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Abstract To analyse wellbore stability phenomena when

drilling through a transversely isotropic formation such as

shale, a wellbore stability model is developed based on the

coordinate transformation method and complex variable

elasticity theory. In order to comprehensively consider the

anisotropies in the transversely isotropic formation, the

model includes the followings: 1. the elastic anisotropy due

to the sedimentation effect and naturally developed frac-

tures and 2. the strength anisotropy due to the poor

cementation between bedding planes and natural fractures.

The model is further generalized by accounting for an

arbitrary wellbore trajectory under an arbitrary in situ stress

orientation. Next, the model is used in a parametric study

that includes factors such as elastic anisotropy, strength

anisotropy, multiple weak planes, in situ stress anisotropy,

and poroelastic anisotropy, all of which can have a great

influence on wellbore stability. Finally, a correction for a

frequently used failure criterion has been made to ensure

that the newly developed model is comprehensive and

accurate for wellbore stability analyses in highly hetero-

geneous formations.

Keywords Wellbore stability � Elastic anisotropy �
Strength anisotropy � Multiple weak planes

List of symbols

rH Maximum horizontal principal stress

rh Minimum horizontal principal stress

rv Overburden stress

Ek Elastic modulus in the bedding plane of isotropy

E\ Elastic modulus normal to the isotropic plane

mk Poisson’s ratio in the bedding plane of isotropy

(characterizing contraction in-plane)

m\ Poisson’s ratio normal to the isotropic plane

(characterizing contraction out of plane)

Gk Shear modulus for planes parallel to the isotropic

bedding plane

G\ Shear modulus for planes normal to the isotropic

bedding plane

So Cohesion strength of rock intact body

uo Coefficient of friction of rock intact body

abp þ p
2

Dip direction of bedding planes

bbp Dip angle of bedding planes

Sbp Cohesion strength on bedding planes

ubp Coefficient of friction on bedding planes

anf þ p
2

Dip direction of natural fractures

bnf Dip angle of natural fractures

Snf Cohesion strength on natural fractures

unf Coefficient of friction on natural fractures

ks Shear stiffness of natural fractures

kn Normal stiffness of natural fractures

x Dilation angle of natural fractures

s Space distance between natural fractures

Ks Grain modulus

p Formation pressure
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1 Introduction

Wellbore instability is a complex problem often encoun-

tered during drilling operations. Wellbore collapse, a type

of wellbore instability, is caused by low mud pressure that

cannot provide sufficient support to the rock in the well-

bore wall. In the past, this problem has often been

addressed by modelling studies.

The traditional model considers wellbore collapse as a

problem of hole-edge stress concentration. Bradley (1979)

presented the solution for the stress distribution around a

borehole. The shear yield criterion is used to determine the

minimum mud pressure (termed as critical mud pressure in

this paper) that maintains a critical wellbore stability. The

results showed that the distribution of in situ stresses and

formation pressure are the major factors influencing critical

mud pressure.

However, this traditional model does not consider the

influence of porous flow on the stress distribution around

the borehole. Detournay and Cheng (1988) established a

model that considers the poroelastic response of a borehole

in a nonhydrostatic stress field. Their analysis showed that

the collapse is inside the rock, but not at the wellbore wall.

To study the impact of elastic anisotropy on rock (e.g.

anisotropy in the elastic modulus and Poisson’s ratio),

Abousleiman and Cui (1998) established a similar poroe-

lastic model for a transversely isotropic formation. Later,

Ekbote and Abousleiman (2005) improved Abousleiman’s

model by including coupled poro–chemo–thermal–me-

chanical effects. However, they assumed that the wellbore

axis is perpendicular to the formation bedding plane. This

limits the field in which these models can be applied.

Because, in general, the axis of a deviated wellbore is

not necessarily vertical to the bedding plane, it is necessary

to develop a method that overcomes this drawback. Aad-

noy (1987) provided an analytical method for interpreting

the stress distribution around a borehole in a transversely

isotropic formation drilled at an arbitrary angle to the

normal line of the bedding plane. Ong and Roegiers (1993)

utilized this analytical method in conjunction with the

consideration of rock strength anisotropy to assess how

these anisotropies influence the shear yield around a

wellbore. They believed that the Mohr–Coulomb yield

criterion has limitations in analysing the critical mud

pressure in a formation with weak planes because it is

difficult to determine the stress distribution on the weak

plane crossed by an arbitrarily oriented borehole. They

used the generalized strength criterion proposed by Tsai

and Wu (1971) and suggested that the shear yield was

relatively unaffected by the elastic anisotropy. Worotnicki

(1993) proved that the severe rock elastic anisotropy is

highly distributed in shale formations by performing tri-

axial experiments on 200 groups of core samples. Based on

this, Li et al. (2011), Hou et al. (2013), and Lu et al.

(2013a) analysed the influence of rock elastic anisotropy on

the critical mud pressure for a formation with isotropic

strength and demonstrated that this influence is significant.

The models described above did not study the effect of

rock strength anisotropy on wellbore stability based on the

Mohr–Coulomb yield criterion. Jin and Chen (1999a, b)

proposed that the bedding plane is a weak plane, and for a

specific situation, the rock on the wellbore will fail along the

weak plane. Lee et al. (2012) used the coordinate system

transformation method to obtain the stress distribution on the

weak plane. He analysed the influence of the weak plane on

the failure regions around a wellbore and noted that the

wellbore shape may become rectangular if the mud pressure

is too low. Lu et al. (2012, 2013b) studied the collapse

phenomenon in the weak plane formation under porous flow

and used a quantitative method to calculate the collapse

intervals. However, the models described in those papers did

not consider the rock elastic anisotropy and poroelastic

anisotropy. In addition, due to the tectonic effect, multiple

groups of natural fractures such as face and butt cleats are

developed with different occurrences from the bedding

plane, ignorance of which may produce erroneous results.

To summarize, a small amount of past researchers has

focused on wellbore stability analyses for inclined bore-

holes that simultaneously considers the rock elastic aniso-

tropy, rock strength anisotropy, poroelastic anisotropy, and

multiple weak planes. Because transversely isotropic for-

mations usually have several characteristics described (as

above) at the same time, a model that includes all these

effects is necessary. In this paper, two types of planes are

considered. The bedding plane (BP) is considered to have

transverse isotropy with a vertical axis of symmetry due to

the sedimentation effect; it is also viewed as the first type

of weak plane. The other type of weak plane is a natural

fracture (NF, induced by the tectonic effect); its impact on

the elastic behaviour of a rock is considered by using an

equivalent continuum method. A coordinate system trans-

formation is used to transform far-field stresses to a bore-

hole coordinate system, and a complex variable method is

used to derive the stress distribution around the borehole.

The pore pressure is considered to be the formation pres-

sure, and the method of Cheng (1997) is used to calculate

the effective stress. His method provides a detailed

description of the constitutive equations describing the

incremental stress–strain and pressure–fluid content rela-

tionships for elastic anisotropic porous media. Six Biot

coefficients have been defined that are not necessarily

equal to each other, which are suitable for calculating

effective stresses in elastic anisotropic porous media. The

results of the effective stress distribution around a borehole
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will be projected to all types of weak planes, and the

critical pressure is calculated for each type by using the

Mohr–Coulomb yield criterion. Next, the maximum value

among them will be identified as the final critical mud

pressure for a specific wellbore trajectory. Finally, the

impact of various factors on wellbore stability is analysed.

2 Stability Model for Transversely Isotropic
Formation

The model considers three factors: 1. the poor cementation

in BPs that leads to the rock yield along BPs; 2. the rock

elastic anisotropy due to the sedimentation effect that

modifies the stress distribution around a borehole compared

with the isotropic model; and 3. the multiple weak planes

that not only make the stress–strain relationship of a rock

more complex, but also increase the possibility of rock

failure along the weak planes, as shown in Fig. 1. Typi-

cally, a minimum mud pressure is to prevent collapse while

a maximum one is to avoid exceeding the fracture gradient.

Only the minimum mud pressure is discussed in this paper,

and we define the pressure corresponding to the onset of

shear yield as a critical mud pressure. The calculating

procedure of the critical mud pressure can be divided into

five steps.

2.1 Step 1: Far-Field Stress Transformation

The Far-field stress distribution is transformed from the

principal stress coordinate system (PCS) to the borehole

coordinate system (BCS).

First, the far-field in situ stresses are transformed from

PCS to a geographic coordinate system (GCS) as shown in

Fig. 2a. GCS is defined as the positive side of Xe-axis

pointing to the north, Ye-axis to the east, and Ze-axis to the

ground.

re ¼ RT
1 rpR1 ð1Þ

R1 ¼
cos as cos bs sin as cos bs sin bs

� sin as cos as 0

� cos as sin bs � sin as sin bs cos bs

9
=

;

8
<

:
;

rp ¼
rH 0 0

0 rh 0

0 0 rv

9
=

;

8
<

:

ð2Þ

where as is the azimuth of the maximum horizontal prin-

cipal stress and bs is the angle between the direction of the

overburden stress and the Ze-axis; rp is the far-field stress

tensor under PCS; and re is the far-field stress tensor under

GCS.

Second, the far-field stress distribution is transformed

from GCS to the borehole coordinate system (BCS) as

shown in Fig. 2b,

rb ¼ R2reR
T
2 ¼

rb
xx sb

xy sb
xz

sb
yx rb

yy sb
yz

sb
zx sb

zy rb
zz

8
><

>:

9
>=

>;
ð3Þ

R2 ¼
cos ab cos bb sin ab cos bb sinbb

� sin ab cos ab 0

� cos ab sin bb � sin ab sinbb cos bb

9
=

;

8
<

:
ð4Þ

where ab and bb are the azimuth and inclination angle of

the wellbore and rb is the far-field stress tensor under BCS.
h is the wellbore circumferential angle, which is measured

from the positive side of Xb counter clockwisely, as shown

in Fig. 2b.

2.2 Step 2: Stress Distribution Around a Wellbore

The complex variable method is used to derive the stress

distribution around a borehole under the far-field stress

distribution rb. Lekhnitskii (1981) studied the stress dis-

tribution around a circular hole in an anisotropic plate

under generalized plane strain assumption, which showed

that this anisotropy can change the stress distribution to a

considerable extent. The calculation method is extensively

described by Amadei (1983) and Ong (1994) and we only

give the outline of the solution for this problem.

2.2.1 Generalized Plane Strain Assumption

We consider an infinite transversely isotropic formation

that is internally bounded by a cylindrical borehole of

radius r. The far-field stresses around a borehole under

BCS have been already derived in Step 1. For any arbi-

trarily directed borehole and principal stress distribution,

all six far-field stress components may have nonzero val-

ues. In addition, in an anisotropic body, a plane of elastic

symmetry parallel to the cross section of the borehole may

not necessarily exist (i.e. the plane strain assumption fails).

Instead, the cross sections will warp, but all identically. ForFig. 1 A core with multiple weak planes
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these reasons, a generalized plane strain method is intro-

duced. The idea that the cross sections will identically warp

gives the essential of this method: all the gradients of stress

and displacement along z direction are zero,

Displacement:
ou

oz
¼ ov

oz
¼ ow

oz
¼ 0 ð5Þ

Stress:
osxz

oz
¼ osyz

oz
¼ orzz

oz
¼ 0 ð6Þ

According to the kinematic equations, the only strain

that is zero is ez. Equations (5) and (6) can then be used to

simplify the expressions of the constitutive equations,

equilibrium equations, and compatibility equations.

2.2.2 Compliance Tensor Conversion Between Different

Coordinate Systems

We assume that A is the compliance tensor in the bedding

plane coordinate system (BPCS, see Fig. 3), which is

identical to the compliance tensor under BCS in the case

when the borehole axis of a well is normal to the BP. It has

a succinct form (see Eq. 8) and represents a linear stress–

strain relationship of rocks (see Eq. 7), the components in

which are the Hooke’s law constants.

e ¼ Ar ð7Þ

In transversely isotropic formations, A can be expressed

by the anisotropic elastic modulus Ek, E\, Poisson’s ratio

mk, m\ and shear modulus Gk, G\. The symbols k, \ mean

the elastic parameters along and normal to the BP,

respectively.

A ¼

1

Ek
�

mk
Ek

� m?
E?

0 0 0

�
mk
Ek

1

Ek
� m?

E?
0 0 0

� m?
E?

� m?
E?

1

E?
0 0 0

0 0 0
1

G?
0 0

0 0 0 0
1

G?
0

0 0 0 0 0
1

Gk

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð8Þ

The shear modulus parallel to the plane Gk can be

expressed by Gk ¼
Ek

2ð1þmkÞ. Through experiments, Batugin

and Nirenburg (1972) noted that although G\ is theoreti-

cally an independent constant and is in no way related to

the other elastic constants, it is possible to indicate an

approximate formula linking G\ with the other parameters

by G? ¼ EkE?
E?ð1þ2v?ÞþEk

. Thus, the total number of elastic

constants reduces to four.

In contrast, when the axis of the borehole is not per-

pendicular to the BP, we can use the rotation technique to

transform the compliance tensor from BPCS to BCS

(Lekhnitskii 1981).

Suppose that xb; yb; zb are the vectors of the rectangular

axes of BCS under GCS and xbp; ybp; zbp, another set of

Fig. 2 Coordinate system

schematics: a PCS to GCS,

b GCS to BCS

Fig. 3 Coordinate system schematics: bedding plane coordinate

system (BPCS); stresses acting normal and tangential to the weak

plane
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vectors for BPCS whose direction cosines relative to

xb; yb; zb are

l11 ¼ cosðxb; xbpÞ; l12 ¼ cosðxb; ybpÞ; l13 ¼ cosðxb; zbpÞ
l21 ¼ cosðyb; xbpÞ; l22 ¼ cosðyb; ybpÞ; l23 ¼ cosðyb; zbpÞ
l31 ¼ cosðzb; xbpÞ; l32 ¼ cosðzb; ybpÞ; l33 ¼ cosðzb; zbpÞ

ð9Þ

where the calculation method of cosðxb; xbpÞ, for example,

is

xb ¼ ðcos ab cos bb; sin ab cos bb;� sin bbÞ
xbp ¼ ðcos abp cos bbp; sin abp cos bbp;� sin bbpÞ

cosðxb; xbpÞ ¼
xb � xbp
xbj j � xbp

�
�

�
�
¼ cos ab cos bb cos abp cos bbp

þ sin ab cos bb sin abp cos bbp þ sin bb sinbbp;

Under a rotation of the Cartesian coordinate system, the

transformation tensor for the compliance tensor is given by

Lekhnitskii (1981) as

If A0 is the compliance tensor in BCS and A in BPCS,

following relation holds

A0 ¼ QAQT: ð11Þ

2.2.3 Basic Equations

In BCS, the strains are linearly related to the stresses in the

Cartesian coordinate system via the compliance tensor. The

components of the compliance tensor A0 for a general

anisotropic medium may not be zero after rotating the

tensor A into BCS. Assuming that aij is a component of the

compliance tensor in BCS and ezz = 0, we can obtain the

following constitutive equations,

ex

ey

0

cyz

cxz

cxy

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

rx

ry

rz

syz

sxz

sxy

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð12Þ

To solve 3D elastic problems, apart from the constitu-

tive equations, three equilibrium equations and six com-

patibility equations are necessary. Using Eqs. (5) and (6),

they can be simplified as follows

Equilibrium equations:
orx

ox
þ osxy

oy
¼ 0

osxy

ox
þ ory

oy
¼ 0

osxz

ox
þ osyz

oy
¼ 0

ð13Þ

Compatibility equations:
o2exx

oy2
þ o2eyy

ox2
¼

o2cxy

oxoy

oczx

oy
�
ocyz

ox
¼ 0

ð14Þ

2.2.4 Stress Function and Beltrami–Michell Equations

To derive the exact formulae for the stresses around a

borehole in anisotropic formations, two stress functions are

defined as F(x, y) and w(x, y). These functions will be used

to get the exact expressions for the stresses (Barber 2004),

and they will make the stress field not only satisfy all the

basic equations, but also fulfil the requirements of the

boundary conditions (see Eqs. 23, 24). If these functions

are related to the stress components in the following form,

then Eq. (13) will be satisfied automatically,

rx ¼
o2F

oy2
; ry ¼

o2F

ox2
; sxy ¼ � o2F

oxoy
; sxz ¼

ow
oy

; syz ¼ � ow
ox

ð15Þ

rz can then be calculated from Eq. (12) after deriving all

the other stress components. Substituting Eq. (15) into the

constitutive relations, we obtain expressions for the strains

in terms of the stress functions F(x, y) and w(x, y). By

injecting them into Eq. (14), we obtain the generalized

plane strain Beltrami–Michell equations of compatibility

for an anisotropic body,

L4L2 � L2
3

� �
F ¼ 0

L2
3 � L4L2

� �
w ¼ 0

ð16Þ

Q ¼

l211 l212 l213 l12l13 l13l11 l12l11
l221 l222 l223 l23l22 l23l21 l22l21
l231 l232 l233 l33l32 l33l31 l32l31
2l31l21 2l32l22 2l33l23 l33l22 þ l32l23 l33l21 þ l31l23 l31l22 þ l32l21
2l31l11 2l32l12 2l33l13 l33l12 þ l32l13 l33l11 þ l31l13 l31l12 þ l32l11
2l21l11 2l12l22 2l13l23 l13l22 þ l12l23 l13l21 þ l11l23 l11l22 þ l12l21

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð10Þ
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The differential operators L2, L3, L4 are defined as follows

L2 ¼ b44
o2

ox2
� 2b45

o2

oxoy
þ b55

o2

oy2

L3 ¼ �b24
o3

ox3
þ ðb25 þ b46Þ

o3

ox2oy
� ðb14 þ b56Þ

o3

oxoy2

þ b15
o3

oy3

L4 ¼ b22
o4

ox4
� 2b26

o4

ox3oy
þ ð2b12 þ b66Þ

o4

ox2oy2

� 2b16
o4

oxoy3
þ b11

o4

oy4

where bij is termed as the reduced strain coefficient by

Lekhnitskii (1981),

bij ¼ A0
ij �

A0
i3A

0
j3

A0
33

ði; j ¼ 1; 2; 4; 5; 6Þ

2.2.5 Solutions for the Differential Equations

The differential equations can be solved using the method

of characteristics, which can simplify the problems by

converting higher-order differential equations to lower-

order ones, and thus make the integration doable. This is

achieved by replacing the stress functions F(x, y) and

w(x, y) with the expression ex?vy in Eq. (16). After dif-

ferentiation, they become the form,

f vð Þ ¼ I4 vð ÞI2 vð Þ � I23 vð Þ ¼ 0 ð17Þ

with

I4 vð Þ ¼ b11v
4 � 2b16v

3 þ 2b12 þ b66ð Þv2 � 2b26vþ b22

I3 vð Þ ¼ b15v
3 � b14 þ b56ð Þv2 þ b25 þ b46ð Þv� b24

I2 vð Þ ¼ b55v
2 � 2b45vþ b44

Because Eq. (17) is a sixth-order polynomial equation, it

has six roots that can be real or complex conjugates.

Lekhnitskii (1981) noted that the roots of Eq. (17) are

always complex or purely imaginary numbers, three of

which are the conjugates of the other three. If we define the

six roots as vk, k = 1, 2, 3, 4, 5, 6, then Eq. (16) can be

decomposed into six first-order linear operators that can

greatly reduce the complexity of the integration needed to

solve the differential equations,

ðD1D2D3D4D5D6ÞFðx; yÞ ¼ 0

ðD1D2D3D4D5D6Þwðx; yÞ ¼ 0
ð18Þ

where Dk ¼ o
oy
� vk

o
ox
The solutions of Eq. (18) have the

following form (Ong 1994):

Fðx; yÞ ¼
X6

k¼1

FkðzkÞ

wðx; yÞ ¼
X6

k¼1

wkðzkÞ
ð19Þ

where Fi(zi) is an analytic function of the complex coor-

dinates zi = xi ? viyi. F0
i(zi) is the spatial derivative of

Fi(zi) with respect to zi.

Inserting Eq. (15) into Eq. (12) and then inserting

Eq. (12) into Eq. (14), after lengthy algebra manipulation,

a relationship between F(x, y) and w(x, y) can be obtained

L2wkðzkÞ þ L3FkðzkÞ ¼ 0 ð20Þ

Based on Eqs. (19) and (20), Ong (1994) derived the

general solution for the stress functions F(x, y) and w(x, y),

as shown in Eq. (21). These two expressions satisfy all the

basic equations. And the remaining work is to determine

the unknown Fi(zi) and F0
i(zi) according to the boundary

conditions.

Fðx; yÞ ¼ 2ReðF1ðz1Þ þ F2ðz2Þ þ F3ðz3ÞÞ

wðx; yÞ ¼ 2Reðk1F0
1ðz1Þ þ k2F0

2ðz2Þ þ
1

k3
F0
3ðz3ÞÞ

ð21Þ

The complex variables ki are expressed as follows

k1 ¼ � I3 v1ð Þ
I2 v1ð Þ ; k2 ¼ � I3 v2ð Þ

I2 v2ð Þ ; k3 ¼ � I3 v3ð Þ
I4 v3ð Þ ð22Þ

2.2.6 Stress Distribution Around the Wellbore

Inserting Eq. (21) into the stress function, Eq. (15), we deduce

the form of borehole-induced stresses rij;h. The final stress

distribution is the sum of the far-field stress tensor before

drilling, the stress tensors induced by the removal of rocks, and

by themudpressure actingon theboreholewall (Amadei 1983;

Ong 1994). This is achieved by first using the boundary con-

ditions acting on the borehole (i.e. the far-field stress and mud

pressure) to obtain theexpressionofrij;h, as shown inEqs. (24)

and (25), and then, superimpose the corresponding compo-

nents of the far-field in situ stress tensorrij
b on to rij;h to deduce

the complete stress field equations rij, as shown in Eq. (23).

rx ¼ rb
xx þrx;h ¼ rb

xx þ 2Re v21u
0
1 z1ð Þþ v22u

0
2 z2ð Þþ k3v

2
3u

0
3 z3ð Þ

� �

ry ¼ rb
yy þry;h ¼ rb

yy þ 2Re u0
1 z1ð Þþu0

2 z2ð Þþ k3u
0
3 z3ð Þ

� �

sxy ¼ sb
xy þ sxy;h ¼ sb

xy � 2Re v1u
0
1 z1ð Þþ v2u

0
2 z2ð Þþ k3v3u

0
3 z3ð Þ

� �

sxz ¼ sb
xz þ sxz;h ¼ sb

xz þ 2Re k1v1u
0
1 z1ð Þþ k2v2u

0
2 z2ð Þþ v3u

0
3 z3ð Þ

� �

syz ¼ sb
yzþsyz;h¼sb

yz � 2Re k1u
0
1 z1ð Þþ k2u

0
2 z2ð Þþu0

3 z3ð Þ
� �

rz ¼ rb
zz þrz;h ¼ rb

zz �
1

A0
33

A0
31rx;hþA0

32ry;hþA0
34syz;h

�

þA0
35sxz;hþA0

36sxy;h

�

ð23Þ
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where u1(z1) = F0
1(z1), u2(z2) = F0

2(z2), u3ðz3Þ ¼
1
k3

F0
3ðz3Þ, and rxx

b , ryy
b , rzz

b , sxz
b , syz

b , sxy
b are the far-field

stresses under BCS.

The derivatives of the analytic functions u0
i(zi) can be

solved by considering the boundary conditions on a well-

bore, induced by removing the supporting rock and

applying the mud pressure on the borehole wall. For this

problem, the boundary conditions in Fourier series form

(Ong and Roegiers 1993; Lu 1995) along the contour of the

borehole are given by:

�rx;h
dy

ds
þ sxy;h

dx

ds
¼ nx

�sxy;h
dy

ds
þ ry;h

dx

ds
¼ ny

�sxz;h
dy

ds
þ syz;h

dx

ds
¼ nz

ð24Þ

where i is the complex number
ffiffiffiffiffiffiffi
�1

p
, Pw is the mud

pressure, and

nx ¼ rb
xx � Pw

� �
cos hþ sb

xy sin h� i rb
xx � Pw

� �
sin hþ isb

xy cos h

ny ¼ rb
yy � Pw


 �
sin hþ sb

xy cos h� i rb
yy � Pw


 �
cos hþ isb

xy sin h

nz ¼sb
xz cos hþ sb

yz sin h� isb
xz sin hþ isb

yz cos h

Substituting rij;h into Eq. (24) and integrating both sides

of Eq. (24) with respect to the arc length give the expres-

sions for the analytical functions ui(zi). We then expand the

ui(zi) into series form, and by matching the unknown

parameters in the series with the known boundary condi-

tions Eq. (24), the exact expressions of the analytical

functions and their derivatives can be determined.

u0
1 z1ð Þ ¼ 1

2G1

� D0 k2k3 � 1ð Þ þE0 v2 � k2k3v3ð Þ þF0k3 v3 � v2ð Þ½ �

u0
2 z2ð Þ ¼ 1

2G2

� D0 1� k1k3ð Þ þE0 k1k3v3 � v1ð Þ þF0k3 v1 � v3ð Þ½ �

u0
3 z3ð Þ ¼ 1

2G3

� D0 k1 � k2ð Þ þE0 v1k2 � v2k1ð Þ þ F0 v2 � v1ð Þ½ �

ð25Þ

where

D0 ¼ Pw � rb
xx

� �
cos h� sb

xy sin h� i Pw � rb
xx

� �
sinh� isb

xy cos h

E0 ¼ � Pw � rb
yy


 �
sinhþ sb

xy cos h� i Pw � rb
yy


 �
cos h� isb

xy sin h

F0 ¼ � sb
xz cos h� sb

yz sinhþ isb
xz sin h� isb

yz cos h

Gk ¼ vk cos h� sin hð Þ v2 � v1 þ k2k3 v1 � v3ð Þ þ k1k3 v3 � v2ð Þ½ �

This analytical solution has been validated by finite

element method by Gaede et al. (2012). Results show that

the borehole stresses computed from the numerical model

and the analytical solution match almost perfectly for dif-

ferent borehole orientations and for several cases involving

isotropic, transverse isotropic, and orthorhombic

symmetries. In addition, they showed that though singu-

larities in cases iii and iv (see Gaede’s paper) will be

induced when b11 = b55, the equality can never be found

in real world. In other words, this solution is valid with no

restriction on borehole orientations or rock elastic proper-

ties when doing wellbore stability modelling (in real

world).

2.3 Step 3: Solution to the Critical Mud Pressure

First, the stress distribution around a borehole will be

transformed from BCS to GCS and then from GCS to

BPCS (see Fig. 3).

rbp ¼ R3R
T
2 r

eff
b R2R

T
3 ¼

rbp
xx sbp

xy sbp
xz

sbp
yx rbp

yy sbp
yz

sbp
zx sbp

zy rbp
zz

8
><

>:

9
>=

>;
ð26Þ

R3 ¼
cos abp cos bbp sin abp cos bbp sin bbp

� sin abp cos abp 0

� cos abp sin bbp � sin abp sinbbp cos bbp

9
=

;

8
<

:

ð27Þ

reffb ¼
reff

x seff
xy seff

xz

seff
xy reff

y seff
yz

seff
xz seff

yz reff
z

8
><

>:

9
>=

>;
¼

rx sxy sxz

sxy ry syz

sxz syz rz

8
<

:

9
=

;
� ap

ð28Þ

where abp þ p;bbp correspond to the dip direction and dip

angles of the BP; p is the pore pressure; a is the Biot

coefficient for an isotropic formation; and rbp is the stress

tensor under BPCS.

Two Mohr–Coulomb yield criteria are used to calculate

the critical mud pressure that corresponds to the intact rock

and weak plane, respectively. Using these criteria do not

mean that the rock will collapse from the wellbore. Instead,

it marks the onset of compressive shear yield, which is

termed as the critical mud pressure.

Intactrock: rmax
1 ¼ rmin

3 þ 2ðSo þ uor
min
3 Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u2
oÞ

q

þ uoÞ

ð29Þ

Weak plane:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sbp
zx


 �2

þ sbp
zy


 �2
r

¼ Sbp þ ubpr
bp
zz ð30Þ

where So; uo are the cohesive strength and coefficient of

friction of the intact rock, while Sbp, ubp are the cohesive

strength and coefficient of friction on the BP, respectively.

Following the method proposed by Zhang et al. (2015),

the maximum and minimum principal stresses (r1
max and

r3
min) on the borehole are mathematically equivalent to the

maximum and minimum eigenvalues of the stress tensor

Eq. (28).
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Figure 4 shows the detailed calculation algorithm for

critical mud pressure. The main improvements done for its

predecessor embody two aspects: 1. the introduction of the

elastic anisotropy and 2. a correction made for the failure

criterion Eq. (30). This correction is necessary when the

in situ stresses are highly inhomogeneous or the strength on

weak planes is too low (see Sect. 3.5 for discussion). Then,

for a specific trajectory, the selected mud pressure can be

expressed as:

Pc ¼ maxðPco;PcwÞ ð31Þ

where Pco, Pcw represent the mud pressure derived by

satisfying each (intact rock and weak plane) yield criterion,

respectively.

2.4 Step 4: Considering Multiple Weak Planes

Due to the tectonic effects such as tectonic compression

and extension, NFs are often developed in a formation.

Their occurrence is not identical to the BP, which means

that NFs must be viewed as another type of weak plane.

Ignoring the presence of them is not an option because,

first, their role is dominant in the stress–strain relation-

ship of the rock, and second, the poor cementation inside

them may cause rock yield along a NF. Here, we first

consider the influence of NFs on the elastic behaviour of

the rock through an equivalent method and then derive

the solution for the critical mud pressure by using mul-

tiple weak plane yield criterion. Figure 5 shows a group

of NFs in BPCS.

2.4.1 The Influence of NFs on the Compliance Tensor

Rocks with NFs can be viewed as jointed rocks that contain

one or several sets of discontinuities. These discontinuities

create anisotropy in rocks’ response to loading and

unloading (Amadei 1983). One convenient way to model

this response is to treat the rock as an equivalent

Fig. 4 Calculation algorithm

for critical mud pressure,

modified after Lee et al. (2012)
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anisotropic continuum (Wu 1988): the deformations of the

equivalent continuum include the deformation of the intact

rock as well as the deformation resulting from the dis-

placements on discontinuities. The application of this

model requires the estimation of a so-called representative

elementary volume (REV). In the REV, the rock mass can

be considered to be statistically homogeneous in the sense

that an increase in this volume does not change the mean

stresses and displacements. This condition can be well

fulfilled if the spacing between the discontinuities is

smaller than 1/8–1/10 of the characteristic dimension of the

considered structure (Wittke 2014). Therefore, this theory

is most suitable for borehole stability analysis in a coal

seam, where face and butt cleats prevail. The space

between and the size of the cleats are often of the magni-

tude from um to mm (Su et al. 2001; Acosta et al. 2007),

which is considerably smaller than the radius of borehole,

and thus satisfy the ‘1/8–1/10’ requirement.

Moreover, when the spacing between discontinuities has

the same dimension with the considered structure, the

equivalent continuum theory is still applicable. For exam-

ple, Chiu et al. (2012) and Xu et al. (2015) made com-

parisons between the equivalent continuum theory and

discrete model theory via numerical simulations. In their

studies, the two methods are used to simulate rock core’s

and tunnel’s deformation under complex confining stress

state. Moderate distributed fractures are inserted into the

core and tunnel, and the space between fractures is in the

same dimension with the structure. It shows that in both the

near discontinuity and far from discontinuity regions, stress

and displacement distribution predicted by these two

models are close to each other. As a result, for borehole

stability analysis, this approach can still be used if the

average spacing between NFs is around or less than 10 cm,

which is in the same scale with the borehole diameter.

However, master joints and faults with large spacing must

be modelled discretely (Wittke 2014).

In this approach, the parameters of the fractures, such as

the average spacing, normal and shear stiffness as well as

dilation angle, are used to study their additional influence

on the constitutive behaviour of the rocks.

Goodman (1976) and Amadei (1983) systematically

studied the influence of joints on the elastic behaviour of

rocks, by an equivalent anisotropic medium concept.

Experimental result for the behaviour of joints under

changing normal stress with constant shear stress gives the

hyperbola-shaped deformation curve (Fig. 6a) while an

idealized shear deformation model for the behaviour under

changing shear stress with constant normal stress is shown in

Fig. 6b. Correspondingly, a secant normal stiffness kn and a

unit shear stiffness ks are proposed to resemble the defor-

mation behaviour of joints in the elastic region. In addition,

Zhu and Wang (1992) believed that the dilation may origi-

nate from surface roughness, which connotes a thickening of

a joint. He used dilation angle x to represent the normal

displacement induced by a joint shear deformation, and it is

expressed by s
ks
tanðxÞ. Thereafter, the two stiffness param-

eters ks and kn, dilation anglex, and average normal spacing

s between fractures can be used to calculate the compliance

incremental tensor in NFCS, as shown in Eq. (32).

Anf ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0
1

kns

�1

kss
tanðxÞ �1

kss
tanðxÞ 0

0 0
�1

kss
tanðxÞ 1

kss
0 0

0 0
�1

kss
tanðxÞ 0

1

kss
0

0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð32Þ

where 1
kns

represents the induced strain along the z-axis by a

unit z-axis normal stress; 1
kss

represents the induced strain

along the x (or y)-axis by a unit x (or y)-axis shear stress;
�1
kss

tanðxÞ denotes the induced strain along z-axis by a unit

x (or y)-axis shear stress.

Using the transformation method illustrated previously,

we can transform the increment Anf under NFCS to A0
nf

under BPCS.

Therefore, the overall compliance tensor in a trans-

versely isotropic formation considering NFs under BPCS

could be expressed as follows:

etotal¼ eformationþenf¼ Arþ A0
nfr ¼ Atotalr ð33Þ

We then replace the tensor A with Atotal in Eq. (11), so

that the constitutive relations considering the influence of

NFs on the elastic response of the rock can be derived.

Fig. 5 Natural fracture coordinate system (NFCS) in BPCS
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2.4.2 Critical Mud Pressure Considering Multiple Weak

Planes

Because we consider NFs as another type of weak plane,

Eq. (31) should be changed into the form,

Pc ¼ maxðPco;Pcw1;Pcw2Þ ð34Þ

where Pcw1, Pcw2 are the critical mud pressure calculated

according to the yield criteria of the BP and NF, respec-

tively. If there are other groups of NFs with different

occurrences, we can use the same method outlined in Step

4 to include them.

2.5 Step 5: Considering Poroelastic Effect

Because the formation is a porous medium, the effective

stress should be used in calculations. Cheng (1997) studied

the effective stress distribution in an anisotropic formation

and provided the expression of the Biot coefficients as

follows,

aij ¼ dij �
Mijkk

3Ks

ð35Þ

where Mijkk are the drained coefficients in the stiffness

tensor, Ks is the grain modulus, and aij are the Biot

coefficients.

For engineering convenience, we transform the standard

tensor above to the below form using Voigt notation,

rx
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ai ¼ 1�
P3

j¼1 Mij

3Ks

; if i ¼ 1; 2; 3

ai ¼ �
P3

j¼1 Mij

3Ks

; if i ¼ 4; 5; 6

ð36Þ

where M ¼ðAtotalÞ�1
, and Atotal is defined in Eq. (33).

Therefore, to include the poroelastic anisotropy effect,

the effective stress tensor around the wellbore in Eq. (28)

can be modified to the form,

reffc ¼
rx sxy sxz

sxy ry syz

sxz syz rz

8
<

:

9
=

;
�

a1 a6 a5
a6 a2 a4
a5 a4 a3

8
<

:

9
=

;
p ð37Þ

Contrary to the isotropic case, it shows that the Biot

coefficients a4, a5, a6 may not necessarily be zero and

a1, a2, a3 may not necessarily equal to each other. This

means that pore pressure not only has an effect on principal

stresses, but could also influence shear stresses. Due to the

elastic anisotropy of the rock, many shear effects are

induced by the normal stress because of the shear–tension

coupling effect. This is why static fluid pressure can

transmit shear stresses.

3 Critical Mud Pressure Analysis and Discussion

Using the developed simulator, a parametric study was

carried out based on the inputs from Table 1, in which, for

validation purposes, some of them come from the pub-

lished work by Lee et al. (2012). The parameters studied

include controllable parameters, such as mud pressure and

well trajectory (wellbore azimuth and inclination angle),

and uncontrollable effects, such as weak plane occurrence,

formation intrinsic elastic anisotropy, and stiffness of NFs.

We assume the formation is transversely isotropic due to

the sedimentation effect and made of well-developed BPs

(the first type of weak plane). In addition, a group of NFs

(the second type of weak plane) is developed due to the

tectonic effect.

3.1 The Influence of Rock Elastic Anisotropy

We define two anisotropy indexes N = E\/Ek and

M = m\/mk to represent the degree of elastic anisotropy of

the rock. In general, an elastic property measured normal to

Fig. 6 Normal and shear

stiffness test of a single NF:

a normal stiffness, b shear

stiffness [reproduced after

Amadei (1983)]
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the BP is weaker than ones parallel to the BP, which means

that N B 1 and M C 1. As a result, only this situation is

defined as a BP-induced elastic anisotropy. Other situations

such as N[ 1 or M\ 1 are not discussed here.

In Fig. 7a, we show the case of the isotropic formation

under a stress regime of strike-slip fault. The polar plot

shows that the relative stable trajectory is a function of

inclination and azimuth angles. The concentric circles

represent increasing inclination, with the outer boundary

representing horizontal wells. The numbers around the

outer circle correspond to the borehole azimuth, which is

measured clockwisely from the north. The central area in

the plot, which corresponds to a vertical well, is observed

to be relatively unstable, while the most stable drilling

direction is parallel to the maximum horizontal principal

stress with a high inclination. The plot is symmetrical, and

the results are in accordance with determined by the elastic

isotropic models (Last 1996; Lee et al. 2012).

In Fig. 7b, to study the BP-induced anisotropy, the

elastic modulus normal to the isotropic plane is reduced to

0.5 times that of the in-plane one (N = 0.5). Compared

with Fig. 7a, the high-value area shifts from the plot centre

to the northeast and southwest, the variation of which is

about 1 MPa. The pressure values on the other grids,

however, maintain almost constant. The same trend is

observed when set M = 2, but N = 1, showing that the

Table 1 Mechanical parameters of rock mass and far-field in situ stresses

Parameter Measurement Unit Value Parameter Measurement Unit Value

Maximum horizontal principal

stress

Acoustic

emission

MPa 45.55 Azimuth of maximum horizontal

principal stress

Image logging Degree N135E

Minimum horizontal principal

stress

Acoustic

emission

MPa 34.86 Overburden stress Acoustic

emission

MPa 37.17

Well depth Logging data m 1676.4 Formation pressure Acoustic

logging

MPa 17.76

Biot coefficient (isotropic case) From literature – 0.8 Grain solid bulk modulus From literature GPa 83.3

Elastic modulus normal to the

isotropic plane

Tri-axial test GPa N*30 Elastic modulus in the plane of

isotropy

Tri-axial test GPa 30

Poisson’s ratio normal to the

isotropic plane

Tri-axial test – M*0.2 Poisson’s ratio in the plane of

isotropy

Tri-axial test – 0.2

Cohesion of rock matrix Tri-axial test MPa 8.2 Internal friction angle of rock

matrix

Tri-axial test Degree 31

Cohesion on BPs Tri-axial test MPa 2.07 Internal friction angle on BPs Tri-axial test Degree 26.6

Dip direction of BPs Image logging Degree N135E Dip angle of BPs Image logging Degree 45

Cohesion of NFs Tri-axial test MPa 3 Internal friction angle on NFs Tri-axial test Degree 22

Dip direction of NFs Image logging Degree N35E Dip angle of NFs Image logging Degree 50

Spacing between NFs Image logging m 0.1 Dilation angle of NFs See: Heuze,

(1979)

Degree 10

Normal stiffness of NFs See: Goodman

(1976)

GPa/m 90 Shear stiffness of NFs See: Liu et al.

(2008)

GPa/m 57

Fig. 7 Polar plots of critical

mud pressure: a isotropic case,

b BP-induced elastic anisotropy

(N = 0.5, M = 1)

A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation… 3681

123



anisotropy induced by elastic modulus or Poisson’s ratio

alone with the given degree (N = 0.5 or M = 2) cannot

have a significant impact on the magnitude in the polar

plot. We then combined both the indexes.

The parameters used in Fig. 8a are the same as those

chosen for Fig. 7b, except that the Poisson’s ratio normal

to the isotropic plane is set to be two times that of the in-

plane one. Compared with Fig. 7b, they look very alike

except that the magnitude of pressure decreases almost

uniformly at every grid in Fig. 8a, indicating that the

elastic anisotropy induced by the sedimentation effect does

help keep a wellbore stable for any well trajectory. Care

should be taken, however, that the selection of the

parameters in Table 1 is highly biased so other choices

(e.g. different in situ stress regimes or bedding plane ori-

entations) may lead to a significant deviation from our

observation.

We then rotated the azimuth of the maximum hori-

zontal principal stress 45� clockwisely, making it not

parallel with the dip azimuth, but aligned with the north.

Contrary to the isotropic case (Fig. 7a), the rotation leads

to a lack of plot symmetry, as shown in Fig. 8b. This is

because the dip direction of the BP is no longer aligned

with the horizontal principal stress: although the two

borehole coordinate systems at two positions that are

symmetrically located on the two sides of the magenta

line (in Fig. 8b) have symmetrical compliance tensors,

their two far-field stress regimes are not, leading to the

different calculated pressure values and thus the plot

asymmetry. If the direction of the principal stress coin-

cides with the dip direction of BP, the polar plot restores

its symmetry, as shown in Fig. 8a.

3.2 The Influence of Rock Strength Anisotropy

To study the impact of strength anisotropy only, we carried

out a simulation of an elastic isotropic but strength

anisotropy case. As shown in Fig. 9a, though the strength

anisotropy introduced, we again observe symmetry in the

plot—due to the fact that we rotated the azimuth of prin-

cipal stress back to the original position so the dip direction

is now parallel to the horizontal principal stress. Addi-

tionally, we see that it is safer to drill with a well trajectory

perpendicular to the BP, as can be verified in Fig. 9b: when

the dip angle is 90�, the horizontal well is safer in the

trajectories (blue area) normal to the BP. Correspondingly,

Last (1996) analysed the borehole instability in the Cusiana

field using on-site observations and showed that the per-

formance improves when drilling up-dip of the major faults

and bedding while down-dip and cross-dip well trajectories

are the most problematic. This is in accordance with our

modelling results.

To reflect the real drilling environment underground, the

elastic and strength anisotropies should not be considered

separately. These intrinsic rock anisotropies always coexist

in a formation, and they should be coupled together, as

shown in Fig. 10.

3.3 The Influence of Multiple Weak Planes

Figure 11a, in comparison with Fig. 8a, additionally con-

siders the influence of NF on the constitutive relationship.

We used the stiffness parameters given in Table 1 as inputs

to the simulator, and we observe that an introduction of the

NF stiffness based on the equivalent continuum idea

increases the critical mud pressure at almost all the grids in

the plot, but with different degrees. In addition, from

Eq. (32), we can conclude that the higher the NF stiffness

and the lower the NF density and dilation angle, the less

NFs will influence the stress distribution and, subsequently,

the critical mud pressure.

In Fig. 11b, we used all the parameters from Table 1 for

calculation. Observe that due to the comprehensive con-

sideration of the complex anisotropies, the polar plot lacks

Fig. 8 Polar plots of critical

mud pressure, BP-induced

elastic anisotropy (N = 0.5,

M = 2): a BP dip direction

parallel to horizontal principal

stress, b not parallel case where

the maximum horizontal stress

parallel to the north
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of any type of symmetry, and it is difficult to find any

regularity. However, for a specific issue, we can perform a

concrete analysis and derive the most accurate critical mud

pressure by comprehensively considering all types of

heterogeneities in the formation.

3.4 The Influence of In situ Stress and Formation

Pressure

In Fig. 12a, all the three principal in situ stresses are set to

be 37.17 MPa, which leads to a drop in mud pressure at

almost all the places in the plot compared with Fig. 11b.

Thus, the more uniform the in situ stress regime is, the

greater the wellbore stability will be. In addition, applying

a high formation initial pressure (22 MPa) leads to a uni-

form increments about 2 MPa for all the well trajectories,

showing that care should be taken when drilling through a

high-pressure formation (we did not attach the plot due to

its exactly the same profile with Fig. 12a).

In Fig. 12b, all the parameters are the same as those

used in Fig. 12a, but we reduced the model to isotropic

poroelasticity (i.e. we use Eq. (28) instead of Eq. (37) to

calculate the effective stresses). Compared with its aniso-

tropic counterpart, a dropped mud pressure of 1 MPa being

Fig. 9 Polar plots of critical

mud pressure, BP-induced

strength anisotropy: a BP dip

angle set to be 45�, b BP dip

angle set to be 90�

Fig. 10 BP-induced elastic (N = 0.5, M = 2) and strength

anisotropy

Fig. 11 Polar plots of critical

mud pressure, multiple weak

planes: a two groups of elastic

anisotropy, b two groups of

both elastic and strength

anisotropies
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observed at the two regions in the upper half circle reveals

that the consideration of the poroelastic anisotropy is

nontrivial.

3.5 A Correction for the Weak Plane Yield

Criterion

Further, we simulated a case with the same parameters

used in Fig. 9a except a decreased frictional angle of 13.6�.
Figure 13a shows the calculation results: evidently, two

areas with very large values are starkly positioned at

around 60� inclination towards the northeast and south-

west. In order to find out why this discontinuity occurs, we

re-examined the flow chart (see Fig. 4). In the step ‘in-

crease mud pressure from 0 MPa’, we set an upper limit

equal to 70 MPa: if the yield criterion still cannot be sat-

isfied when the pressure reaches the upper limit, the sim-

ulator will return a mud weight as 70 MPa for that

trajectory. Therefore, in these two areas, for any pressure

value inside the range 0–70 MPa, at least one equality in

Eqs. (29) and (30) does not hold.

Driven by sheer curiosity, we followed the method from

Liu et al. (2015) to define two yield indexes: one for intact

rock [equal to the left part minus right part in Eq. (29)] and

the other one for weak plane [equal to the left part minus

right part in Eq. (30)]. A magnitude of yield index below

zero means the rock being elastic while equalling zero

indicates the onset of plastic deformation. It is therefore

logical to say that the x-axis in Fig. 14 can be viewed as a

yield surface. Noted that analyses of the index above zero is

meaningless, since the stress fields in Eq. (23) have already

changed due to the plastic flow on the yield surface.

Figure 14 shows the variation of the maximum yield

index around a borehole (from 1� to 360� intervalled by

1�) with the increase in mud pressure from 0 to 70 MPa,

plotted at a trajectory with 60� inclination and 60� azimuth

(see the magenta dot in Fig. 13a). For the intact rock (see

the red solid line in Fig. 14), three regions can be identi-

fied: region I shows a stress regime in cylindrical coordi-

nate by rr\ r2\r1, region II by r3\ rr\ r1, and

region III by r3\r2\ rr, where rr is the radial principal

stress acting on the wellbore while other two are the

Fig. 12 Polar plots of critical

mud pressure: a homogeneous

in situ stress field with a pore

pressure 17.76 MPa,

b poroelastic isotropy

Fig. 13 Polar plots of critical

mud pressure (parameters the

same with those used in Fig. 9a,

except that the internal friction

angle reduces to 13.6�): a before
correction; b after correction
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principal stresses inside the rock on a wellbore (i.e. derived

from rz, rh, and rzh). The red line intersects the yield

surface (black straight line) at two nodes (left one: 24 MPa

and right one: 48 MPa) that spans a large range, between

which rocks undergo elastic deformation. These two nodes

represent the pressure that satisfies the equality of Eq. (29).

In contrast, when introducing strength anisotropy (see the

green line), the range reduces greatly and the line (green)

becomes flattened and its position moves upward. Fur-

thermore, by reducing the internal frictional angle (/) from
26.6� to 13.6�, the line (blue) locates even higher and

becomes detached from the yield surface (see the inset),

which indicates plastic slip along fracture will always

happen: the adjustment of mud weight is thus of no use to

ensure the existence of intersections (i.e. the equality of

Eq. (30) never holds). This explains why the simulator

returned a 70 MPa pressure, which results in the two

starkly appeared areas in Fig. 13a.

In order to optimize the mud pressure for the blue line, it

is assumed that its turning point (see the inset in Fig. 14)

corresponds to the pressure that can minimize the plastic

deformation degree around a wellbore: the pressure beyond

this point will induce more severe plastic slip along the

weak plane faces. Result after the correction is shown in

Fig. 13b, and it presents a smoother pressure distribution.

As discussed above, this assumption does not have a

valid theoretical background. To overcome the issue, one

needs to get a theoretically sound analytical solution for

stress/strain fields around a wellbore intercepted by frac-

tures when plastic deformation (along the weak plane) has

already occurred. However, we failed to find such a solu-

tion due to the complexity of the problem. As a result, the

numerical techniques are expected for further modellings.

Generally, based on the numerical simulation results, we

can optimize the mud weight by minimizing either the

plastic regions around a wellbore or the accumulated

equivalent plastic strains on the borehole wall. It is there-

fore interesting to validate our assumption by the numerical

results, but is beyond our scope here.

4 Conclusions

In this paper, a model that considers various types of ani-

sotropy is established. Factors such as rock strength ani-

sotropy, rock elastic anisotropy, multiple weak planes,

in situ stress anisotropy, and poroelastic anisotropy that can

have a great influence on wellbore stability are investi-

gated. The results indicate:

1. (1) The anisotropies of the elastic modulus and Pois-

son’s ratio are both found to be beneficial to borehole

stability for any type of well trajectory. (2) When

considering only one type of the weak plane, it is safer to

drill perpendicular to it. (3) The polar plot has symme-

tries if the direction of the horizontal principal stress

coincides with the dip direction of weak planes. (4) The

anisotropy of in situ stresses and high formation pressure

are detrimental to wellbore stability. (5) The consider-

ation of poroelastic anisotropy is nontrivial.

2. A drawback of the model established by Lee et al.

(2012) is disclosed when the anisotropic degree of

in situ stresses is high or the strength on weak planes is

low. We fixed it by choosing the turning point of the

yield index line as the pressure that can minimize the

plastic deformation degree around a wellbore. How-

ever, the choice remains to be validated by numerical

simulations.

3. The situation becomes complex when including mul-

tiple weak planes for two reasons: 1. many groups of

discontinuity change the stress–strain relationship of

rock considerably and 2. it becomes difficult to judge

whether the rock on the wellbore fails through the

intact rock or along the weak plane. The simulator

derived can properly consider all these complexities

and provide an accurate mud lower bound to ensure

the safe drilling in anisotropic formations.
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