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Abstract General particle dynamics (GPD), which is a

novel meshless numerical method, is proposed to simulate

the initiation, propagation and coalescence of 3D pre-ex-

isting penetrating and embedded flaws under biaxial com-

pression. The failure process for rock-like materials

subjected to biaxial compressive loads is investigated using

the numerical code GPD3D. Moreover, internal crack

evolution processes are successfully simulated using

GPD3D. With increasing lateral stress, the secondary

cracks keep growing in the samples, while the growth of

the wing cracks is restrained. The samples are mainly split

into fragments in a shear failure mode under biaxial com-

pression, which is different from the splitting failure of the

samples subjected to uniaxial compression. For specimens

with macroscopic pre-existing flaws, the simulated types of

cracks, the simulated coalescence types and the simulated

failure modes are in good agreement with the experimental

results.

Keywords General particle dynamics (GPD) �
Propagation of 3D cracks � Coalescence of 3D cracks �
Biaxial compression � 3D numerical simulation

Abbreviations

D A disturbance coefficient

E Young’s modulus

f Interaction factor

D1 Damage factor

G Shear modulus

U Undamaged particles

Da Damaged particles

h Smoothing length

l Poisson ratio

q Real time mass density

q0 The initial density

k The modulus of volume elasticity

vi Particle velocity at ith particle
_Rab Rotation rate

xa Spatial coordinate (X)

_eab Strain rate

ci The elastic wave speed

Wij; b The kernel gradient with smoothing length h

d=dt The time derivative

m The value of ms (in the Hoek–Brown criterion)

rc Uniaxial compressive strength

va Velocity vector (V)

ci The elastic wave speed at the ith particle

rab Cauchy stress tensor (r)

sab Material frame in different objective rate

_sab Stress rate

a; b Indices for the three spatial directions

a The half-length of flaw

c The non-overlapping length
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1 Introduction

Rock mass is a heterogeneous geomaterial with various

types of pre-existing flaws. The initiation, propagation and

coalescence of these pre-existing flaws under loading are

significant in the study of rock engineering. The initiation,

propagation and coalescence of pre-existing flaws play a

decisive role in the mechanical properties of rock mass.

Extensive study has been performed on crack propagation

for different materials under uniaxial compression in 2D

physical experimental works (Bobet and Einstein 1998a, b;

Lee and Jeon 2011; Park and Bobet 2009, 2010; Sagong

and Bobet 2002; Wong and Einstein 2009a, b; Wong et al.

2001; Zhou et al. 2014) and numerical studies (Zhou et al.

2015a, b; Bobet and Einstein 1998a, b; Liu et al. 2004;

Ning et al. 2011a, b; Tang et al. 2001). Although there are

many differences in the crack pattern observed by those

researchers, there are also common characteristics. Two

types of cracks have been regularly observed: primary

cracks and secondary cracks. Primary cracks or Wing

cracks appear first; they are tensile cracks that start at the

tips of the flaw and propagate in a smooth path as the load

is increased. Secondary cracks appear later and are

responsible, in most cases, for specimen failure; they are

described by many authors as shear cracks. Secondary

cracks in most cases initiate in a direction coplanar to the

pre-existing flaw. In addition, for biaxial loading, the

confining pressure can hamper the growth of tensile cracks

and thus cause the growth of smaller and more densely

distributed pre-existing flaws (Bobet and Einstein 1998a, b;

Wang et al. 2014). This can result in localization and shear

fractures in the brittle material. The interaction of these

localized shear fractures can initiate macro-failure in the

rock specimen. Healy et al. (2006a, b) provided a

micromechanical model to explain how brittle shear frac-

tures can form obliquely to all three remote principal

stresses.

However, it is difficult to conduct experiments to

investigate the interactions of 3D pre-existing flaws in

samples under uniaxial and biaxial compression. For three-

dimensional specimens, tensile cracks or shear cracks

occurring in 3D space make the evolution mechanism

considerably more complicated and the observation of

crack paths substantially more difficult (Yang et al. 2012a,

b). Therefore, the similar material polymethly methacrylate

(PMMA) is usually employed as the substitute for rock in a

3D pre-existing flaws test. Huang and Wong (2007) per-

formed a series of uniaxial compressive tests on PMMA

with pre-existing 3D flaws. Their experimental results

showed that the interaction of distinct cracks could either

promote or restrain the evolution of cracks in 3D space.

However, PMMA could not completely substitute rock in

mechanics after all. Moreover, it is difficult to know the

stress distribution within a specimen during the loading

process, and it is not possible to predict the orientation of it

prior to the initiation of cracks. Hence, several important

works will be performed on the numerical simulations for

the propagation and coalescence of 3D cracks.

The finite element method (FEM) is a very common

numerical method used to investigate crack growth and

coalescence. Liang et al. (2012) developed and applied the

finite element code of rock failure process analysis

(RFPA3D) to investigate the initiation and propagation of a

3D surface flaw in rock materials under uniaxial com-

pression. However, when crack propagation and coales-

cence are involved, remeshing is inevitable, which makes

FEM nearly impossible to simulate arbitrary crack growth

problems (Bouchard et al. 2000; Liang et al. 2012;

Paluszny and Matthai 2009; Wu and Wong 2012).

The extended finite element method (XFEM) (Paluszny

and Matthai 2009), the generalized finite element method

(GFEM) (Strouboulis et al. 2000a, b) and the particle finite

element method (PFEM) (Aubry et al. 2005; Pin et al.

2007) are three very commonly used methods that were

developed from the FEM, and PFEM and general particle

dynamics (GPD) are meshless methods. By incorporating a

proper improvement, all of the above methods can suc-

cessfully simulate simple and arbitrary crack initiation and

growth. However, for some more complicated 3D prob-

lems, branch cracking or multi-crack problems that define

the enrichment functions can be very difficult.

The numerical manifold method (NMM) (Shi 1991) can

be applied to model crack propagation. It is a combination

of FEM and the discontinuous deformation analysis (DDA)

(Shi and Goodman 1989). NMM has been adopted to solve

discontinuous problems involving stationary crack and

crack propagation problems (Tsay et al. 1999). However,

the crack tips are constrained to stop at the edges of the

element, which reduces the accuracy if a crack tip happens

to stop inside the element. To improve the accuracy, sin-

gular physical covers containing the crack tips are enriched

with asymptotic crack-tip functions, and then the stress

intensity factors (SIFs) can be accurately evaluated with a

regular and relatively coarse mathematical cover system

(Zhang et al. 2010).

The boundary element method (BEM) (Chen et al. 1998;

Lauterbach and Gross 1998) is another numerical method

that is widely applied to model crack propagation. BEM

has been recognized as an accurate and efficient numerical

technique for solving crack growth problems.

In the method of SPH/SPAM, an interaction between

any two particles is only controlled by the kernel function,

and the interaction is automatically terminated if one

leaves the influence domain of the other. This inherent
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fracture mode of processing by defining influence only

within the interaction domain of the basis function (Beiseel

et al. 2006; Mehra and Chaturvedi 2006) does not to sim-

ulate the initiation, propagation and coalescence of flaws

well. The material point method (MPM), which is called a

particle-in-cell method, is a hybrid arbitrary Lagrangian/

Eulerian method suitable for modeling large deformations

of history-dependent solids (York et al. 2000; Bardenhagen

et al. 2001; Schreyer et al. 2002; Guo and Nairn 2006).

MPM saves all discrete continuum field data (displace-

ment, velocity, stress, temperature, etc.) at Lagrangian

material points (which are also called particles or markers).

While the traditional MPM (Sulsky et al. 1994, 1995),

which considers each particle as a concentrated mass,

suffers from a ‘cell crossing instability’ in large deforma-

tion problems caused by a jump discontinuity in the gra-

dient of low-order shape functions across cell boundaries.

In addition, the discrete element method (DEM) devel-

oped by Cundall and Strack (1979) was applied to simulate

the growth of cracks in brittle clay specimens (Vesga et al.

2008). Wang and Mora (2008) used their discrete element

model—the lattice solid model to study how cracks prop-

agate when different force–displacement laws are

employed. The particle flow code (PFC) is a type of DEM,

which is commercially available and is currently applied to

solve crack problems (Yoon 2007; Lee and Jeon 2011;

Zhang and Wong 2012). The particle flow code in two

dimensions (PFC2D) can reproduce the cracks directly by

using bond breakage between the circular particles instead

of using theories of fracture mechanics, where complex

mathematical equations relevant to the stress intensity

factor and fracture toughness at the crack tips are imple-

mented (Lee and Jeon 2011; Zhang and Wong 2012).

The object of this study is to propose an efficient and

robust numerical method for paths of growth for 3D pre-

existing penetration and embedded flaws and fragments in

samples under biaxial compression. The novel numerical

method is known as general particle dynamics (GPD)

(Zhou et al. 2015a, b), which adopts the method of life-

death particles, and overcomes the shortcomings of smooth

particle hydrodynamics to simulate the local initiation,

propagation and coalescence of cracks.

The GPD3D method has several advantages over other

traditional continuum methods by simulating the fracturing

process and large deformation of materials. For GPD3D, a

large deformation and the propagation of cracks in arbi-

trary and complex paths could also be properly simulated

without additional processes due to its adaptation. How-

ever, for FEM, it is difficult to model large deformations

and the propagation of cracks due to its remeshing feature

(Bouchard et al. 2000; Liang et al. 2012; Paluszny and

Matthai 2009; Wu and Wong 2012).

GPD3D represents damages directly through the non-

linear unified strength criterion (for a 3-D problem) or

Hoek–Brown criterion (for a 2-D problem). If particles

satisfy the non-linear unified strength criterion or Hoek–

Brown criterion, damage occurs. Therefore, the number of

discontinuities that can be handled by GPD3D is unlimited.

GPD3D easily and accurately models the kinematics of

collapsed slopes and simulates failures through intact rock

(Zhou et al. 2015a, b). In addition, DEM (Cundall and

Strack 1979) has also become a popular method for

studying cracking behavior in rocks. By simply breaking

the bond when the interaction force between two distinct

elements overcomes its tensile or shear strength, DEM can

model the fracturing process without assuming where and

how the cracks may appear (Wu and Wong 2012). How-

ever, relationships between the local and macroscopic

constitutive laws are needed in DEM. Establishing these

relationships by only using data obtained from classical

geomechanical tests is impractical when trying to obtain a

desirable single solution set (Donze et al. 2009).

This paper is organized as follows. In Sect. 2, the main

steps involved in GPD3D are briefly outlined. The

geometries of the numerical model are demonstrated with

several examples in Sect. 3. The numerically simulated

results are summarized in Sect. 4. Conclusions are then

drawn in Sect. 5.

2 Overview of GPD3D

2.1 Governing Equations and Discretization

The conservation equations are expressed in a discretized

weak form as (Libersky and Petschek 1991; Libersky et al.

1993; Shaw and Reid 2009)

dqi
dt

¼
X

j

mjv
b
ijWij; b ð1Þ

dvai
dt

¼ �
X

j

mj

rabi
q2i

þ
rabj
q2j

þ Pij

 !
Wij;b ð2Þ

dei

dt
¼ 1

2

X

j

mjv
a
ij

rabi
q2i

þ
rabj
q2j

þ Pij

 !
Wij;b ; ð3Þ

where vaij ¼ vai � vaj ; Wij; b ¼ oWðxj � xi; hÞ
ox

b
i

is the kernel

gradient with smoothing length h; q denotes its mass

density and e denotes the specific internal energy; xa, va

and rab are the elements for the spatial coordinate (X),

velocity vector (V) and Cauchy stress tensor (r) with

tension taken as positive one, d=dt is the time derivative

taken in the moving Lagrangian framework, and the
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superscripts a, b = 1, 2, 3 are integer indices for the three

spatial directions.

If two bodies with significantly different densities

come in contact with each other (e.g., rigid mass

impacting on soft target), Eqs. (1) through (3) may exhibit

a disturbance and subsequent inconsistencies at the

interface. This disturbance eventually propagates with

time towards the interior from the boundary and affects

the final solution(s) (Colagrossi and Landrini 2003). In

these cases, a modified form of particle summations is

used as (Randles and Libersky 1996; Chen et al. 1999,

2000):

qi ¼

P
j

mjWij; b

P
j

mj

qj

� �
Wij; b

: ð4Þ

2.2 The Constitutive Model

Stress components rab ¼ sab � pdab are computed with

pressure p. Pressure p is estimated through the following

equation of state as

p ¼ k
q
q0

� 1

� �
; ð5Þ

where q denotes its real time mass density, q0 is the initial
density, and k is the modulus of volume elasticity. The

deviatoric stress components sab are found through the

material frame for a different objective rate as

_̂sab ¼ _sab þ sac _Rbc þ scb _Rac; ð6Þ

where the strain rate is

_eab ¼ 1

2

ova

ox
b þ ovb

ox
a

� �
ð7Þ

and the rotation rate is

_Rab ¼ 1

2

ova

ox
b � ovb

ox
a

� �
; ð8Þ

where xa and va are the elements for the spatial coordinate

(X) and velocity vector (V).

This stress rate is related to the traceless strain rate (�_eab)
by the shear modulus as

_sab ¼ 2G�_eab; ð9Þ

where �_eab ¼ _eab � 1
3
dab _ecc and G is the shear modulus.

Thus, we have

_̂sab ¼ 2G _eab � 1

3
dab _ecc

� �
þ sac _Rbc þ scb _Rac: ð10Þ

2.3 Time-Integration

The above discrete equations are updated in time by a

standard two-step predictor–corrector scheme. The time

step size is determined based on the Courant–Friedrichs–

Levy (CFL) condition as Dt ¼ mini�th particleðcsðhi=
ðci þ vij jÞÞÞ, with CFL number cs taken as 0.3 and ci, vi as

the elastic wave speed and particle velocity at the ith

particle, respectively.

2.4 Correction for Consistency

It is obvious from the definition of the immediate neigh-

borhood that the kernel may not always be zero at the cut-

off boundary or if the kernel support is not entirely con-

tained within the problem domain. In that case, to preserve

the linear consistency with x
b
ij ¼ x

b
i � x

b
j and Wij; b ¼

ðoWðxi � xj; hÞÞ
.
ox

b
i , a correction is written as (Chen

et al. 1999):

Ŵij; b ¼ BbaWij; a; ð11Þ

where

B ¼ A�1; andAba ¼ �
X

j

mj

qj
x
b
ijWij; a: ð12Þ

2.5 3D Particle Distribution in the Numerical

Models

In GPD3D, it is assumed that the domain consists of par-

ticles with the same shape and size and that there is no

geometric priority in any orientation (Zhou et al. 2015a, b).

The statistical distribution of the elemental mechanical

parameters is described by Weibull (1951) distribution

function. For the cracking problem, only the uniaxial

compressive strength rc of particles is described by using

Weibull’s distribution. The Weibull distribution function is

expressed as follows (Weibull 1951):

WðxÞ ¼ x
x0

x

x0

� �x� 1

exp � x

x0

� �x� �
; ð13Þ

where x defines the shape of the Weibull distribution

function (it can be referred to as the homogeneity index), x

is the mechanical parameter of one particle, and x0 (the

uniaxial compressive strength) is the even value of the

parameter for all of the particles. According to the Weibull

distribution (Weibull 1951), a larger value of x indicates

that more particles have mechanical properties that have

been approximated to the mean value, which describes a

more homogeneous rock sample. In present numerical
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models, the heterogeneity index is x = 20, as shown in

Fig. 1.

2.6 The Damage Model of General Particle

Dynamics (GPD3D)

In most cases, rock-like materials fail in a brittle manner.

Therefore, the damage initiation and growth in the particles

are determined by the damage model of the materials. In

this paper, the non-linear unified strength (failure) criterion

is applied to determine damage initiation. Damage is ini-

tiated from one particle when stresses in the particle satisfy

the non-linear unified strength (failure) criterion.

Based on the true triaxial compression test data on rock

and considering the effects of intermediate principal stress,

the non-linear unified strength (failure) criterion is pro-

posed for rocks as follows (Yu et al. 2002):

F ¼ r1 � 1

1 þ b
ðbr2 þ r3Þ

� �2
� mrc

1 þ b
� ðbr2 þ r3Þ

� sr2c ¼ 0 when F � F0

ð14Þ

F0 ¼ 1

1 þ b
ðbr2 þ r1Þ � r3

� �2
�mrcr3

� sr2c ¼ 0 when F0 � F;

ð15Þ

where rc is a uniaxial compressive strength of an intact

rock material and b is the intermediate stress parameter.

Parameter b is also a parameter for the strength criterion. It

is evident that the intermediate principal stress is consid-

ered in the non-linear unified strength criterion. The non-

linear twin-shear failure criterion can be introduced by the

non-linear unified strength criterion when parameter b = 1.

m and s are the material parameters that are as same as

those in the Hoek–Brown criterion, which are defined by

Hoek (1983, 1990; Hoek and Brown 1980, 1997) and take

the following form:

m ¼ mi exp
GSI� 100

28� 14D

� �
ð16Þ

s ¼ exp
GSI� 100

9� 3D

� �
; ð17Þ

where D is a disturbance coefficient that varies from 0.0 for

the undisturbed in situ rock masses to 1.0 for very disturbed

rock masses (Hoek 1983, 1990; Hoek and Brown 1980,

1997) and mi is the value of m for intact rock and can be

obtained from experiments. Parameter mi varies from four

for very fine weak rock such as claystone to 33 for coarse

igneous light-colored rock such as granite. In this paper,

m = 10 and s = 0.5.

The non-linear unified strength criterion considers the

difference in the tensile and compressive strengths of

rocks, the effects of intermediate principal stress on rock

strength, the fracturing degree of the rock mass, and the

behavior of the failure envelope with a parabola formula.

So, the non-linear unified strength criterion has extensive

applicability in rock and rock material.

Next, we introduce a parameter f, coined as the ‘inter-

action factor’, which defines the level of interaction

between the ith and jth particles. This interaction factor f is

determined based on the damage in particles. Initially, for

undamaged particles, f = 1, which implies ‘full interac-

tion’. With progressions of damage, f finally becomes zero

for a fully damaged particle.

D1 ¼ 0; and f ¼ 1; ðif ri \ rmaxÞ ð18Þ
D1 ¼ 1; and f ¼ 0; ðif particle damagedÞ; ð19Þ

where D1 is the damage factor and f is the interaction

factor.

For the method of SPH, an interaction between any two

particles is only controlled by the kernel function, and the

interaction is automatically terminated if one leaves the

influence domain of the other. Therefore, SPH does not

simulate the initiation, propagation and coalescence of the

flaws well.

In the present numerical method, the non-linear unified

strength criterion is applied to determine the damage of

particles. The model of influence for damaged particles on

neighbors is proposed to determine the level of interaction

Fig. 1 The uniaxial strength distribution of 3D particles in the

numerical model (Pa)
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between the ith and jth particles. The statistical distribution

of the mechanical parameters of particles is described by

the Weibull distribution function, and the effects of the

heterogeneity of rock materials are considered. Therefore,

the present numerical method is different from the method

of SPH. Moreover, GPD can simulate initiation, propaga-

tion and coalescence of 3D and 2D pre-existing penetration

and embedded flaws.

Therefore, the discrete conservation equations for gen-

eral particle dynamics (GPD) are expressed as,

dqi
dt

¼
X

j2U
mjv

b
ijWij;b þ f �

X

j2Da

mjv
b
ijWij;b ð20Þ

dvai
dt

¼ �
X

j2U
mj

rabi
q2i

þ
rabj
q2j

þPij

 !
Wij; b

� f �
X

j2Da

mj

rabi
q2i

þ
rabj
q2j

þPij

 !
Wij; b

ð21Þ

dei

dt
¼ 1

2

X

j2U
mjv

a
ij

rabi
q2i

þ
rabj
q2j

þPij

 !
Wij; b þ f

2

�
X

j2Da

mjv
a
ij

rabi
q2i

þ
rabj
q2j

þPij

 !
Wij; b; ð22Þ

where U denotes undamaged particles and Da denotes

damaged particles.

Once damage is initiated from one particle, their inter-

actions will no longer be the same as in the undamaged

material. Although the damaged particles do not disappear

and are still in the influence domain of others, the damaged

particle is traction free and the damaged particle has no

influence on the surrounding particles in the stress

calculation because the interaction factor f is zero, as

shown in Eqs. (5) through (9). For the damaged particles,

because its stresses become zero, the surrounding living

particles have no influence on them. A new boundary is

formed as shown in Fig. 2.

3 The Numerical Results are Compared
with the Experimental Results

3.1 The Coalescence Patterns of the Two Pre-

existing Penetrating Flaws in the Sample Under

Compression

To validate GPD3D, the numerical results obtained from

GPD3D will be compared with the experimental results of

Bobet and Einstein (1998a, b) that were obtained from the

prismatic blocks described in Fig. 4. One sample with two

pre-existing penetrating flaws under compression is

depicted in Fig. 3.

The dimensions and strength of the numerical sample

are consistent with those of the experimental specimen

used in tests (Bobet and Einstein 1998a, b). The

49 9 100 9 20 = 98,000 particles represent a sample

geometry of 76.2 (width) 9 152.4 (length) 9 30 (thick-

ness) mm in scale, as shown in Fig. 3a. Two pre-existing

penetrating flaws have a length of 12.7 mm (0.5 in.) and an

aperture of 0.10 mm (0.004 inch), as shown in Fig. 3b. The

flaw geometry is defined by three parameters: flaw incli-

nation angle b = 45�, spacing (s0), and continuity (c) (see

Fig. 3b).

Under compression, the sample containing the two pre-

existing penetrating flaws is tested with lateral stresses of 0,

Fig. 2 3D particle discretization: a undamaged configuration, b cracked configuration
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2.5 and 5 MPa. The parameters of the material properties

are listed as follows (Bobet and Einstein 1998a, b): the

average uniaxial compressive strength (rc) is 34.5 MPa,

the average Young’s Modulus is 5960 MPa, and the

average Poisson’s ratio is 0.15.

Figure 4a–f shows the coalescence patterns of two pre-

existing penetrating flaws in the numerical samples under

compression with a lateral stress of 0, 2.5 and 5 MPa,

respectively.

When the sample containing two pre-existing collinear

flaws is subjected to uniaxial compression, the wing cracks

are first initiated from the inner and outer tips of the pre-

existing flaws, and wing cracks propagate along the

direction of the maximum principal stress. Then, the quasi-

coplanar secondary cracks are initiated from the inner tips

of the pre-existing flaws. Next, the coalescence of the

quasi-coplanar secondary cracks occurs. Finally, the split-

ting failure for the sample occurs. The types of coalescing

fracture are the coalescence of the quasi-coplanar sec-

ondary cracks. The failure pattern of the sample containing

two pre-existing collinear penetrating flaws subjected to

uniaxial compression is controlled by splitting failure, as

shown in Fig. 4a. The numerical results are in good

agreement with the experimental results (Bobet and Ein-

stein 1998a, b).

When the sample containing two pre-existing collinear

flaws is subjected to biaxial compression with a lateral

stress of 2.5 MPa, the quasi-coplanar secondary cracks are

first initiated from the inner and outer tips of the pre-ex-

isting flaws. Then, wing cracks are initiated from the inner

and outer tips of the pre-existing flaws. Next, the

coalescence of the quasi-coplanar secondary cracks occurs.

Finally, shear failure of the sample occurs. However, the

lengths of the wing cracks in the sample subjected to biaxial

compression are considerably less than that in the sample

subjected to uniaxial compression. The types of coalescing

fracture are the coalescence of the quasi-coplanar secondary

cracks. The failure pattern of the sample subjected to biaxial

compression with a lateral stress of 2.5 MPa is controlled

by shear failure, as shown in Fig. 4c.

When the sample containing two pre-existing non-col-

linear flaws is subjected to biaxial compression with a

lateral stress of 5 MPa, the secondary cracks are first ini-

tiated from the inner and outer tips of the pre-existing

flaws. Then, the coalescence of the quasi-coplanar sec-

ondary cracks and tensile cracks occurs. Next, the wing

cracks are initiated from the center of the pre-existing

flaws. Finally, shear failure of the sample occurs. The types

of coalescing fracture are the coalescence of the quasi-

coplanar secondary cracks and tensile cracks. The failure

pattern of the sample containing two pre-existing non-

collinear penetrating flaws subjected to biaxial compres-

sion with a lateral stress of 5 MPa is controlled by shear

failure, as shown in Fig. 4e.

The coalescence pattern and failure mode of the

numerical sample is nearly the same as the experimental

one (Bobet and Einstein 1998a, b), as shown in Fig. 4b, d

and f.

As shown in Fig. 5, the initiation stress of a quasi-

coplanar secondary crack and a wing crack, and the coa-

lescence stress and the failure stress increase when

increasing the lateral stress. When the sample is subjected

Inner tip2a=12.7mm

2a=12.7mm

(b)(a)

Outer tip

Flaw angle,β

c=a

s0=a

Fig. 3 Geometries of rock specimens containing the two pre-existing penetrating flaws. a Overall view. b Detail (Bobet and Einstein 1998a, b)
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to uniaxial compression, the wing cracks are initiated

earlier than the secondary cracks. When the lateral stress is

greater than 2.5 MPa, the wing cracks are initiated later

than the secondary cracks. The numerical results in Fig. 5a

are in good agreement with the experimental results in

Fig. 5b (Bobet and Einstein 1998a, b).

Fig. 4 Coalescence patterns of

two pre-existing penetrating

flaws in the samples under

uniaxial and biaxial

compression: a numerical result

in the sample with spacing

s0 = 0, continuity c = 2a and

lateral stress of 0 MPa;

b experimental result in the

sample with spacing s0 = 0,

continuity c = 2a and lateral

stress of 0 MPa; c numerical

result in the sample with

spacing s0 = 0, continuity

c = 2a and lateral stress of

2.5 MPa; d experimental result

in the sample with spacing

s0 = a, continuity c = a and

lateral stress of 2.5 MPa;

e numerical result in the sample

with spacing s0 = a, continuity

c = a and lateral stress of

5 MPa; f experimental result in

the sample with spacing s0 = a,

continuity c = a and lateral

stress of 5 MPa
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3.2 The Coalescence Patterns of Three Pre-existing

Penetrating Flaws in the Sample Under Uniaxial

Compression

Yang et al. (2012b) analyzed the fracture coalescence

behavior of brittle sandstone. Rectangular prismatic sand-

stone specimens (80 9 160 9 30 mm in size) containing

three fissures were tested under uniaxial compression. The

same parameters are used in the simulation process in this

paper to validate the accuracy of GPD3D. The coalescence

patterns are plotted in Fig. 6.

As shown in Fig. 6, the types of crack coalescence for

the numerical sample and the experimental specimen for

brittle sandstone with three pre-existing penetrating flaws

are nearly the same. All of the crack coalescences can be

simply classified into two types, which are tensile coales-

cence (T mode) and compression coalescence (C mode). It

is found from Fig. 6 that GPD3D can simulate the failure

process of the brittle materials well.

4 The Numerical Results and Discussions

4.1 Geometries of the Numerical Models

Figure 7 shows the setup of the numerical model contain-

ing the four pre-existing flaws. In the numerical model, the

size of the sample is 90 (width) 9 150 (length) 9 70

(thickness) mm, and the alignment of the 3D macroscopic

pre-existing penetrating flaws is depicted in Fig. 7

Fig. 5 Results of samples

under uniaxial compression and

biaxial compression with

different lateral stresses:

a numerical results;

b experimental results
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Six cases are considered in total. The samples contain

the four pre-existing flaws. The samples containing four

pre-existing penetrating flaws under biaxial compression

are depicted in Fig. 7a, and the samples containing four

pre-existing embedded flaws with width t = 10 mm, which

are located in the middle of the sample along the y direc-

tion, are plotted in Fig. 7b. For convenience of description

and discussion, the pre-existing flaws are marked with �,

`, ´ and ˆ, as shown in Fig. 7. We refer to the pre-

existing fracture as a flaw and the initiated and propagated

fracture as a crack. The flaw length 2a is 10 mm, and the

bridge length between the tips of the flaws 2d1 is 20 mm.

The perpendicular distance between the two adjacent rows

is fixed at s0 = 20 mm. One group of samples (from case 1

to case 3) contains four pre-existing penetrating flaws with

different non-overlapping lengths (c = 0,10 and 20 mm),

and the other group of samples (from case 4 to case 6)

contains four pre-existing embedded flaws with different

non-overlapping lengths (c = 0, 10 and 20 mm). The lat-

eral stress is 0.003 MPa in the two groups.

In the simulation, 45 9 75 9 35 = 118,125 particles

represent a sample geometry of 90 (width) 9 150

(length) 9 70 (thickness) mm in scale.

Figure 1 shows the 3D hexahedral particle distribution

in the numerical model. The uniaxial compression strength

of each hexahedral particle is assumed to follow the

Fig. 6 Paths of crack

propagation in the sample

containing three pre-existing

penetrating flaws: a 3D drawing

of crack propagation paths,

b the cross section of crack

propagation paths, c crack

coalescence process of a

sandstone specimen containing

three flaws under uniaxial

compression (Yang et al. 2012b)

Fig. 7 The layout of samples

containing four pre-existing

flaws under biaxial

compression: a the pre-existing

penetrating flaws, b the pre-

existing embedded flaws
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Weibull distribution. A displacement control of 0.002 m

per second was applied axially on the top and bottom of all

specimens.

4.2 Numerical Results for Rock Specimens of Group

1

Cases 1, 2 and 3 represent the samples containing pre-

existing penetrating flaws with a non-overlapping length of

c = 0, c = 10 and c = 20 mm, respectively. Figure 8

shows the numerical results of the numerical models con-

taining four pre-existing penetrating flaws with different

non-overlapping lengths under uniaxial compression. The

numerical results for the samples containing four pre-ex-

isting penetrating flaws with different non-overlapping

lengths under biaxial compression are plotted in Fig. 9.

The differences between the samples containing the four

pre-existing penetrating flaws with non-overlapping length

c = 0 mm under uniaxial compression in Fig. 8a and

under biaxial compression in Fig. 9a are that: (1) the length

of the wing cracks initiating from the outer tips of flaw `

and flaw ´ under uniaxial compression is longer than that

under biaxial compression (the main reason is that the

lateral stress hampers the growth of the wing cracks); (2)

the coalescence types of the four pre-existing penetrating

flaws in the sample under biaxial compression are different

from those in the sample under uniaxial compression; the

coalescence of oblique secondary cracks and the coales-

cence of the quasi-coplanar secondary cracks are observed

in the sample under biaxial compression, while the coa-

lescence of the out-of-plane shear crack and the wing crack

are found in the sample under uniaxial compression; and

(3) the failure pattern of the rock-like sample subjected to

uniaxial compression is a splitting failure, while the failure

pattern of the sample subjected to biaxial compression is a

shear failure.

The differences between the samples containing four

pre-existing penetrating flaws with non-overlapping length

c = 10 mm under uniaxial compression in Fig. 8b and

under biaxial compression in Fig. 9b are that: (1) there is

Fig. 8 Paths of crack propagation in samples containing the four pre-

existing penetrating flaws under uniaxial compression: a 3D drawing

of propagation paths of the pre-existing flaws and the cross section of

propagation paths of the pre-existing flaws with non-overlapping

length c = 0 mm in the sample; b 3D drawing of propagation paths

of the pre-existing flaws and the cross section of propagation paths of

the pre-existing flaws with non-overlapping length c = 10 mm in the

sample; c 3D drawing of propagation paths and the cross section of

propagation paths of the pre-existing flaws with non-overlapping

length c = 20 mm in the sample
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no wing crack initiating from the outer tips of flaw ` and

flaw ´ in the sample subjected to biaxial compression,

while wing cracks initiating from the outer tips of flaw `

and flaw ´ propagate to the top and bottom boundaries in

the sample subjected to uniaxial compression; (2) coales-

cence types of the four pre-existing penetrating flaws in the

sample under biaxial compression are different from those

in the sample under uniaxial compression; the coalescence

of the out-of-plane secondary crack and the wing crack is

observed in the sample under uniaxial compression,

whereas the coalescence of the quasi-coplanar secondary

cracks, the coalescence of the wing crack and the out-of-

plane secondary crack and the quasi-coplanar secondary

crack are observed in the sample under biaxial compres-

sion; and (3) the failure pattern of the sample subjected to

uniaxial compression is a splitting failure, while the failure

pattern of the sample subjected to biaxial compression is a

shear failure.

The differences between the samples containing four

pre-existing penetrating flaws with non-overlapping length

c = 20 mm under uniaxial compression in Fig. 8c and

under biaxial compression in Fig. 9c are that: (1) the

growth length of the wing cracks in the sample subjected to

uniaxial compression is longer than that of the wing cracks

in the sample subjected to biaxial compression; (2) the

wing cracks in the sample under uniaxial compression are

smooth, while bifurcation exists in the wing cracks in the

sample under biaxial compression; (3) coalescence types of

four pre-existing penetrating flaws in the sample under

uniaxial compression are different from those in the sample

under biaxial compression and the coalescence of the wing

cracks and the coalescence of the oblique secondary crack

Fig. 9 Paths of crack propagation in samples containing the four pre-

existing penetrating flaws under biaxial compression with the lateral

stress of 0.003 MPa: a 3D drawing of propagation paths of the pre-

existing flaws and the cross section of propagation paths of the pre-

existing flaws with non-overlapping length c = 0 mm in the sample;

b 3D drawing of propagation paths of the pre-existing flaws and the

cross section of propagation paths of the pre-existing flaws with non-

overlapping length c = 10 mm in the sample; c 3D drawing of

propagation paths and the cross section of propagation paths of the

pre-existing flaws with non-overlapping length c = 20 mm in the

sample
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and the wing crack are observed in the sample under uni-

axial compression, while the coalescence of the wing

cracks, the coalescence of the oblique secondary cracks,

and the coalescence of the oblique secondary crack and the

anti-wing crack are observed in the sample under biaxial

compression; and (4) the failure pattern of the sample

subjected to uniaxial compression is a splitting failure,

while the failure pattern of the sample subjected to biaxial

compression is a shear failure.

With increasing biaxial loads, the secondary cracks keep

growing in the samples. These shear fractures propagate

towards the left and right sides of the samples, while there

are nearly no wing cracks initiating from the tips of the pre-

existing flaws in samples under biaxial compressive loads.

The samples that contain four pre-existing penetrating

flaws under uniaxial compression are split into fragments

in a tensile rip failure mode, as shown in Fig. 8. However,

samples that contain the four pre-existing penetrating flaws

under biaxial compression are split into fragments in a

shear failure mode as depicted in Fig. 9, and macro-shear

fractures are also observed on the left and right side of

these samples subjected to biaxial compression due to the

propagation and coalescence of the secondary cracks.

4.3 Numerical Results for Rock Specimens of Group

2

Cases 4, 5 and 6 represent the samples containing four pre-

existing embedded flaws with non-overlapping lengths of

c = 0, c = 10 and c = 20 mm, respectively. Figure 10

shows the numerical results for samples containing the four

pre-existing embedded flaws with different non-overlap-

ping lengths under uniaxial compression. The numerical

results of the samples containing four pre-existing

embedded flaws with different non-overlapping lengths

under biaxial compression are plotted in Fig. 11.

The differences between the samples containing the four

pre-existing embedded flaws with non-overlapping length

c = 0 mm under uniaxial compression in Fig. 10a and

under biaxial compression in Fig. 11a are that: (1) there is

no wing crack initiating from the outer tips of flaw ` and

flaw ´ in the sample subjected to biaxial compression,

while wing cracks initiated from the outer tips of flaw `

and flaw ´ propagate along the direction of the maximum

principal stress in the sample subjected to uniaxial com-

pression; (2) coalescence types of the four pre-existing

embedded flaws in the sample under biaxial compression

are different from those in the sample under uniaxial

compression; the coalescence of the out-of-plane sec-

ondary crack and the quasi-coplanar secondary crack and

the coalescence of the quasi-coplanar secondary cracks are

observed in the sample under uniaxial compression, while

the coalescence of the quasi-coplanar secondary cracks and

the coalescence of the oblique secondary cracks are found

in the sample under biaxial compression; and (3) the failure

pattern of the sample subjected to uniaxial compression is

mainly controlled by a splitting failure, while the failure

pattern of the sample subjected to biaxial compression is

mainly controlled by a shear failure.

The differences between the samples containing four

pre-existing embedded flaws with non-overlapping length

c = 10 mm under uniaxial compression in Fig. 10b and

under biaxial compression in Fig. 11b are that: (1) there is

no wing crack initiated from the outer tips of flaw ` and

flaw ´ in the sample under biaxial compression, while

wing cracks initiated from the outer tips of flaw ` and flaw

´ propagate along the direction of the maximum principal

stress in the sample subjected to uniaxial compression; (2)

coalescence types of four pre-existing embedded flaws in

the sample under biaxial compression are different from

those in the sample under uniaxial compression; the coa-

lescence of quasi-coplanar secondary cracks and the coa-

lescence of the oblique secondary cracks are observed in

the sample under uniaxial compression, while the coales-

cence of the anti-wing crack, out-of- plane secondary crack

and the oblique secondary crack, the coalescence of quasi-

coplanar secondary cracks, and the coalescence of the

oblique secondary cracks are observed in the sample under

biaxial compression; and (3) the failure pattern of the

sample subjected to uniaxial compression is mainly con-

trolled by a splitting failure, while the failure pattern of the

sample under biaxial compression is mainly controlled by a

shear failure.

The differences between the samples containing four

pre-existing embedded flaws with non-overlapping length

c = 20 mm under uniaxial compression in Fig. 10c and

under biaxial compression in Fig. 11c are that: (1) the

length of the wing cracks initiating from the outer tips of

flaw ` and flaw ´ under uniaxial compression is longer

than that under biaxial compression (the main reason is that

the lateral stress hampers the growth of wing cracks); (2)

coalescence types of four pre-existing embedded flaws in

the sample under biaxial compression are different from

those in the sample under uniaxial compression; the coa-

lescence of the oblique secondary cracks are observed in

the sample under uniaxial compression, while the coales-

cence of the quasi-coplanar secondary cracks, the coales-

cence of the oblique secondary cracks, and the coalescence

of the oblique secondary crack and the wing crack are

found in the sample subjected to biaxial compression; and

(3) the failure pattern of the sample subjected to uniaxial

compression are mainly controlled by a splitting failure,

while the failure pattern of the sample subjected to biaxial

compression is mainly controlled by a shear failure.
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5 Conclusions and Discussions

GPD3D is introduced to investigate the fracture propaga-

tion and coalescence of rock-like materials with macro-

scopic pre-existing flaws under biaxial compressive loads.

The main feature of GPD3D is that it can simulate the

evolution of internal cracks in three-dimensional space,

which is considerably more complex than the two-dimen-

sional crack regimes that are commonly studied. The pre-

sent numerical simulation focuses on the non-overlapping

length and the types of pre-existing flaws in the rock-like

samples under biaxial compression. Although the role of

these parameters needs additional experimental and theo-

retical analysis and the propagation and coalescence pro-

cesses of 3D cracks under complex loading styles should

be further investigated, the present numerical results

demonstrate many phenomena that have already been

observed in laboratory experiments. However, many of

these fracture phenomena direct us to the necessity of

additional experiments. This present study highlights some

interesting phenomena for improving the understanding of

the mechanism of 3D rock fracturing. Some of the main

conclusions are summarized as follows:

The propagation and coalescence processes of the wing

cracks, the oblique secondary cracks, the out-of-plane

shear cracks, the anti-wing cracks and the quasi-coplanar

shear crack in numerical samples subjected to biaxial

compression can be numerically simulated by GPD3D.

Although the coalescence of cracks between macro-

scopic pre-existing flaws cannot be easily observed in

laboratory testing, they can be predicted by numerical

modeling.

With increasing lateral stress, the secondary cracks keep

growing in the samples, while the growth of the wing

cracks is restrained. The main reason is that lateral stress

Fig. 10 Paths of crack propagation in samples containing the four

pre-existing embedded flaws under uniaxial compression: a 3D

drawing of propagation paths of the pre-existing flaws and the cross

section of propagation paths of the pre-existing flaws with non-

overlapping length c = 0 mm in the sample; b 3D drawing of

propagation paths of the pre-existing flaws and the cross section of

propagation paths of the pre-existing flaws with non-overlapping

length c = 10 mm in the sample; c 3D drawing of propagation paths

and the cross section of propagation paths of the pre-existing flaws

with non-overlapping length c = 20 mm in the sample
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hampers the growth of wing cracks. The samples

subjected to biaxial compression are mainly split into

fragments in a shear failure mode, which is different

from a splitting failure of the samples subjected to

uniaxial compression.

For specimens with macroscopic pre-existing flaws, the

simulated types of cracks, the simulated failure modes

and the simulated coalescence types are in good

agreement with the experimental results. It is found

from the numerical results that GPD3D can simulate the

failure process of the brittle materials well.
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