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Abstract Stress wave interaction with rock joints during

wave propagation is usually dependent on the dynamic

response of the joints. During wave propagation, joints may

be closed and open under the effects of the stress wave and

the in situ stress. A joint in nature can only resist load

during close process. In this paper, the close and open

behaviors of rock joints are considered to be different. The

joints are assumed to be linearly elastic in close status but

turn into free surfaces in open status. Wave propagation

equation across joints with unequally close–open behavior

is first derived and expressed as a time-differential form

based on the displacement discontinuity method. SHPB test

recording is then adopted to verify the present approach,

which is also compared with the results from existing

methods for joints with equally close–open behavior. Next,

analysis is conduced for wave propagation across a single

joint and a set of parallel joints with unequally close–open

behavior, respectively. From the analysis, effects of

unequally close–open behavior of a joint on wave propa-

gation and the dynamic response of the joint are studied

finally.

Keywords Wave propagation � Rock joints � Close–open

behavior of joints � Joint boundary condition

1 Introduction

It is well known that a natural rock mass usually contains

discontinuities, ranging over several orders of magnitudes,

from micro-cracks to large-scale joints, fractures and

faults. Due to their universality in a rock mass, rock joints

not only govern the mechanical behavior of the rock mass

but also effect the wave propagation in the rock mass.

Studying the interaction of stress wave and rock joints is

crucial to evaluate the stability and damage of rock struc-

tures, such as underground caverns, rock slopes and foun-

dations under dynamic loads.

During wave propagation process, the two sides of a

joint have relative deformation, such as opening, closure

and slip under normal and shear stresses (Barton 1973;

Brown and Scholz 1986; Daehnke and Rossmanith 1997).

By conducting model tests and comparing the test results

with those from numerical calculation, Fourney et al.

(1997) found that open gaps affected the wave character

not only in its amplitude but also in the spectral content.

Recently, Wang et al. (2014) analyzed the closing process

of an open joint under blast-induced waves and investi-

gated the transmitted energy. In the studies, the two sides

of the joints were taken into account as free surfaces to

reflect stress waves impinging on the joints when joints are

open.

The normal mechanical behavior of a joint is the main

factor to influence P-wave propagation in jointed rock

masses. Since a rock joint is not able to sustain tensile

stresses, the normal property of the joint was generally

described as the relation between its closure and pressure

on it. For example, Goodman (1976) proposed a joint

closure–stress equation by measuring mated and non-mated

joints. Bandis et al. (1983) observed non-linear closure-

stress curves (i.e. B–B model) by measuring the difference

& J. C. Li

jcli@whrsm.ac.cn

1 State Key Laboratory of Geomechanics and Geotechnical

Engineering, Institute of Rock and Soil Mechanics, Chinese

Academy of Sciences, Wuhan 430071, China

2 NJU-ECE Institute for Underground Space and Geo-

environment, School of Earth Sciences and Engineering,

Nanjing University, Nanjing 210093, China

123

Rock Mech Rock Eng (2016) 49:3155–3164

DOI 10.1007/s00603-016-0974-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-016-0974-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-016-0974-4&amp;domain=pdf


of the displacements for the two sides of natural, unfilled

joints with different degrees of weathering and roughness.

Pyrak-Nolte (1988) measured the closure of natural joints

and the corresponding seismic wave transmission across

the joints, and derived the closurepressure relation.

Among analytical methods, the displacement disconti-

nuity method (DDM) (Miller 1977; Schoenberg 1980) was

used commonly for wave propagation across rock joints.

For example, Pyrak-Nolte et al. (1990) derived the close-

form solutions for a harmonic incidence across a linearly

elastic rock joint. Coupling with the characteristic line

theory (Ewing et al. 1957; Bedford and Drumheller 1994),

Zhao and Cai (2001) calculated the transmission coefficient

of incident longitudinal (P-) waves across a single non-

linear rock joint. Later, Zhao et al. (2006a, b) developed

this coupling method to derive a wave propagation equa-

tion across linear and non-linear joints, respectively. With a

transmission line formula, the scattering matrix method

(SMM) (Aki and Richards 2002; Perino et al. 2010) was

coupled with the DDM to study harmonic wave propaga-

tion across a set of parallel joints. As another expression of

the scattering matrix method, the recursive method was

modified with the DDM by Zhu et al. (2012) to fast cal-

culate wave propagation across rock joints filled with vis-

coelastic medium, when the joints and rocks have similar

mechanical properties and spatial configuration. Zhu et al.

(2011) improved the DDM to analyze the effect of vis-

coelastic behavior of filled joints on seismic wave propa-

gation. Li et al. (2012, 2013) proposed a time domain

recursive method coupled with the DDM to analyze the

obliquely incident wave propagation across a set of parallel

rock joints with linear or nonlinear property. In the above

studies, the close and open mechanical properties of a joint

were considered to be equal, that is, closurestress relation

of joints from the tests was also adopted to describe the

joint-opening mechanical behavior.

Underground rock masses are generally in compressive

state due to in situ stress, which causes joints usually

closed. Many investigations have shown that the in situ

stress is related to the complex geological conditions and

varies with the depth of rock masses (Haimson et al. 2003;

Zhao et al. 2005; Liu et al. 2014). The in situ stress is

comparatively low in some cases, such as slope engineer-

ing and shallow depths. When an incident wave impinges

on rock joints, the interaction between stress waves and

joints creates new stress field around the joints and may

cause joint close or open deformation.

The study is motivated by the need to better understand

the effects of close and open behaviors of joints on wave

propagation and the dynamic response of the joints. During

P-wave propagation across a jointed rock mass, joints may

have close or open deformation. The joints are assumed to

be linearly elastic in close process and become free

surfaces once joints open. After the brief introduction of

the method of characteristic, wave propagation equation is

first established. Comparison is consequently conducted

between SHPB test recordings and analytical results which

are obtained from the existing and present approaches for

joints having equally and unequally close–open behavior,

respectively. The entity of the error between the joints with

equally and unequally close–open behaviors is analyzed.

The role of the relevant parameters, such as in situ stress,

joint spacing and joint number, on the transmitted wave is

finally studied.

2 Theoretical Formulations

2.1 Problem Description

Assume there is a set of parallel joints in a linearly elastic,

homogeneous and isotropic rock. When a plane P-wave

impinges on one joint, both reflection and transmission

usually take place from the two sides of the joint. Mean-

while, multiple reflected waves propagating in two oppo-

site directions are induced from the joints. During wave

propagation, the closure and opening of joints may occur,

as shown in Fig. 1. In the close process, the two sides of the

joint begin to contact and interact, as shown in Fig. 1a.

This interaction is dependent on the close behavior of the

joint. When the joint is open, the two sides are separated

from each other and become as two free surfaces, as shown

in Fig. 1b. At this moment, any waves are reflected at all

from the joint sides (i.e. the free surfaces). This study is to

investigate the interaction between stress wave and rock

joints with unequally open and close mechanical behaviors.

2.2 Wave Propagation Equation

For one-dimensional wave propagation in a continuous

medium, there are two types of characteristics: left-running

and right-running characteristics (Ewing et al. 1957;

(a) A closed joint (b) An open joint

Stress P-waves Stress P-waves 

Fig. 1 Schematic view of the joint close–open process during wave

propagation
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Bedford and Drumheller 1994). Later, Zhao et al. (2006)

proposed a similar triangle-shape characteristic method

(see Fig. 2) to analyze wave propagation across a set of

parallel joints for which normal property is linearly elastic.

In Fig. 2, the conjunction points a and b are located at

integral values of 1=ðCDtÞ along the x axes and 1=Dt along

the t in the x–t plane, so are the points a0 and c, where Dt is

the time interval and C is the P-wave propagation velocity

in one continuous medium. The wave impendence of

P-wave is denoted as z, and z = qC, where q is the density

of the medium. According to the similar triangle-shape

characteristic method, the two relations between the par-

ticle velocities and the normal stresses along two charac-

teristics can be expressed as

zv� xn; tjþ1

� �
þ r� xn; tjþ1

� �
¼ zvþ xn�1; tj

� �
þ rþ xn�1; tj

� �
;

along right-running characteristic line ab

ð1Þ

zvþ xn; tjþ1

� �
� rþ xn; tjþ1

� �
¼ zv� xnþ1; tj

� �
� r� xnþ1; tj

� �
;

along left-running characteristic line a0c

ð2Þ

where v� xn; tjþ1

� �
and vþ xn; tjþ1

� �
are the particle veloci-

ties at time tjþ1 before and after the interface at xn,

respectively; r� xn; tjþ1

� �
and rþ xn; tjþ1

� �
are the normal

stresses at time tjþ1 before and after the interface at xn,

respectively; j = [1, J], n = [2, N], and J and N are the

time steps and the number of interfaces, respectively.

When the method of characteristic was adopted to

analyze P-wave propagation, the rock mass with a set of

parallel joints was also divided with finite interfaces with

number N and equal space CDt (Zhao et al. 2006b). The

interfaces could be discontinuities, i.e. joins, or continu-

ities, i.e. welded interfaces.

1. When the interface is a joint.

In this case, the points a and a0 are situated on the two

sides of the joint. The distance between points a and a0

represents the initial thickness of the joint, which is

very small if compared to the wavelength of an

incident wave and so is ignored in the present study.

When an incident P-wave impinges normally on a set

of parallel joints, the joints may be open and closed. If

the relatively normal displacement of two sides of one

joint is denoted as Du, there is

u� xn; tj
� �

� uþ xn; tj
� �

¼ Du xn; tj
� �

ð3Þ

where u� and uþ are the displacements of the two sides

of the joint. The initial closure of a joint is denoted as

Du0 under the effect of in situ stress r0 and

Du0 ¼ r0=k, where k is the normal stiffness of the

joints and the in situ stress is supposed to be normal on

the joints. In this paper, we consider the compressive

stress to be positive.

During wave propagation process, there are two pos-

sible deformation modes for one joint, i.e. closed mode

when Du[ � Du0 and open mode when Du� � Du0,

as shown in Fig. 1. The symbol �Du0 denotes the

critical opening of joints.

Mode I: Closed mode when Du[ � Du0

When one joint is closed, i.e. u� � uþ [ � Du0, the

normal deformations of the joint are elastic and the

joint becomes a displacement discontinuous bound-

ary. The displacement discontinuity method (DDM)

is adopted in the paper to describe the boundary. In

the DDM, the stresses before and after the joint are

considered to be continuous while the displacement

before and after the joint are discontinuous. When

the method of characteristic was adopted, Zhao et al.

(2006b) derived the mathematical expression for

wave propagation across a set of parallel joints of

which the compressive property is equal to their

tensile property.

When the stress at time tjþ1 on the joint was

expressed as

r xn; tjþ1

� �
¼ r xn; tj

� �

þ kDt v� xn; tj
� �

� vþ xn; tj
� �� �

; ð4Þ

the particle velocities v� xn; tjþ1

� �
and vþ xn; tjþ1

� �

before and after any joints with linearly elastic

behavior were expressed as the following form (Li

et al. 2010),

v� xn; tjþ1

� �
¼ vþ xn�1; tj

� �

þ 1

z
r xn�1; tj
� �

� r xn; tjþ1

� �� �
ð5Þ

vþ xn; tjþ1

� �
¼ v� xnþ1; tj

� �

þ 1

z
�r xnþ1; tj

� �
þ r xn; tjþ1

� �� �
ð6Þ

where r denotes the normal stress on the joint; Dt
denotes the time interval.

Mode II: Open mode when Du� � Du0When one

joint is open, i.e. u� � uþ � � Du0, the normal

deformation of the joint is not elastic any more, and

then the two sides of the joint become free surfaces.

For this case, the stress on each side is zero,

r� xn; tj
� �

¼ rþ xn; tj
� �

¼ 0 ð7Þ

According to the right- and left-running character-

istics expressed mathematically as Eqs. (1) and (2),

the particle velocities before and after the joint can

be written as
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v� xn; tjþ1

� �
¼ vþ xn�1; tj

� �
þ 1

z
rþ xn�1; tj

� �
ð8Þ

vþ xn; tjþ1

� �
¼ v� xnþ1; tj

� �
� 1

z
r� xnþ1; tj

� �
ð9Þ

Equations (8) and (9) mean that the particle veloc-

ities for the points a and a0 on the left- and right-

sides of an open joint can be calculated from the

dynamic responses of points b and c, respectively.

2. When the interface is continuous.

For this case, the points a and a0 are overlapped or

welded, which results in continuous physical variables

before and after the interface, such as the stress and

displacement. If the displacement shown as

u� xn; tj
� �

¼ uþ xn; tj
� �

¼ u xn; tj
� �

ð10Þ

is differential to time t, the stress and the particle

velocity of this continuous interface can be deduced

from Eqs. (1) and (2) and expressed as

v xn; tjþ1

� �
¼ 1

2
vþ xn�1; tj

� �
þ v� xnþ1; tj

� �� �

þ 1

2z
r xn�1; tj
� �

� r xnþ1; tj
� �� �

ð11Þ

r xn; tjþ1

� �
¼ z

2
vþ xn�1; tj

� �
� v� xnþ1; tj

� �� �

þ 1

2
r xn�1; tj
� �

þ r xnþ1; tj
� �� �

ð12Þ

The joint number is denoted as JN and the joint

spacing S between two adjacent joints is divided into m

layers. If the 1st and the JNth joints are assumed to be

located at the 2nd and the Nth interfaces, respectively,

there is N = (JN - 1)m ? 2. If the incident wave is

applied on the 1st layer and denoted as vþðx1; tÞ, the

stress rðx1; tÞ on the 1st interface is equal to

qCvþðx1; tÞ. The particle before the 1st interface is

assumed to be not disturbed, that is, v�ðx1; tÞ ¼ 0.

When the initial conditions of v�ðx1; 0Þ, vþðx1; 0Þ and

rðxi; 0Þ (i = [2, N]) are known, wave propagation

across the rock mass and the dynamic response of the

joints can be calculated from above differential equa-

tions. For a joint interface, the stress on the joint and

the particle velocities before and after the joint can be

obtained from Eqs. (4) to (6) if the joint is closed or

from Eqs. (7) to (9) when the joint is open. For a non-

joint interface (i.e. continuous interface), the stress and

the particle velocities at the interface can be obtained

from Eqs. (11) and (12). Hence, the transmitted wave

after the JNth joint is calculated and written as

vTðtjÞ ¼ vþ xN ; tj
� �

ð13Þ

and the incident wave before the 1st joint is

vRðtjÞ ¼ v� x2; tj
� �

� vI tj � Dt
� �

ð14Þ

where vIðtjÞ is the incident wave impinging on the 1st

interface.

3 Verification

In this section, verification is carried out by comparing the

theoretical solution from the above derivation and the test

results. The theoretical results are also compared with those

from the existing method where the dynamic close and

open behaviors of joints are assumed to be the same.

The test was conducted by Chen et al. (2015) using the

modified SHPB experimental equipment to investigate the

effect of joints with rough surface on wave propagation.

Figure 3 shows the schematic view of the test equipment

and the specimen with 36 % contact area ratio. The input

and output bars were both made of norite with length of

1.5 m and square cross section of 40 9 40 mm. The den-

sity of the norite is 2960 kg/m3, and the Young’s modulus

is 63.6 GPa. The specimens sandwiched between the input

and output bars were also made of norite. The main cross

section of each specimen was identical to those of the input

and output bars. One surface of each specimen was flat and

the other surface in contact with the output bar was sawn to

shape a number of notches and columns, as shown in

Fig. 3b, c. The artificial joint was formed from the notches

and columns of each specimen. The specific stiffness of

joint is defined as the average gradient of the closure–

pressure curve for each joint. The test result (Chen et al.

2015) shows that the closurepressure curve for the joint

with notch depth 1 mm and contact area ratio of 36 % is

almost straight and the specific stiffness of the joint is

about 110 GPa/m. No initial pressure was applied on the

equipment, that is, r0 ¼ 0.

For one incident strain wave recorded in the input bar

during the test, we can calculate the transmitted strain wave

t

tn+1 

t xn-1       xn        xn+1 x 

b 

a' a 

Right-running 
characteristic 

Left-running 
characteristic 

c 

Fig. 2 Schematic view of the characteristics on x–t plane
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from Eqs. (4) to (9) and (13) when divided by the wave

propagation velocity C in norite. The joint stiffness k is

adopted as 110 GPa/m from the tests for the artificial joint

which is 1 mm in thickness and 36 % in contact area ratio.

The incident and transmitted waves recorded from the test

are shown in Fig. 4, where the incident one has an obvi-

ously compressive portion with a tiny tensile tail. Based on

the present approach for joints with different close and

open behaviors and the existing method (Zhao and Cai

2001) for joints with the same close and open behaviors,

the transmitted waves are calculated and shown in Fig. 4,

too. By comparison, we can see that the transmitted

waveform based on the present approach is closer to the

test recording. Since there is no initial pressure on the two

surfaces of each test sample during the test, the critical

opening of joints Du0 is zero and the transmitted wave

calculated from the present approach only has a compres-

sive portion, while the transmitted wave from the existing

method includes compressive and tensile portions.

4 Wave Propagation Across a Single Joint or a Set
of Parallel Joints

In this section, an incident P-wave impinging on a single

joint or a set of parallel joints is analyzed based on the

wave propagation equation derived in Sect. 2. In the fol-

lowing analysis, some basic parameters for the joint and

rock are chosen from the typical properties of the Bukit

Timah granite of Singapore (Zhao 1996): the normal

compressive stiffness k is 2.0 GPa/m, the rock mass density

q is 2650 kg/m3, and the P-wave velocity C is 5840 m/s.

The in situ stresses r0 are assumed to be 0.2zA, 0.5zA

and 1.0zA, respectively. The incident waves are assumed as

a one-cycle sinusoidal waveform, i.e.

vI ¼
A sinðxtÞ; t ¼ 0 � 1=f0
0; t[ 1=f0

�
ð15Þ

where A is the amplitude of the incident waves and

assumed to be 1.0 m/s, x ¼ 2pf0 and f0 = 50 Hz.

4.1 Wave Propagation Across a Single Joint

When an incident P-wave with the form of Eq. (15)

impinges normally on one joint with unequally close–open

(a) Schematic view of SHPB test equipment 

(b) Schematic view of specimen between input and out bars (c) Specimen with 36% contact area ratio 

Specimen Output barInput bar 

1125 1125 187.5 187.5 187.5 187.5 
1500 1500 

40 200 

Loading system Output bar Strain gauges  Strain gauges  Input bar Specimen  

Unit: mm See Fig. 3(b) 

1 mm 

Fig. 3 SHPB test fro wave propagation across an artificial joint with rough surface

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.02

0.00

0.02

0.04

0.06

0.08

0.10
 Incident strain wave (Chen et al., 2015)
 Transmission from test (Chen et al., 2015)
 Transmission from present approach
 Transmission (Zhao and Cai, 2001)

S
tra

in
 (x

10
3 )

Time (ms)

Fig. 4 Comparison of the transmitted waves from theoretical meth-

ods and the test
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behavior, the particle velocities before and after the joint

can be obtained from Eqs. (4) to (6) when the joint is

closed and from Eqs. (8) and (9) when the joint is open.

The transmitted and reflected waves across the joint are

then obtained from Eqs. (13) and (14). Figure 5a, b show

the wave transmission and reflection when the in situ

stresses r0 are 0.2zA and 0.5zA, respectively. If the joint

has equally close–open dynamic behavior, Eqs. (4–6) are

only needed to calculate the particle velocities before and

after the joint. The corresponding transmitted and reflected

waves are shown in Fig. 5c.

We can see from Fig. 5 that the first positive parts of the

transmitted waveforms are identical in compressive stress

state when the stress wave propagates across a joint with

equally or unequally close–open behavior. We also

observed from Figs. 2b and 5a that the negative parts of the

transmitted waveforms are cut off at the particle velocities

of 0.2 m/s for r0 = 0.2zA and 0.5 m/s for r0 = 0.5zA,

respectively, and the reflected waveforms are influenced

thence. We can conclude that the cut-off line segment

occurs at tensile stress state with value of r0=zA. The cut-

off waveform of the transmitted waves across a joint with

unequally close–open behavior indicates that the joint

begins to be open and fails to resist the initial pressure.

When the in situ stress is 1.0zA, we also calculate wave

propagation across the joint with unequally close–open

behavior and find that the transmitted and reflected waves

are respectively identical to those for joints with equally

close–open behavior, as shown in Fig. 5c. This indicates

that for r0 = 1.0zA, joint appears no open and two sides of

the joint are kept in interaction during wave propagation

process.

When the difference between the particle velocities of

the two sides of the joint is integrated with regard to time t,

the relatively normal displacement of the joint is obtained

and shown in Fig. 6a. The corresponding normal stress on

the joint during wave propagation can be found in Fig. 6b.

Figure 6a, b shows that the negative parts of the normal

stress curve are cut off when the negative displacement is

greater than the critical value of opening joints, i.e. 0.2zA/k

and 0.5zA/k. When the in situ stress r0 is 1.0zA, the critical

value of opening joints is 1.0zA/k, which is a bit greater

than the minimum amplitude of the normal displacement.

Hence, the curves for the time history of the normal stress

on the joints with equally and unequally close–open

behaviors are identical for r0 being 1.0zA.

4.2 Wave Propagation Across Two Parallel Joints

Based on the derivation shown in Sect. 2, the transmitted

waves are calculated and shown in Fig. 7 for wave prop-

agation across two parallel joints with different spacings

and in situ stresses. The symbol k denotes the wavelength

of the incident wave and equals to C=f0. Figure 7 shows

that for r0 = 0.2zA some cut-off lines with value of 0.2 m/s

appear at the negative parts of the transmitted waves when

the joint spacing denoted as S varies from 1/20k to 2/5k.

For r0 = 0.5zA and S being 1/20k, 1/10k and 1/5k,

respectively, there are also some cut-off lines at the
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Fig. 5 Wave propagation normally across a joint with equal and

unequal close–open behaviors
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negative parts of the transmitted waves and the value of the

line equals to 0.5 m/s. When the in situ stress is 0.5zA and

joint spacing is 2/5k, the minimum amplitude of the

transmitted wave is less than r0=zA and then there is no

cut-off line. Meanwhile, we observe from Fig. 7 that the

maximum amplitude of the transmitted waves decreases

with increasing joint spacing, and the minimum amplitude

of the transmitted waves is not affected by the joint spacing

but limited by the ratio of the in situ stress to the maximum

momentum of the incident wave when the joint is open.

To analyze the dynamic response of joints during wave

propagation, the relatively normal displacements of the two

joints are calculated and shown in Fig. 7, when the in situ

stress is 0.5zA. Joint opening state occurs once the negative

value of the normal displacement is greater than the critical

opening value of joints. It is then observed from Fig. 8 that

which joint is open is related to the joint spacing S. When

S is 1/20k, the 1st joint is closed but the 2nd joint is open,

and vice versa for S = 2/5k. When S is 1/10k or 1/5k, both

joints have opening deformation. Additionally, we find

from Figs. 7 and 8 that the cut-off line of the transmitted

wave is related to the dynamic response of the 2nd joint. In

other words, the occurrence of the cut-off line of the

transmitted wave indicates that there must be an opening

deformation of the 2nd joint. Even though there is no cut-

off line of the transmitted wave, the 1st joint is possibly

open, which can be found in Fig. 8d.

From the above, spectral analysis is then carried out and

shown in Fig. 9. It can be seen from the figure that the

dominant frequencies for r0 = 0.5zA and 1.0zA are quite

close to each other, while the dominant frequency for

r0 = 0.2zA is obviously less than the two others for

r0 = 0.5zA and 1.0zA, when the joint spacing is given.

This indicates that lower in situ stress is more possible to

cause joint open and fill out transmitted waves with higher

frequency. It is also observed that for the three in situ

stresses, the dominant frequency decreases when the joint

spacing varies from 1/10k to 2/5k. For r0 = 0.5zA and

1.0zA, the dominant frequencies are around 50 Hz for

S = 1/10k, 35 Hz for S = 1/5k and 25 Hz for S = 2/5k.

4.3 Wave Propagation Across a Set of Parallel

Joints

Figure 10 shows the transmitted wave across a set of par-

allel joints when the joint number varies from 5, 8 to 11

and the joint spacing is 1/20k. For a given joint number, the

main compressive portions of the transmitted waves for the

three in situ stresses are identical. In addition, the maxi-

mum amplitudes are about 0.69, 0.65 and 0.6 for the joint
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Fig. 6 Interaction between stress wave and rock joint during wave
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number varying from 5, 8 to 11, respectively, which shows

that the maximum amplitude of the transmitted wave is not

affected by the in situ stress but influenced by the joint

number when the joint spacing is given. This indicates that

the stress wave attenuates gradually in amplitude with

increasing joint number when the joint spacing is 1/20k.

By observing the negative parts of the transmitted

waves, we find that there is no cut-off line for r0 = 1.0zA,

while for r0 = 0.2zA and 0.5zA the cut-off lines occur and

the values are equal to 0.2 and 0.5 m/s, respectively. The

phenomena indicate that the number of joints in a rock

mass does not influence the minimum amplitude of the
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Fig. 8 The joint displacement during wave propagation across two

parallel joints with unequally close–open behavior
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transmitted wave if joints are open. In summary, the min-

imum amplitude of the transmitted wave across opening

joints is related to the in situ stress and limited by r0=zA.

The above analysis shows that joints with equally and

unequally close–open behaviors result in transmitted waves

with different waveforms and different dynamic responses

of the joints. For the joints with equally and unequally

close–open behaviors, the error is equal to 1 � r0=zA,

which indicates that the entity of the error is due to the

in situ stress and the maximum momentum of the incident

wave.

5 Conclusions

The effects of different close and open deformation prop-

erties of joints on wave propagation and the dynamic

response of the joints are studied in the paper. During wave

propagation across a jointed rock mass, the redistribution

of the stress on the rock joints may cause joint deformation.

In this study, joints are assumed to be linearly elastic in

close deformation and become free surfaces once joints are

open, which is different from the joints assumed to have

the same linearly elastic behavior in both close and open

deformations. Wave propagation equation is derived for

wave propagation across one single joint and a set of

parallel joints, when the close and open deformation

properties of one joint are different. By comparison, it is

found that the calculation considering joint open failure is

more close to the test results, which proves that the present

approach is effective. By analyzing the interaction between

stress wave and a single joint, wave propagation across

joints with unequally close–open behavior is different from

that for joints with equally close–open behavior.

During stress wave propagation across one single joint

with unequally close–open behavior, the cut-off line

appears in the transmitted wave when the joint opening

deformation is big enough to resist the closure of joints

caused by in situ stress. The in situ stress affects not only

the transmitted and reflected waves but also the joint

dynamic response, such as the relative deformation of one

joint. For the lower in situ stress, the opening deformation

of joint is more obvious and the joint is more possible to

filter out stress waves with higher frequency.

During wave propagation across a set of parallel joints,

the opening of any joint results in wave attenuated more in

both amplitude and frequency. If joints are open, the

number of joints in a rock mass and the joint spacing only

affect the maximum amplitude of the transmitted wave,

which is related to the joint closure. However, the joint

number and spacing do not influence the minimum

amplitude of the transmitted wave, when joints are open

and fail to resist tension. The minimum amplitude of the

transmitted wave across open joints is limited by r0=zA.

The error between the two dynamic behaviors of a joint is

related to the ratio of the in situ stress to the momentum of

the incident wave. Therefore, for the slope engineering and

shallow depths where the in situ stress is low, joints

become more possible to open during wave propagation

and the unequally close–open property of a joint should be

taken into account for study.

In the above study, the joint compressive behavior is

assumed to be linearly elastic. The present approach can

also be extended to analyze wave propagation across rock

joints of which compressive properties are nonlinearly

elastic.
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