wave propagation

process in rock masses. The present study presents an

approach to analyze stress wave propagation through a

rock mass with two non-parallel joints when the angle

between the two joints is \10�. For incident P-wave

impinging on this kind of rock mass, multiple reflections

take place between the two joints. Meanwhile, transmitted

waves are generated and propagate successively away from

the joints. The mathematical expressions for P-wave

propagation across the two joints are established in time

domain by analyzing the wave field in the rock mass. By

comparing with the result from numerical simulation, the

new approach is proved to be effective to analyze wave

propagation across two non-parallel joints, where the

influence of joint tips on wave propagation is neglected.

Parametric studies show that the joint stiffness, joint angle

and frequency of incident wave have different effects on

transmission and reflection coefficients.

Keywords Non-parallel joints � Stress wave propagation �
Time-domain analysis � Transmission and reflection

coefficients

List of Symbols

kn1 and ks1 Normal and tangential stiffness of joint J1,

respectively

kn2 and ks2 Normal and tangential stiffness of joint J2,

respectively

cp and cs P- and S-wave propagation velocities,

respectively

Ip and Is Incident P- and S-waves, respectively

Tp and Ts Transmitted P- and S-waves, respectively

Rp and Rs Reflected P- and S-waves, respectively

vi Particle velocity, where the subscript

i represents the wave type

t Time

zp and zs Wave impedances of P- and S-waves,

respectively

q Rock density

Tx and Ty Horizontal and vertical components of

transmission coefficient, respectively

Rx and Ry Horizontal and vertical components of

reflection coefficient

AI Amplitude of incident wave

f Frequency of incident wave

x Angular frequency

Kn and Ks Normalized normal and tangential

stiffness, respectively

a1 and a2 Angles between the two joints and x-axis,

respectively

a and b Emergence angles of P- and S-waves,

respectively

hpcr and hscr Critical angles of P- and S-waves,

respectively
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hi
j (j = J1

and J2)

Emergence angle of waves from the joint,

where the subscript i denotes the wave type

and superscript j denotes the joint

hxii Angles between the waves and vertical

direction, where subscript i denotes the

wave type

Li Traveling distance of stress wave, where

the subscript i denotes the wave type

X Abscissa

xi Horizontal coordinate of a point in the

numerical model

Dx Horizontal distance between two adjacent

points

q Point number

1 Introduction

Joints widely exist in rock masses and greatly affect stress

wave propagation. The interaction between stress waves

and rock joints is an important issue in rock engineering.

Theoretical and numerical methods have widely been

adopted to study wave propagation in a jointed rock mass.

The equivalent medium method (EMM) and the dis-

placement discontinuity method (DDM) are two typical

theoretical methods. Generally, the EMM treats the joints as

a part of rock medium with effective moduli so that the rock

mass can be regarded as a continuous medium (Schoenberg

and Muir 1989; Cook 1992). A viscoelastic equivalent

medium method coupled with the virtual wave source

method was proposed to effectively analyze the process of

multiple wave reflections between parallel joints for one-

dimensional problem (Li et al. 2010). The virtual wave

source method was then modified to show the multiple wave

reflections for wave propagation across parallel joints with

arbitrary incident angle (Zhu et al. 2011). Later, Ma et al.

(2012) improved the viscoelastic equivalentmediummethod

for investigating wave propagation across nonlinear joints.

In the DDM, each joint is taken as a non-welded interface on

which the stress is continuous, while the displacement is

discontinuous (Schoenberg 1980). Based on the DDM,

Pyrak-Nolte et al. (1990a) analyzed wave transmission

characters across a single dry or fully liquid-filled joint.

Pyrak-Nolte et al. (1990b) derived the closed-form solutions

in a matrix form for a harmonic incident wave across a linear

fracture. When the method of characteristic (MC) (Achen-

bach 1973; Cai and Zhao 2000) was combined, the DDM

became an effective analytical method to study P- and

S-wave propagation normally across a single or a set of

parallel nonlinear joints (Zhao and Cai 2001; Zhao et al.

2006). The DDM combined with MC was then applied to

separately analyze the effects of in situ stress (Fan and Sun

2015) and unequal close–open behavior of joints (Li et al.

2016) on wave propagation. Zhu et al. (2012) adopted a

modified recursive method to analyze multiple wave

reflections among parallel joints filled with viscoelastic

medium. Perino et al. (2012) adopted the scattering matrix

method (SMM) to analyze wave propagation across elastic

and/or viscoelastic joints. Li et al. (2012) proposed a time-

domain recursive method (TDRM), which considers the

compatibility condition at joint interfaces to establish a wave

propagation equation in time differential form for stress

wave propagating across a linear joint set with arbitrary

emergence angle. The TDRM was later extended to analyze

wave propagation across nonlinear joints (Li 2013).

Numerical modeling is an alternative way to study wave

propagation besides theoretical and experimental methods,

especially when the theoretical solutions are impossible to

be obtained and experiments are difficult to be conducted.

For example, Chen and Zhao (1998) simulated the wave

propagation and dynamic responses of a rock mass with

joints under explosive loading. Zhao et al. (2008) modeled

the stress wave vertically propagating along linear and

nonlinear joints and obtained the relationship of interaction

between stress waves and joints. The numerical ones were

then compared with their experimental results. The com-

monly used numerical modeling methods include the finite

element method (FEM) (e.g., Goodman et al. 1968), the

boundary element method (BEM) (Crotty and Wardle

1985) and the discrete element method (DEM) (Cundall

1971). The FEM, i.e., a continuum-based method, takes the

joint as a special unit, while a joint is regarded as a

boundary surface in the BEM analysis. The first two

methods are incapable of dealing with many intersecting

interfaces and have limitations including small displace-

ments of joints and small rotations of discrete rock blocks

which restrict their applications in discontinuous problems.

Compared with the other two numerical methods, DEM has

some advantages such as well-developed theories and more

easily handleable softwares. The universal discrete element

code (UDEC), i.e., a sort of software based on DEM, has

been proved to be accurate and efficient to simulate wave

propagation across in jointed rock masses (e.g., Chen and

Zhao 1998; Zhao et al. 2008; Zhu et al. 2013).

In nature, joints commonly exist in a rock mass with

arbitrary distribution pattern. When a stress wave impinges

on joints, the transmission and reflection from joints as well

as multiple reflections between joints take place. The split

Hopkinson pressure bar (SHPB) tests carried out byWu et al.

(2013, 2014) showed that the process of multiple reflections

between two discontinuous boundaries is complicated.

Wave propagation across non-parallel joints is more com-

plex. Theoretical analyses for stress wave interaction with

non-parallel rock joints have less been reported. The inten-

tion of the study is to analyze wave propagation across two

non-parallel rock joints and to better understand the effects
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of influence factors on wave propagation. The incident wave

is assumed to be a longitudinal (P-) wave. In the study, the

stress wave transmitting and reflecting processes between

the two non-parallel joints are first investigated. The wave

propagation equations are then established from the wave

field between and outside the two joints. After that, verifi-

cation is conducted by comparing two kinds of results from

the analytical method and numerical simulation method.

Finally, the effects of some parameters, such as the joint

stiffness, joint angle and the frequency of incident wave, on

wave propagation are analyzed, respectively.

2 Methodology

2.1 Problem Description

Assume that there are two non-parallel joints (denoted as

J1 and J2) in a rock mass, as shown in Fig. 1. The joints are

in the x–z plane and extend largely in the x–y plane. The

angles between the two joints and the x-axis (e.g., the

horizontal direction) are a1 and a2, respectively. When an

incident plane P-wave impinges on the joints, wave

transmission and reflection take place at the joints.

The rocks on both sides of the joints are assumed to be

elastic, homogeneous and isotropic. The joints are linearly

elastic, and the normal and tangential stiffness are kn1 and

ks1, respectively, for J1, and kn2 and ks2, respectively, for

J2. The incident P-wave propagates upward and along the

axis y, as shown in Fig. 1.

The process of wave propagation across the two joints

includes three portions: incident wave impinging on and

reflected from J1, multiple reflections between two joints,

and transmitted waves from J2. The rock mass with two

non-parallel joints can be divided into three zones, i.e.,

Zone I, II and III in Fig. 1, according to the wave propa-

gation process. The waves in Zone I include three groups,

i.e., (1) the incident P-waves; (2) the waves reflected from

J1; (3) the transmitted waves when multiple waves in Zone

II impinge on J1. In Zone II, there exist multiple waves

transmitted from J1 and reflected between J1 and J2. The

waves in Zone III are only the transmitted waves from J2.

Accordingly, for the rock mass containing two non-parallel

joints, the waves in Zone III can be supposed to be the

transmitted waves, and the waves in Zone I except the

incident P-waves can represent the reflected waves.

Besides the three zones of wave field, the tip of each

joint causes stress concentration during wave propagation

around the tip. In this study, we focus on studying wave

propagation before and after the joints, so that the effect of

joint tip is neglected.

2.2 Wave Propagation Across a Single Joint

When a P- or S-wave impinges on a rock joint, both reflection

and transmission take place, as shown in Fig. 2, where Ip or Is
denotes the incident wave, Rp and Rs denote the reflected P-

and S-waves, respectively, and Tp and Ts denote the trans-

mitted P- and S-waves, respectively. The symbols a and b
represent the emergence angles of P- and S-waves, respec-

tively. The waves satisfy the Snell’s law; therefore, there is

sin b/sin a = cs/cp, where cp and cs are the propagation

speeds of P- and S-waves, respectively, and a and b are the

emergence angles of P- and S-waves, respectively. Based on

the DDM and the compatibility condition at joint interfaces,

Li et al. (2012) derived thewave propagation equations in the

time domain for two-dimensional problems by analyzing the

relation between stress wave and a single rock joint. The

equations can be expressed as:

vRp
vRs

� �
ðiÞ
¼ �B�1AmvImðiÞ þ B�1C

vTp
vTs

� �
ðiÞ

ð1Þ

vTp
vTs

� �
ðiþ1Þ

¼ G�1DvImðiÞ þ G�1E
vRp
vRs

� �
ðiÞ
þG�1F

vTp
vTs

� �
ðiÞ

ð2Þ

where vRp and vTp denote the particle velocities of the

reflected and transmitted P-waves, respectively; vRs and vTs
denote the particle velocities of the reflected and
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Fig. 2 Schematic view of incident, reflected and transmitted waves
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transmitted S-waves, respectively. vIm is the particle

velocity of the incident wave, and m is p or s, representing

the wave type. The matrix parameters A to G are written as

Ap ¼
zp cosð2bÞ

zp sinð2bÞ tan b= tan a

� �
; ð3Þ

As ¼
zs sinð2bÞ
�zs cosð2bÞ

� �
; ð4Þ

B ¼ zp cosð2bÞ �zs sinð2bÞ
�zp sinð2bÞ tan b= tan a �zs cosð2bÞ

� �
; ð5Þ

C ¼ zp cosð2bÞ zs sinð2bÞ
zp sinð2bÞ tan b= tan a �zs cosð2bÞ

� �
; ð6Þ

D ¼ knDt cos a
ksDt sin a

� �
; ð7Þ

E ¼ �knDt cos a knDt sin b
ksDt sin a ksDt cos b

� �
; ð8Þ

F ¼ �knDt cos aþ zp cos 2bð Þ �knDt sin bþ zs sin 2bð Þ
�ksDt sin aþ zp sin 2bð Þ tan b= tan a ksDt cos b� zs cos 2bð Þ

� �
;

ð9Þ

G ¼ zp cosð2bÞ zs sinð2bÞ
zp sinð2bÞ tan b= tan a �zs cosð2bÞ

� �
ð10Þ

In the matrix parameters, zm (m is p or s) denotes the

seismic wave impedance of P- or S-wave in the intact rock

and equals to qcm. Equations (1) and (2) will be used for

wave propagation across one joint with arbitrary emer-

gence angle.

2.3 Wave Propagation Between Two Non-parallel

Joints

As shown in Fig. 1, the intersection of the extensions of the

two joints is at the coordinate origin O. The scope of the

monitoring abscissa is xi 2 (x0, xm). Assume there is an

incident P-wave with wave front at y = ym. When the

incident wave arrives at one point M with coordinate (xi, yi)

on the joint J1, the traveling distance is

LI ¼ ðxm � xiÞ tan a1 ð11Þ

If the incident P-wave at y = ym is denoted as v0(t), the

incident wave arriving at M can be written as

vI0ðtÞ ¼ v0ðt � LI
�
cpÞ ð12Þ

When the incident wave propagates one distance and

impinges on J1, the incident angle is a1, the emergence

angles of both transmitted and reflected P-waves from J1

are a1, and the emergence angles of both transmitted and

reflected S-waves produced from J1 are b1. Since the plane
P- and S-waves across J1 satisfy the Snell’s law, i.e., b1-
=sin-1[sin(a1)cs/cp], the reflected P- and S-waves from J1

and the transmitted waves from J1 can be obtained from the

wave propagation equation across a single joint introduced

in Sect. 2.2. The P- and S-waves reflected from J1 will then

propagate downward away from J1. The reflected waves

from J1 are denoted as vRm0
J1 (t), where the subscript m is

p or s denoting for the reflected P- and S-waves,

respectively.

The angle between the reflected P-wave and the axis y

(e.g., the vertical direction) is 2a1, and the angle between

the reflected S-wave and the y-axis is a1 ? b1. Therefore,
the vertical and horizontal components of the particle

velocity caused by the two reflected waves can be derived

as

vxiRpyðx; tÞ ¼ � cos 2a1 � vJ1Rp0ðtÞ
vxiRpxðx; tÞ ¼ � sin 2a1 � vJ1Rp0ðtÞ
vxiRsyðx; tÞ ¼ sinða1 þ b1Þ � vJ1Rs0ðtÞ
vxiRsxðx; tÞ ¼ � cosða1 þ b1Þ � vJ1Rs0ðtÞ

8>><
>>:

ð13Þ

where the superscript xi denotes the abscissa of one point

on J1 and the variable parameter x in parentheses presents

the abscissa of the emergence points of each reflected

waves. The transmitted P- and S-waves generated from J1,

vTp0
J1 (t) and vTs0

J1 (t), then become new incident waves and

propagate toward the joint J2. The newly generated inci-

dent waves impinging on J2 are written as

vJ2ImNðtÞ ¼ vJ1Tm0ðt � LJ1m0=cmÞ ð14Þ

where the subscript N denotes the times of interaction

between the wave and joint. The traveling distance of the

new incident wave between the two joints is denoted as

Lm0
J1 (t). If the waves are only caused by the incident wave,

N is equal to one. The emergence angles of the newly

generated incident P- and S-waves arriving at J2 are a2 and
a1 ? a2 - b1, respectively. When the normal and shear

stiffness of J2 are known, the transmitted and reflected

waves generated from J2 can be calculated from Eqs. (1)

and (2). The induced four types of transmitted waves are

denoted as vTkmN
J2 (m = p, s; k = 1, 2), which is shown in

Fig. 1. In Zone III, the transmitted P- and S-waves gener-

ated from J2 are expressed as

vxiTmðx; tÞ ¼ vJ2TkmNðtÞ ð15Þ

where x denotes the abscissa of a point on J2. When k are 1

and 2, x are xi and xi[1 ? tan a1tan (a1 - b1)], respec-

tively. Since the waves impinging on and generated from

J2 also satisfy the Snell’s law, the emergence angles of the

four transmitted P- and S-waves, hTkmN
J2 , can be obtained

and written as sin-1(sin a2�cs/cp), a2, a1 ? a2 - b1 and

sin-1(sin (a1 ? a2 - b1)�cp/cs), respectively. The angles

between the transmitted P- and S-waves and the axis y are

hxiTmðxÞ ¼ hJ2TkmN � a2 ð16Þ
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From Eqs. (15) and (16), the vertical and horizontal

components of each transmitted wave from J2 can be

expressed as

vxiTpyðx; tÞ
vxiTpxðx; tÞ

� �
¼ vxiTpðx; tÞ �

cos hxiTpðxÞ
sin hxiTpðxÞ

� �
ð17Þ

vxiTsyðx; tÞ
vxiTsxðx; tÞ

� �
¼ vxiTsðx; tÞ �

� sin hxiTsðxÞ
cos hxiTsðxÞ

� �
ð18Þ

The four reflected waves from J2, denoted as vRkmN
J2 ,

become newly generated incident waves and repeatedly

propagate between the two joints. After traveling a certain

distance, LkmN
J2 , the newly generated four incident waves

arrive at J1. At this moment, the four waves are written as

vJ1IkmN tð Þ ¼ vJ1RkmN t � LJ2kmN=cm
� �

; m ¼ p; s; k ¼ 1; 2ð Þ
ð19Þ

and the incident angle of each wave impinging on J1 is

hJ1IkmN ¼ a1 þ a2 þ hJ2RkmN ð20Þ

where hRkmN
J2 denotes the emergence angle of the reflected

waves from J2, which is equal to the emergence angles,

hTkmN
J2 , of the four transmitted P- and S-waves from J2. The

critical angles of P- and S-waves are denoted by hmcr. Since
the media beside each joint are identical, there are

hpcr = 90� and hscr = sin-1(cs/cp). Supposing

hIkmN
J1 \ hmcr, eight reflected waves, vRkmN

J1 (N = 2 and

k = [1, 4]), and eight transmitted waves, vTkmN
J1 , are gen-

erated on the interface of J1. Repeatedly, the new trans-

mitted waves caused from J1 propagating in Zone I will

spread downward from the joint as the same as vRp0
J1 and

vRs0
J1 . They are the components of the reflected waves from

J1 and expressed as

vxiRmðx; tÞ ¼ vJ1TkmNðtÞ ð21Þ

where the abscissa x can be easily obtained according to the

geometric relationship shown in Fig. 1. If the calculated x

is greater than xm, i.e., beyond the monitoring scope, the

induced wave and the later propagation process will be

ignored. The angles between the new transmitted waves

and the vertical direction are expressed as

hxiRmðxÞ ¼ hJ1TkmN � a1: ð22Þ

Hence, the vertical and horizontal components of each

transmitted wave can be expressed as

vxiRpyðx; tÞ
vxiRpxðx; tÞ

� �
¼ vxiRpðx; tÞ �

� cos hxiRpðxÞ
sin hxiRpðxÞ

� �
ð23Þ

vxiRsyðx; tÞ
vxiRsxðx; tÞ

� �
¼ vxiRsðx; tÞ �

� sin hxiRsðxÞ
� cos hxiRsðxÞ

� �
: ð24Þ

The new reflected waves from J1 continue to propagate

toward J2. Repeatedly, multiple reflections take place

between J1 and J2. Each wave impinging on J2 or J1 can be

derived and expressed as Eqs. (14) and (19), respectively,

where N[ 2. As a result, more transmitted waves are

generated and propagate in Zone III, indicated as vxiTmðx; tÞ.
Similarly, more new reflected waves are generated in Zone

I, which can be expressed as vxiRmðx; tÞ. Equations (17) and
(18) show the vertical and horizontal components of each

wave propagating upward away from J2, and Eqs. (23) and

(24) show the components of each wave propagating

downward from J1.

2.4 Wave Propagation Equation

Once an incident wave impinges on one of the two non-

parallel joints, the transmitted and reflected waves gener-

ated from the joints propagate along various directions,

which results in a complicated wave field. For any point in

the area, a number of P- and S-waves with different

propagating paths successively arrive at the location of the

point, as shown in Fig. 3. Each wave is induced by one

transmission or multiple reflections of the initial incident

P-wave.

If the horizontal distance between two adjacent particles

is defined to be Dx, there are limited particles within the

monitoring scope, i.e., xi 2 (x0, xm). The symbol q is

adopted to denote the number of particles and

q ¼ int½ðxm � x0Þ=Dx�.
The initial condition is that any point xi within the

monitoring scope is not disturbed before the incident

P-wave impinges on J1. At this moment, no transmitted or

reflected waves are generated.

As the two joints are not parallel, the reflected waves

generated from J1 or J2 always propagate along different

directions. The incident P-wave impinging on different

points on J1 may cause disparate transmitted waves at one

point on J2. The transmitted waves also propagate along

different directions. When the wave field is considered, the

final transmitted wave is actually the sum of transmitted

waves separately caused by the incident wave impinging

on all points with abscissa ranging from x1 to xq. For a

x
(xm, 0)x0

X0

O

α1

J1

J2

Transmitted waves

Multiple reflected 
waves

α2

Incident P-wave

y

Fig. 3 Schematic view of P-wave propagation between two non-

parallel joints
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certain point on J2 with abscissa X0, the vertical and hor-

izontal components of the final transmitted wave can be

expressed as

vTeðX0; tÞ ¼
Xq
j¼1

v
xj
Tpeðx; tÞjx¼X0

þ
Xq
j¼1

v
xj
Tseðx; tÞjx¼X0

ð25Þ

where vTe(X0) (e = y or x) are the vertical and horizontal

components of the final transmitted wave at the point X0.

The vertical and horizontal components of the reflected

wave from one point on J1 with abscissa X0 can also be

derived similarly, except that the subscript ‘T’’ is replaced

by ‘R’ in Eq. (25).

We define the vertical and horizontal components of the

transmission coefficient, Ty and Tx, as the ratio of the

amplitudes between the transmitted and incident waves,

and vertical and horizontal components of the reflection

coefficient, Ry and Rx, as the ratio of the amplitudes

between the reflected and incident waves, i.e.,

TeðX0Þ ¼
max vTej j
max v0j j ; ReðX0Þ ¼

max vRej j
max v0j j ð26Þ

3 Verification

In this section, the solutions obtained by the proposed

theoretical method are compared with the numerical sim-

ulation results. This also serves as a verification of the

proposed approach. In this study, the UDEC software is

employed to simulate wave propagation across two non-

parallel joints. The numerical model for a rock mass con-

taining two non-parallel joints is shown in Fig. 4. The

model is taken as 150 9 50 m, and it is symmetric on line

OO0. Both of the angles between the joints and the hori-

zontal direction are 5�, i.e., a1 = a2 = 5�. Viscous

boundaries are employed for the block boundaries along

both directions of axes x and y. The linearly elastic model

is adopted to describe the mechanical behavior of joints.

In the numerical model, the incident wave applied at the

bottom of the model is a half-cycle sinusoidal P-wave with

mathematical function of v0 = AIsin 2pft, where the

amplitude AI is 1 m/s, the frequency f is 50 Hz, and the

duration t ranges from 0 to 0.01 s. The basic parameters for

the rock and the joints are as follows: rock density q is

2650 kg/m3, P-wave velocity cp is 5830 m/s, and shear

wave velocity cs is 2940 m/s (Zhao 1996). The symbols Kn

and Ks denote the normalized normal and tangential stiff-

ness of the joints, respectively, and Kn = kn/(zpx), Ks=ks/

(zsx), and Kn = Ks, where x = 2pf. The stiffness of two

joints is assumed to be identical, i.e., Kn1 = Kn2 = Kn.

To distinguish the incident and transmitted waves, five

monitoring points are chosen and shown in Fig. 4. The

monitoring point A is located in the middle-lower part of

the model to record the incident wave. The other four

monitoring points, denoted as B, C, B0 and C0, are located

on the upper interface of J2, where the points B and C and

the points B0 and C0 are in the right and left parts of the

model, respectively. The abscissas of the five points, A, B,

C, B0 and C0, are X0 = 0, 25, 50, -25 and -50 m,

respectively. The ordinate of each monitoring point can be

calculated from the geometrical condition shown in Fig. 1.

From the velocity histories of the four points, the velocity

components of transmitted waves along the x- and y-axis

are recorded, as shown in Fig. 5. The analysis results for

points B and C are also calculated based on the proposed

theoretical method. Figure 5 illustrates the relationships

Viscous boundary

150 m

A

Half-cycle sinusoidal incident P wave

5 m
y

x

J1
Block zone

J2
B C

25 m 25m

B'C'

25 m 25 m 25 m

50 m

O

25 m

O

Fig. 4 Schematic view of the

UDEC model
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between the transmission coefficients, Ty and Tx, with the

normalized normal stiffness of joints, Kn.

By comparison between the simulation and analytical

results, it is found that the transmission coefficients

obtained from UDEC modeling are very close to the results

calculated from Eq. (26). The reason to cause the error

between the theoretical and numerical methods is that the

effect of the left part and interaction point of the joints on

the transmission is not taken into account in the theoretical

analysis. However, we show in Fig. 5 that the error is so

tiny that it can be ignored. It indicates that the method

proposed in this paper is effective and feasible to study

wave propagation across two intersecting or non-parallel

joints with the dihedral angle of 10�. Moreover, for a

symmetric model situation, a half analytical model as

illustrated in Fig. 3 can be adopted to analyze wave

propagation accurately.

4 Discussion

Parametric studies will be conducted in this section to

investigate the influences of the position of point on joints,

the joint stiffness, the joint angle and the incident wave

frequency on wave propagation across two non-parallel

joints using the theoretical approach.

4.1 Limitations of the Approach

It should be noted that the proposed approach can only be

applied to body wave propagation across non-parallel

joints, that is, the emergence angle of stress wave is less

than the critical angle, i.e., 0 B a\ hpcr and 0 B b\ hscr,
where hpcr = 90� and hscr = sin-1(cs/cp). In this study,

hscr = 30.3�. When the emergence angle of wave exceeds

the range, the interface waves are generated and propagate

along the interface of the joints. Hence, the incident angle

of P-wave is chosen to be less than 90�. In addition, when

the angle between the joints is greater than 10�, in Zone II,
the new incident angle of some S-waves caused by three-

cycle reflection might be greater than the critical angle

sin-1(cs/cp) = 30.3�, which causes the emergence angles

of the new reflected and transmitted waves from the joint

are not real-valued any more. Therefore, the current study

only discusses the cases when the angle between two joints

does not exceed to 10�.

4.2 Position of Point on Joints

Since the wave field is complicated, the transmitted waves

generated from different positions of J2 propagate along

different directions, so do the reflected waves from J1.

Similar to the monitoring points on the upper interface of J2

shown in Fig. 4, some monitoring points are also placed on

the lower interface of J1 to get the reflected wave from J1.

The abscissa and ordinate of each monitoring point can be

obtained from the geometrical relationship shown in Fig. 1.

The relationship between the transmission and reflection

coefficients with the position of point on joints is shown in

Fig. 6. In the calculation, both of the normalized normal

and tangential stiffness of joints are assumed to be one.

Besides, the angle between the two joints is taken as 5�.
Three cases are considered, i.e., Case 1 a1 = 5� and

a2 = 0�; Case 2 a1 = a2 = 2.5�; and Case 3 a1 = 0� and
a2 = 5�. The results corresponding to the three cases are

shown in Fig. 6. It can be seen from the figure that the
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Fig. 6 Reflection and transmission coefficients at different monitor-

ing points. a Vertical components. b Horizontal components
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transmission and reflection coefficients vary with different

positions of point. The variation trends of the transmission

coefficient or reflection coefficient with the horizontal

distance of the point in the three cases are very similar.

Because of the small strike angle of the two joints, the

values of Tx and Rx are relatively small compared with the

components along y-direction and change slightly for the

three cases. In addition, with the increase in the horizontal

distance of the monitoring point, the transmission coeffi-

cient Ty increases firstly and then decreases, and finally

tends to be stable, while the refection coefficient Ry

decreases monotonously before turning to a constant value

at around X0 = 80 m. The maximum transmission coeffi-

cient Ty is recorded near X0 = 120 m, and a convergence

of Ty is observed near X0 = 300 m. These two points

divide the transmission coefficient into three regions: the

increasing, decreasing and constant values. The increasing

region is near to the intersecting point of two joints. In this

region, the transmitted wave caused by the incident wave

and multiple reflected waves between two joints makes the

vertical component of amplitude of the transmitted wave

increase and the horizontal component of the amplitude of

the reflected wave decrease. The decreasing region is in the

middle part, where the longer propagation distance and

different spread directions of wave lead to a weak ampli-

tude of transmitted wave, but a constant amplitude of

reflected wave. In the constant-value region, the transmis-

sion and reflection coefficients are not influenced by the

position of point on joints. Among the three cases, except

the transmission coefficient Tx, the other coefficients for

Case 1, i.e., a1 = 5� and a2 = 0�, are almost greater than

those for Cases 2 and 3, and the coefficients for Case 3 are

the smallest. Comparison between Fig. 6a, b shows that the

vertical components of either transmission or reflection

coefficients are obviously greater than the horizontal

components, which is caused by the present small value of

joint strike angle.

4.3 Effect of Joint Stiffness

The incident wave and the basic parameters of joints and

rocks shown in Sect. 3 will still be adopted in this and the

following studies. The values of zsx and zpx are constant

in this section. The normalized stiffness of joints, Kn, is

taken into account to analyze the effect of joint stiffness on

transmission and reflection coefficients.

For a point on J2 with X0 = 30 m, the relation between

the normalized normal stiffness of joint and the transmis-

sion and reflection coefficients is shown in Fig. 7, where

the angles of two joints are equal to 5�, i.e., a1 = a2 = 5�.
The normalized stiffness of J2 and J1 is kept the same, and

there are Kn2 = Ks2 = 1 in Fig. 7a and Kn1 = Ks1 = 1 in

Fig. 7b. It can be seen that each coefficient can be

described as a function of the normalized joint stiffness.

The influences of the normalized stiffness of J1 and J2 on

the transmission and reflection coefficients are similar, but

not identical. When the normalized stiffness of either J1 or

J2 changes, the transmission coefficients, Ty and Tx,

increase rapidly at small normalized stiffness, especially

when Kn is\1, and then gently increase to be stable at a

relative higher value of Kn. The variation of reflection

coefficients with Kn1 is different from those with Kn2,

which is caused by the dissimilar wave fields around dif-

ferent positions of one joint. When Kn1 approaches zero,

there is no wave transmission from J1. Therefore, Ry tends

to be 1 when the stiffness of J1 is zero, which means the

incident wave is completely reflected from J1. If Kn2 is

equal to zero, only the waves arriving at J2 will be com-

pletely reflected, which results in Ry much less than that

when Kn1 is zero. In Fig. 7b, Ry shows a trend of slight

decrease and then turns to be constant with increasing Kn2,

while Rx gradually reduces to zero. This indicates that the

portion of reflected waves caused by multiple reflections

between two joints is reduced when J2 becomes stiff and

waves transmission across J2 without any reflection.

4.4 Effect of Frequency of Incident Wave

The half-cycle sinusoidal P-wave is still used in this section

as an incident wave, but with different frequencies. The
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normalized stiffness of joint. a Effect of stiffness of J1. b Effect of
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relationship between the reflection and transmission coef-

ficients and the frequency of incident P-wave is illustrated

in Fig. 8, where the monitoring points on the two joints are

located at X0 = 30 m. The angle between the two joints is

5�, i.e., a1 ? a2 = 5�. Three cases are considered, i.e.,

Case 1 a1 = 5�, a2 = 0�; Case 2 a1 = a2 = 2.5�; and Case
3 a1 = 0�, a2 = 5�. The tangential stiffness of the two

joints is adopted as ks1 = ks2 = 1.0 GPa/m, and the normal

stiffness is kn1 = kn2 = ks1cp/cs. Since the horizontal

components of the reflection and transmission coefficients,

Tx and Rx, are smaller than the vertical components, Ty and

Ry, only the effects of incident wave frequency on Ty and

Ry are considered. It is shown in Fig. 8 that the transmis-

sion and reflection coefficients vary with increasing fre-

quency. Ty in any of the three cases increases gradually,

while the reflection coefficient, Ry, decreases first and then

remains almost constant with increasing frequency of

incident wave. The phenomenon indicates that the joint is

like a filter to filter out stress waves with high frequency.

The transmission coefficient, Ty, in Case 1 is the greatest,

and Ty in Case 3 is the smallest if the frequency of incident

wave is given. Different to the transmission coefficients,

the reflection coefficients for the three cases are very close.

4.5 Effect of Joint Strike Angle

Figure 9 shows the relationship between the transmission

and reflection coefficients with the joint strike angle,

where J1 or J2 in parentheses means that the strike angle

of the joint varies. When the influence of the angle of J1

is investigated, the angle of J2 is assumed as a2 = 5�; on
the contrary, the angle of J1 remains at a1 = 5� when

the influence of the angle of J2 is studied. The moni-

toring points on the two joints are set at X0 = 30 m. It is

shown in Fig. 9 that the variation trend of each coeffi-

cient with the joint angle is not the same within the

scope of a 2 (0�, 10�). When the angle of J1 increases,

the transmission coefficients Ty and Tx gradually increase

within a small variation range; the reflection coefficient

Ry decreases, while Rx increases a little. In this study, as

the strike angles of both joints are very small, the ver-

tical components of the transmission and reflection

coefficients are dominated by the transmitted and

reflected P-waves, respectively. The horizontal compo-

nents of the transmission and reflection coefficients are

dominated by the transmitted and reflected S-waves. The

value of Ty shown in Fig. 9 fluctuates with increasing

strike angle of J2. This can be understood as less

reflected waves arrive at the monitoring point and the

time delay of each wave becomes longer, when the strike

angle of J2 increases. The tendencies of Tx and Ry with

the change of the strike of J2 are similar to those when

the strike of J1 varies.

5 Conclusions

When an incident P-wave impinges on a rock mass with

two non-parallel joints, wave propagation process is first

analyzed. Then, the wave propagation equation is derived.

The transmitted wave across J2 and the reflected wave

from J1 are calculated thence. The proposed approach is

proved to be effective in studying the characteristics of

wave propagation through jointed rock mass when the

influence of joint tip is not considered. The parametric

studies show that both normal and tangential stiffness of

each joint affect the transmission and reflection coefficients

obviously. The frequency of incident wave has less influ-

ence on the reflection coefficient, which is different to the

effect on the transmission coefficient. Besides, the trans-

mission and reflection coefficients at different points are

not the same. Since the two joints are non-parallel with

each other, the wave field becomes quite complex. The

reflected waves between the two joints have different
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propagation directions, which change greatly with multiple

reflection cycles. Hence, the transmitted waves become

sensitive to the position of the second joint near to the

intersecting point, so do the reflected wave from the first

joint.

It should be noted that the present approach is only

available for two non-parallel joints when the angle

between two joints is small, that is, only body wave

propagation is taken in account. The approach will be

improved in our further study to analyze the effect of joint

tips on wave propagation and to consider induced interface

waves.
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