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List of Symbols

As, Is Cross-section and moment of inertia of liner

Ex, Ey Young’s modulus of rock in x- and y-axis

Es, ms Young’s modulus and Poisson’s ratio of the

liner

Gxy Shear modulus of rock

M Biot’s modulus

r, h Polar coordinates

ro Radius of the tunnel

t Liner thickness

Ts, Ms Axial force and moment of liner

Ux, Uy Displacement of the rock in cartesian

coordinates

UIV
r ; UIV

h Displacement of the liner in polar coordinates

u Pore pressures

x, y Cartesian coordinates of axes of elastic

symmetry

z Complex number, zk = x ? lky, k = 1, 2

ax, ay Biot’s constants in x- and y-axis

ex, ey, c Axial and shear strains in x- and y-axis

l1, l2 Roots of compatibility equation

mxy, mxz, myz Poisson’s ratios of rock

rv, rh, svh Total normal and shear stresses at the far-

field

rx, ry, sxy Total normal and shear stresses in Cartesian

coordinate system

Drr;Ds Radial and shear stresses at the liner-rock

contact

1 Introduction

An analytical solution for a supported deep tunnel in

transversely anisotropic rock has been provided by Bobet

(2011). Figure 1 shows the tunnel, with radius ro, in a rock

medium with x and y as the axes of elastic symmetry, and

subjected to a general far-field stress that is defined by

stresses rv, rh and svh. The solution was found with the

following assumptions: deep circular tunnel, transversely

anisotropic elastic rock, elastic thin liner, tied rock-liner

contact, plane strain conditions on any cross section per-

pendicular to the tunnel axis, simultaneous excavation and

liner installation. Two formulations were presented, one for

dry or saturated porous ground with no drainage at the

rock-liner contact, and the other for undrained loading.

With these assumptions, and using complex variable theory

and conformal mapping techniques, the strain compatibility

equation obtained was (in the following we use the same

notation as in Bobet 2011):

a1

o4 F

oy4
þ a3

o4 F

ox4
þ 1

Gxy

� 2a2

� �
o4 F

ox2oy2

¼ � b1

o2 u

oy2
� b2

o2 u

ox2
; ð1Þ

where u is the pore pressures, F(x, y) is a stress function,

which definition satisfies equilibrium:
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rx ¼ o2 F

oy2

ry ¼ o2 F

ox2

sxy ¼ � o2 F

oxoy

ð2Þ

rx, ry and sxy are the stresses in the x–y coordinate system,

with x and y representing the axes of elastic symmetry. a1,

a2, a3, Gxy, b1 and b2 are elastic constants defined as

ex ¼ a1 rx � a2 ry þ b1 u

ey ¼ �a2 rx þ a3 ry þ b2 u

c ¼ sxy
Gxy

a1 ¼
1 � m2

xz

Ex

a2 ¼ ð1 þ mxzÞ myx
Ey

a3 ¼ 1 � Ex

Ey

m2
yx

� �
1

Ey

b1 ¼ a1 ax � a2 ay
b2 ¼ �a2 ax þ a3 ay

ð3Þ

where ex, ey and c are the strains in the x–y coordinate

system, Ex and Ey are the Young’s modulus in the x and

y directions, mxz and myx are the Poisson’s ratios in the xz

and yx directions, respectively, Gxy is the shear modulus,

and ax and ay are the Biot’s constants. Note that mxy = -

myx�Ex/Ey.

Equation (1) can be rewritten in terms of the complex

variable zk = x ? lky, k = 1, 2, where lk is a complex

number. The result is

a1 l
4
k þ 1

Gxy

� 2a2

� �
l2
k þ a3

� �
o4 F

oz4

¼ �b1

o2 u

oy2
� b2

o2 u

ox2
ð4Þ

Stresses and strains, given (3), can be found introducing

the functions /(zk) = F0(zk) = qF/qzk, k = 1, 2, such that

rx ¼ 2 Re l2
1 /

0
1ðz1Þ þ l2

2 /
0
2ðz2Þ

� �
þ o2Fo

oy2

ry ¼ 2 Re /0
1ðz1Þ þ /0

2ðz2Þ
� �

þ o2Fo

ox2

s ¼ �2 Re l1 /
0
1ðz1Þ þ l2 /

0
2ðz2Þ

� �
� o2Fo

oxoy
;

ð5Þ

where Fo is a particular solution of (1) and l1 and l2 are

the roots of the equation:

a1 l
4
k þ 1

Gxy

� 2a2

� �
l2
k þ a3 ¼ 0: ð6Þ

Displacements are obtained by integration of strains,

Eq. (3), given the stresses in (5). They are expressed as

Ux ¼ 2 Re a1l
2
1 � a2

� 	
/1ðz1Þ þ a1l

2
2 � a2

� 	
/2ðz2Þ

� �

Uy ¼ 2 Re �a2l1 þ a3

l1

� �
/1ðz1Þ þ �a2l2 þ a3

l2

� �
/2ðz2Þ

� �
:

ð7Þ

Bobet (2011) provided closed-form analytical formula-

tions for the stresses and displacements of the rock and the

liner when the roots of Eq. (6) are pure imaginary numbers,

i.e. of the form lk = i |lk|, where i is the imaginary unit,

i2 = -1, and |lk| is a real number equal to the modulus of the

complex numberlk. However, these are not the only solutions

of (6). A solution of the form l1 = a ? ib, l2 = -a ? ib is

also possible, where a and b are real numbers.

This paper complements the results provided by Bobet

(2011), obtained for pure imaginary roots, with roots of the

following form: l1 = a ? ib, l2 = -a ? ib. The same

approach and the same notation given by the previous

publication are used.

2 Tunnel in Dry Rock or in Rock Below the Water
Table with Impermeable Liner

The problem is decomposed into four different problems

taking advantage of the principle of superposition in elas-

ticity. See Fig. 2. Problem I is that of the rock without the

tunnel and subjected to the far-field stresses, Fig. 1b;

Problem II consists of the tunnel opening where stresses

are applied to the tunnel wall such that they are those of the

far-field but with opposite sign, Fig. 1c; Problem III

describes the rock-liner interaction, Fig. 1d; and Problem

y

x

σ
v

σ
h

τ vh

ro

Fig. 1 Deep tunnel in transversely anisotropic rock
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IV describes the liner response to the stresses at the rock-

liner interface, Fig. 1e.

The solution of Problem I is trivial, with stresses equal

to those of the far field. The displacements that are

obtained from such stress field are not included in the

solution of the general problem because these displace-

ments should have occurred before the tunnel construction.

In other words, stresses in the rock are given by the sum of

the stresses from Problems I, II, and III, while displace-

ments are given by the sum of the displacements from

problems II and III. Stresses and displacements of the liner

are the result of problem IV.

The full solution must satisfy compatibility of dis-

placements and stresses at the rock-liner interface. The

compatibility of stresses is satisfied given the problem

definition in Fig. 2. The stresses at the interface can be

expressed with the following (Bobet 2011):

Drr ¼ ro þ
X1

n¼2;4;6

ran cos nh þ
X1

n¼2;4;6

rbn sin nh

Ds ¼
X1

n¼2;4;6

san sin nh þ
X1

n¼2;4;6

sbn cos nh;

ð8Þ

where ro; ran; r
b
n; s

a
n and sbn are constants that are found by

imposing compatibility of displacements at the rock-liner

interface, which is given by:

UIV
x ¼ UII

x þ UIII
x

UIV
y ¼ UII

y þ UIII
y :

ð9Þ

The stress functions and their derivatives for Problem II,

following the same process as Bobet (2011), are

/1 ¼ 1

2

ro

l1 þ �l1

ð1 � il1Þ svh � �l1rv � i rh
h i 1

11

/2 ¼ � 1

2

ro

l1 þ �l1

ð1 � il1Þ svh þ l1rv � i rh½ � i

12

/0
1 ¼ � 1

l1 þ �l1

1 � i l1ð Þ svh � �l1rv � i rh
1 � i l1ð Þ 12

1 � 1 þ i l1ð Þ

/0
2 ¼ 1

l1 þ �l1

1 � i l1ð Þ svh þ l1rv � i rh
1 � i l1ð Þ 12

2 � 1 � i �l1ð Þ
;

ð10Þ

where fk is a complex variable such that zk ¼ 1
2

1 � lkið Þ
ro 1k þ 1

2
1 þ lkið Þ ro 1�1

k :

The displacements at the tunnel perimeter, i.e. at r = ro

are

UII
x ¼� a2 þb2

� 	
A1 �A2

� �
rvro cos h þ 2bA1rhro cos h

þ a2 þb2 þ2b
� 	

A1 �A2

� �
svhro sin h

UII
y ¼ 2 a2 þb2

� 	
bA1rvro sin h� a2 þb2

� 	
A1 �A2

� �
� rhro sin h þ a2 þb2

� 	
1þ2bð ÞA1 �A2

� �
svhro cos h

ð11Þ

where A1 = a1 and A2 = a2, and h is the angle measured

counterclockwise from the x-axis.

For Problem III:

σ
v

σ
h

τ vh

σ
v

σ
h

τ vh

(a) Tunnel with Far-field
 Loading

= +

(b) Problem I: No Tunnel

I

(c) Problem II: No Liner

II

σr
o

τo

III

(d) Problem III: Rock-Liner Interaction

σr

+

Δ
τΔ

(e) Problem IV: Liner

τΔ

ro

σrΔ

+

Fig. 2 Problem decomposition, after Bobet (2011)

Deep Lined Circular Tunnels in Transversely Anisotropic Rock: Complementary Solutions 3819

123



The displacements at the rock-liner interface are

where A1 = a1 and A2 = a2.

For Problem IV

The axial force Ts, moment Ms and displacements of the

liner obey the following relations (Flügge 1966):

ro

dT s

dh
� dMs

dh
¼ � r2

o Ds

ro T
s þ d2Ms

dh2
¼ r2

o Drr

d2UIV
h

dh2
þ dUIV

r

dh
¼ �ð1 � m2

s Þ
Es As

r2
o Ds

dUIV
h

dh
þ UIV

r þ Is

r2
o As

d4UIV
r

dh4
þ 2

d2UIV
r

dh2
þ UIV

r

� �

¼ ð1 � m2
s Þ

Es As

r2
o Drr ð14Þ

where As and Is are the cross-sectional area and moment of

inertia of the liner, respectively, Es and ms are the Young’s

modulus and Poisson’s ratio of the liner, and ro is the radius

of the tunnel. Given the interface stresses in (8), the fol-

lowing expressions are obtained:

/1 ¼
1

4

ro

l1 þ �l1

2 l1 � ið Þro� l1 þ ið Þ ðra2 � sa2Þ� 1� il1ð Þ rb2 þ sb2
� 	h i 1

11




þ
X1

n¼3;5;7

1

n
l1 � ið Þ ran�1 þ san�1

� 	
� 1þ il1ð Þ rbn�1 � sbn�1

� 	
� l1 þ ið Þ ranþ1 � sanþ1

� 	
� 1� il1ð Þ rbnþ1 þ sbnþ1

� 	h i 1

1n1

)

/2 ¼
1

4

ro

l1 þ �l1

2 l1 � ið Þro� l1 þ ið Þ ðra2 � sa2Þ þ 1� il1ð Þ rb2 þ sb2
� 	� � 1

12




þ
X1

n¼3;5;7

1

n
l1 � ið Þ ran�1 þ san�1

� 	
þ 1þ il1ð Þ rbn�1 � sbn�1

� 	
� l1 þ ið Þ ranþ1 � sanþ1

� 	
þ 1� il1ð Þ rbnþ1 þ sbnþ1

� 	� � 1

1n2

)

/0
1 ¼�1

2

1

ðl1 þ �l1Þ 1� il1ð Þ12
1 � 1þ il1ð Þ

� � 2 l1 � ið Þro� l1 þ ið Þ ra2 � sa2
� 	

� 1� il1ð Þ rb2 þ sb2
� 	n

þ
X1

n¼3;5;7

l1 � ið Þ ran�1 þ san�1

� 	
� 1þ il1ð Þ rbn�1 � sbn�1

� 	
� l1 þ ið Þ ranþ1 � sanþ1

� 	
� 1� il1ð Þ rbnþ1 þ sbnþ1

� 	h i 1

1n�1
1

)

/0
2 ¼�1

2

1

ðl1 þ �l1Þ 1� il1ð Þ12
2 � 1� i �l1ð Þ

h i 2 l1 � ið Þro� l1 þ ið Þ ra2 � sa2
� 	

þ 1� il1ð Þ rb2 þ sb2
� 	�

þ
X1

n¼3;5;7

l1 � ið Þ ran�1 þ san�1

� 	
þ 1þ il1ð Þ rbn�1 � sbn�1

� 	
� l1 þ ið Þ ranþ1 � sanþ1

� 	
þ 1� il1ð Þ rbnþ1 þ sbnþ1

� 	� � 1

1n�1
2

)

ð12Þ

UIII
x ¼ 1

2
ro

a2 þ b2 � 2b
� 	

A1 � A2

� �
2ro cos h� a2 þ b2 þ 2b

� 	
A1 � A2

� �
ra2 � sa2
� 	

cos hþ rb2 þ sb2
� 	

sin h
� �

þ

X1
n¼3;5;7

1

n

a2 þ b2 � 2b
� 	

A1 � A2

� �
ðran�1 þ san�1Þ cos nhþ ðrbn�1 � sbn�1Þ sin nh
� �

�

a2 þ b2 þ 2b
� 	

A1 � A2

� �
ðranþ1 � sanþ1Þ cos nhþ ðrbnþ1 þ sbnþ1Þ sin nh
� �

2
4

3
5

8>>><
>>>:

9>>>=
>>>;

UIII
y ¼ 1

2
ro

a2 þ b2
� 	

1 � 2bð ÞA1 � A2

� �
2ro sin hþ a2 þ b2

� 	
1 þ 2bð ÞA1 � A2

� �
ra2 � sa2
� 	

sin h� rb2 þ sb2
� 	

cos h
� �

þ

X1
n¼3;5;7

1

n

a2 þ b2
� 	

1 � 2bð ÞA1 � A2

� �
ðran�1 þ san�1Þ sin nh� rbn�1 � sbn�1

� 	
cos nh

� �
þ

a2 þ b2
� 	

1 þ 2bð ÞA1 � A2

� �
ðranþ1 � sanþ1Þ sin nh� rbnþ1 þ sbnþ1

� 	
cos nh

� �
2
4

3
5

8>>><
>>>:

9>>>=
>>>;
:

ð13Þ
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where C is a constant to be determined in the same manner

as the other constants.

In (9) the conditions are imposed term-by-term, i.e.

for the constant term, for the terms with sin h, cos h, sin

2h, cos 2h, and so forth. The result is a system of

equations that, when solved, provides the values of the

constants ro; ran; r
b
n; s

a
n and sbn. Note that the constants

ro; ran and san depend on the far-field stresses rv and rh,
while the constants rbn and sbn depend on the far-field

shear stress svh.
As shown by Bobet (2011), the above formulation also

applies to tunnels below the water table when the far-field

stresses are input in total stresses.

3 Tunnel in Saturated Rock Subjected
to Undrained Loading

The tunnel is subjected to a far-field undrained loading

with the excess pore pressures not allowed to dissipate. The

following expressions for strains apply, after Bobet (2011):

ex ¼ a1 �
b2

1

b3

� �
rx � a2 þ b1 b2

b3

� �
ry

ey ¼ � a2 þ b1 b2

b3

� �
rx þ a3 �

b2
2

b3

� �
ry

c ¼ sxy
Gxy

b3 ¼ 1

M
þ ax b1 þ ay b2 :

u ¼ � 1

b3

b1 rx þ b2 ry
� 	

ð16Þ

where M is Biot’s modulus, defined as the increase of the

amount of fluid per unit volume of rock as a result of a unit

increase of pore pressure under constant volumetric strain.

The compatibility equation and the characteristic equa-

tion now take the following form:

a1�
b2

1

b3

� �
o4F

oy4
þ a3�

b2
2

b3

� �
o4F

ox4
þ 1

Gxy

�2a2�2
b1b2

b3

� �
o4F

ox2oy2
¼ 0

a1�
b2

1

b3

� �
l4
k þ

1

Gxy

�2a2�2
b1b2

b3

� �
l2
k þ a3�

b2
2

b3

� �
¼ 0

ð17Þ

T s ¼ ro ro �
X1

n¼2;4;6

ran � nsan
n2 � 1

� �
ro cos nh þ n rbn þ sbn

nðn2 � 1Þ þ
sbn
n

� �
ro sin nh


 �

Ms ¼ �
X1

n¼2;4;6

n ran � san
nðn2 � 1Þ

� �
r2

o cos nh þ n rbn þ sbn
nðn2 � 1Þ

� �
r2

o sin nh


 �

UIV
x ¼ 1 � m2

s

Es Is þ r2
oAs

� 	 r4
o ro cos h� C sin hþ

1

2

1 � m2
s

EsIs
r2

o

1

12
ð2ra2 � sa2Þ r2

o � 3
Is

As

sa2

� �
cos hþ



1

12
ð2rb2 þ sb2Þ r2

o þ 3
Is

As

sb2

� �
sin hþ

X1
n¼3;5;7

ðn� 1Þran�1 � san�1

n2ðn� 1Þ2ðn� 2Þ
þ
ðnþ 1Þranþ1 � sanþ1

n2ðnþ 1Þ2ðnþ 2Þ

 !
r2

o þ
Is

As

san�1

ðn� 1Þ2
�

sanþ1

ðnþ 1Þ2

 !" #
cos nhþ

X1
n¼3;5;7

ðn� 1Þrbn�1 þ sbn�1

n2ðn� 1Þ2ðn� 2Þ
þ
ðnþ 1Þrbnþ1 þ sbnþ1

n2ðnþ 1Þ2ðnþ 2Þ

 !
r2

o �
Is

As

sbn�1

ðn� 1Þ2
�

sbnþ1

ðnþ 1Þ2

 !" #
sin nh

)

UIV
y ¼ 1 � m2

s

Es Is þ r2
oAs

� 	 r4
o ro sin h þ C cos hþ

1

2

1 � m2
s

EsIs
r2

o � 1

12
ð2ra2 � sa2Þ r2

o � 3
Is

As

sa2

� �
sin hþ



1

12
ð2rb2 þ sb2Þ r2

o þ 3
Is

As

sb2

� �
cos hþ

X1
n¼3;5;7

ðn� 1Þran�1 � san�1

n2ðn� 1Þ2ðn� 2Þ
�
ðnþ 1Þranþ1 � sanþ1

n2ðnþ 1Þ2ðnþ 2Þ

 !
r2

o þ
Is

As

san�1

ðn� 1Þ2
þ

sanþ1

ðnþ 1Þ2

 !" #
sin nh�

X1
n¼3;5;7

ðn� 1Þrbn�1 þ sbn�1

n2ðn� 1Þ2ðn� 2Þ
�
ðnþ 1Þrbnþ1 þ sbnþ1

n2ðnþ 1Þ2ðnþ 2Þ

 !
r2

o �
Is

As

sbn�1

ðn� 1Þ2
þ

sbnþ1

ðnþ 1Þ2

 !" #
cos nh

)

ð15Þ
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Total stresses are given by (5) with Fo = 0, and dis-

placements by

Ux ¼ 2 Re a1 �
b2

1

b3

� �
l2

1 � a2 þ
b1 b2

b3

� �� �
/1ðz1Þ




þ a1 �
b2

1

b3

� �
l2

2 � a2 þ
b1 b2

b3

� �� �
/2ðz2Þ

�

Uy ¼ 2 Re � a2 þ
b1 b2

b3

� �
l1 þ a3 �

b2
2

b3

� �
1

l1

� �
/1ðz1Þ




þ � a2 þ
b1 b2

b3

� �
l2 þ a3 �

b2
2

b3

� �
1

l2

� �
/2ðz2Þ

�

ð18Þ

As with the case of dry ground, Bobet (2011) found the

solution of the problem when the roots of the characteristic

equation in (17) are pure imaginary numbers. Similar to the

previous case, a solution of the form l1 ¼ aþ ib; l2 ¼
��l1 exists. The following provides the formulation for this

solution.

Figure 2 can also be used to decompose the problem

into four different problems. Compatibility of displace-

ments at the rock-liner interface requires

UIV
x ¼ UI

x þ UII
x þ UIII

x

UIV
y ¼ UI

y þ UII
y þ UIII

y

ð19Þ

Problem I has the solution:

rx ¼ rh
ry ¼ rv
sxy ¼ svh

u ¼ � 1

b3

b1 rh þ b2 rvð Þ

Ux ¼ a1 �
b2

1

b3

� �
rh � a2 þ

b1 b2

b3

� �
rv

� �
x þ 1

2

svh
Gxy

y

Uy ¼ � a2 þ
b1 b2

b3

� �
rh þ a3 �

b2
2

b3

� �
rv

� �
y þ 1

2

svh
Gxy

x

ð20Þ

The solution of Problem II is given by Eqs. (10) and

(11) with A1 ¼ a1 � b2
1

b3
; A2 ¼ a2 þ b1 b2

b3
. The solution of

Problems III and IV is given by Eqs. (12), (13) and (15).

4 Summary

The Technical Note complements the work done by Bobet

(2011) who provided closed-form solutions for a deep

circular tunnel in an elastic transversely anisotropic rock.

The following assumptions also apply: thin elastic isotropic

liner; tied liner-rock interface; simultaneous excavation

and support; and plane strain conditions on sections per-

pendicular to the tunnel axis. The original formulation was

developed for pure imaginary roots of the characteristic

equation obtained from imposing strain compatibility. The

characteristic equation has another solution of the form

l1 ¼ aþ ib; l2 ¼ ��l1. New formulations for stresses and

displacements of the rock and liner have been provided that

complete those provided earlier. Both formulations, that of

Bobet (2011) and the one presented here, complement each

other and cover all possible cases.
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