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Abstract This paper aims to gain fundamental under-

standing of the microscopic mechanisms that control the

transition between secondary and tertiary creep around salt

caverns in typical geological storage conditions. We use a

self-consistent inclusion-matrix model to homogenize the

viscoplastic deformation of halite polycrystals and predict

the number of broken grains in a Representative Elemen-

tary Volume of salt. We use this micro-macro modeling

framework to simulate creep tests under various axial

stresses, which gives us the critical viscoplastic strain at

which grain breakage (i.e., tertiary creep) is expected to

occur. The comparison of simulation results for short-term

and long-term creep indicates that the initiation of tertiary

creep depends on the stress and the viscoplastic strain. We

use the critical viscoplastic deformation as a yield criterion

to control the transition between secondary and tertiary

creep in a phenomenological viscoplastic model, which we

implement into the Finite Element Method program

POROFIS. We model a 850-m-deep salt cavern of irregular

shape, in axis-symmetric conditions. Simulations of cavern

depressurization indicate that a strain-dependent damage

evolution law is more suitable than a stress-dependent

damage evolution law, because it avoids high damage

concentrations and allows capturing the formation of a

damaged zone around the cavity. The modeling framework

explained in this paper is expected to provide new insights

to link grain breakage to phenomenological damage vari-

ables used in Continuum Damage Mechanics.

Keywords Salt rock � Creep � Viscoplastic deformation �
Damage � Micro-macro model � Finite element method �
Geological storage

List of symbols

m; n Unit sliding vector and unit normal vector

in global coordinate

M;N Unit sliding vector and unit normal vector

in local coordinate

al;Al lth slip system in global and local

coordinates

_ee;_evp Elastic strain rate, viscoplastic strain rate

c0; c Reference strain rate, viscoplastic strain of

a grain

P Projection tensor

W; h;U Angles representing the grain orientation

s0; s Reference shear stress, local shear stress of

a grain

r; e Microscopic stress and strain tensors of a

grain

r; e Macroscopic stress and strain tensors of a

matrix

hl Local shear stress-dependent sign

coefficient

p Probability of the occurrence of a specific

grain orientation

A;B; n; n1; n2 Material constants

L� Hill’s tensor
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j; ej Bulk modulus, effective bulk modulus

l; el Shear modulus, effective shear modulus

m;em Poisson’s ratio, effective Poisson’s ratio

N;Nb;Ng Number of total grains, number of broken

grains, number of good grains

Dm;DM Damage variable in the homogenization

model and the phenomenological model

rT Mono-crystal tensile strength

R Universal gas constant

Q Activation energy for the slip mechanism

T Absolute temperature

s; J2 Deviatoric stress tensor, second deviatoric

stress invariant

re Equivalent von Mises stress

C; n;u Damage accumulation parameters during

the tertiary creep

, Ductility parameter

C0;CD Stiffness of the intact material, stiffness of

the damaged material

1 Introduction

A fundamental understanding of the viscous behavior of

salt is crucial for the design and performance assessment of

geological facilities used for the storage of hydrogen, oil

and gas, as well as Compressed Air Energy Storage

(CAES). Viscous deformation and damage during short-

term to long-term pressurization and depressurization

processes are great concerns to engineers and researchers.

Long-term creep behavior of salt is complex and

depends on a number of factors (Carter and Hansen 1983).

Temperature plays a key role in salt deformation around

nuclear waste disposals (Senseny et al. 1992). Brine pre-

sent at grain boundaries largely affects the rheology and

deformation of halite polycrystals (Urai et al. 1986). Salt

steady-state strain rate increases as deviatoric stress

increases or as confining pressure decreases (Yang et al.

1999).

Most salt constitutive models do not account for creep-

induced damage, which is usually associated with the

opening of microcracks or microvoids (Brace et al. 1966).

In brittle solids, micro-cracks propagate along the maxi-

mum compressive stress direction (Ashby and Hallam

1986). The same pattern of damage evolution was observed

during salt creep. To couple viscoplastic deformation and

damage into salt creep deformation law, Haupt (1991)

proposed a constitutive model that accounts for damage-

induced relaxation. Chan et al. (1992) extended the mul-

timechanism deformation model proposed by Munson and

Dawson (1984) to include creep-induced damage. Damage

is defined as a density of microscopic cavities and cracks,

and introduced in the viscoplastic flow rule, which allows

the prediction of inelastic dilation in the transient creep

regime (Chan et al. 1994). Chen et al. (1997) proposed a

restrictions-based thermodynamic framework that captures

the transition between secondary and tertiary creep: con-

servation laws are made dependent on jump functions. All

of these creep-damage-coupled models require a large

number of constitutive parameters and do not link the

macroscopic strain rates to the microscopic mechanisms

that govern the behavior of halite crystals.

This paper aims to gain fundamental understanding of

the microscopic mechanisms that control the transition

between secondary and tertiary creep around salt caverns in

typical geological storage conditions. In Sect. 2, we explain

how to model sliding mechanisms at the grain scale. In

Sect. 3, we present a micro-macro modeling approach that

links salt viscous deformation and damage to elementary

crystal sliding mechanisms. We use the micromechanical

model to find the critical viscoplastic strain that triggers

grain breakage, which we define as a damage threshold in a

phenomenological model of salt viscoplastic deformation,

in which a damage variable controls the transition between

secondary and tertiary creep regimes (Sect. 4). In Sect. 5,

we present Finite Element simulations of long-term creep

deformation and damage around a depressurized salt

cavern.

2 Salt Crystal Deformation

Deformation of a salt crystal is temperature and pressure

dependent. Since we focus on the CAES conditions, we

choose constitutive models and parameters that are suitable

for room temperature and simple compression conditions.

2.1 Kinematics

Salt rock is made of halite (NaCl) mono-crystals, all of

which follow a typical face-centered cubic (FCC) structure.

Taking all constituents of the crystal as atoms, intra-gran-

ular dislocations would occur on planes separating the two

densest grain fractions, i.e., on planes normal to the

\1 1 1[ direction of the grain coordinate system. How-

ever, halite crystals comprise two FCC ionic sub-networks

(sodium Naþ and chloride Cl�). Because of the electronic

interaction forces between ions, the planes along which

sliding requires the minimum energy input are the 1 0 1f g
planes, as supported by a great number of experimental

studies on halite crystals (Davidge and Pratt 1964; Carter

and Heard 1970; Argon et al. 1972; Skrotzki and Haasen

1984; Senseny et al. 1992). Other mechanisms including
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cubic and octahedric systems exist, but do not contribute

significantly to salt deformation at room temperature. A

review of the dominant sliding mechanisms in FCC crys-

tals can be found in (Groves and Kelly 1963; Nebozhyn

et al. 2001).

In the global matrix coordinate system, we note the lth

slip system (al) of the mono-crystal as:

alij ¼
nlim

l
j þ nljm

l
i

2
; ð1Þ

in which nl is the vector normal to the lth sliding plane, and

ml is the lth unit sliding vector. In the local coordinate

system, we can express the slip systems (Al) of the mono-

crystal as follows:

Al ¼ Nl
b� Ml; Al

ij ¼
1

2
Nl
iM

l
j þ Nl

jM
l
i

� �

; ð2Þ

in which Nl is the vector normal to the lth sliding plane, Ml

is the lth unit sliding vector, and b� is the symmetric tensor

product.

With the global slip system, we can write the vis-

coplastic strain rate (_evp) of the grain as

_evpij ¼
X

L

l¼1

_clalij; ð3Þ

in which _cl is the viscoplastic strain rate of grains subjected

to the lth sliding mechanism, L is the total number of active

sliding mechanisms. For each halite mono-crystal, L ¼ 6.

For each mono-crystal, we can relate al
� �

to the lth

sliding mechanism expressed in the local coordinate sys-

tem, Al
� �

, by means of a projection tensor P½ �, which

depends on the orientation of the mono-crystal as

al
� �

¼ P½ � Al
� �

P½ �T ; ð4Þ

where the projection tensor ½P� is decomposed as

½P� ¼ ½P1�½P2�½P3�, with

½P1� ¼
cosW sinW 0

� sinW cosW 0

0 0 1

2

6

4

3

7

5
ð5Þ

½P2� ¼
cos h 0 sin h

0 1 0

� sin h 0 cos h

2

6

4

3

7

5
ð6Þ

½P3� ¼
cosU � sinU 0

sinU cosU 0

0 0 1

2

6

4

3

7

5
; ð7Þ

in which W, h, and U are the angles representing the ori-

entation of the grain.

Because of the electronic interaction forces among ions,

preferential sliding planes, along which sliding requires the

minimum energy input, are the {101} planes. Therefore,

the vectors normal to the preferential sliding planes (Nl)

are:

N1 ¼ 1
ffiffiffi

2
p ð0; 1; 1Þ N2 ¼ 1

ffiffiffi

2
p ð1; 0; 1Þ

N3 ¼ 1
ffiffiffi

2
p ð�1;�1; 0Þ N4 ¼ 1

ffiffiffi

2
p ð0;�1; 1Þ

N5 ¼ 1
ffiffiffi

2
p ð�1; 0; 1Þ N6 ¼ 1

ffiffiffi

2
p ð�1; 1; 0Þ;

ð8Þ

in which the sliding directions are, respectively

M1 ¼ �N4 M2 ¼ �N5 M3 ¼ �N6

M4 ¼ �N1 M5 ¼ �N2 M6 ¼ �N3:
ð9Þ

Slip system A4 ¼ N4
b� M4 (A5 ¼ N5

b� M5 and

A6 ¼ N6
b� M6, respectively) is normal to slip system

A1 ¼ N1
b� M1 (A2 ¼ N2

b� M2 and A3 ¼ N3
b� M3,

respectively). Moreover, we have

A1 ¼ A2 þ A3: ð10Þ

Therefore, the 6 sliding mechanisms of the family

f101g\101[ provide only two linearly independent slip

systems to define the viscous strain direction. Assuming

that grain viscoplastic deformation is isochoric, the

microscopic viscoplastic deformation tensor has five

degrees of freedom. Since there are only two linearly

independent slip systems for the family f101g\101[ ,

slip mechanisms only provide two degrees of freedom for

the microscopic viscolastic tensor. This deficit in degrees

of freedom results in geometric incompatibilities between

adjacent grains, which originates internal stresses in the

polycrystal. In fact, single NaCl crystals cannot accom-

modate the deformation of their neighbors by deforming

viscoplastically: elastic deformation is necessary to main-

tain the contact with neighboring grains of different ori-

entations. These elastic strains generate internal stresses

which can in turn lead to crack propagation within the

polycrystal. These internal stresses were studied by Pouya

(1991, 2000) in elastoplasticity.

2.2 Rheology

The total deformation is the sum of elastic and viscoplastic

deformation as

_e ¼_e þ_e; ð11Þ

in which elastic strain rate_e is related to the stress rate, and

_e is the viscoplastic strain rate.
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Note that contrary to previous salt plasticity models

(Pouya 2000), viscoplastic models have no threshold,

therefore, sliding mechanisms are all active. We relate

local shear stress sl to microstress r by

sl ¼ r : al: ð12Þ

Based on the correlations established by Wanten et al.

(1996), we assume that the irreversible shear strain rate

obeys a power law as

_cl ¼ c0 h
l s

l

s0

�

�

�

�

�

�

�

�

n

; ð13Þ

in which n and c0 are material constants. c0 is a reference

strain rate and s0 is a reference shear stress, arbitrarily set

equal to 1MPa. hl depends on the sign of sl: if sl is positive,
hl ¼ 1; if sl is negative, hl ¼ �1.

3 Homogenization Scheme

3.1 Averaging Method

We consider the Representative Elementary Volume

(REV) of salt rock as an aggregate of halite mono-crystals

of various orientations. Averages computed in the space of

crystal orientations form the basics of the upscaling

scheme. To determine a system of coordinates in this

space, we use (X, Y, Z) to denote a system of crystallo-

graphic axes attached to the inclusion (Fig. 1). The orien-

tation of the Z-axis is determined by two spherical

coordinates (angles W and h), defined in the Cartesian

coordinate system (x, y, z). Let (u, v, z) be the system

obtained from (x, y, z) through rotation around the z-axis at

angle W. Let (U, v, Z) be the system obtained from (u, v, z)

through rotation around the v-axis at angle h. System

(X, Y, Z) is obtained from system (U, v, Z) by additional

‘‘spinal’’ rotation around the z-axis at angle U, which varies
between 0 and 2p.

The probability of having a z-axis of orientation (W, h,
U) is the product of the probability of the occurrence of

solid angle X (measured by dX ¼ sin hdhdW) by that of

spinal rotation U (measured by dU). Therefore, the density
of the probability of the occurrence of grain orientation x1

is measured by

dp ¼ pðx1Þdx1 ¼ pðW; h;UÞ sin h dhdWdU: ð14Þ

The average of a function f ðx1Þ can be defined as

f ¼ 1

X1

Z

X1

f ðx1Þdx1

¼ 1

8p2

Z p

h¼0

Z 2p

W¼0

Z 2p

U¼0

f ðW; h;UÞ sin h dhdWdU:

ð15Þ

All halite mono-crystals have the same FCC structure.

Since the inclusion (or ‘‘grain’’) represents a single crystal,

crystalline symmetries allow the reduction of the variation

of U to interval ½0; p=2�. Finally, changing h to p� h, W to

2p�W and U to 2p� U leads to the same crystallographic

orientation (in which Y is replaced by �Y). This substitu-

tion reduces the domain of variations of h to interval

½0; p=2�. Because a uniaxial macroscopic loading test is

simulated, the REV presents a symmetry around the z-axis.

Therefore, W can be set equal to a constant (W ¼ 0 is

adopted in the following). As a result, in the proposed

approach, the average is defined as

f ¼ 2

p

Z p=2

h¼0

Z p=2

U¼0

f ðh;UÞ sin h dhdU: ð16Þ

Using the variable change u ¼ cos h, Eq. 16 can be

rewritten as

f ¼ 2

p

Z 1

u¼0

Z p=2

U¼0

f ðu;UÞ dudU: ð17Þ

We assume the same probability of occurrence for all grain

orientations, that is, following a uniform probability den-

sity function. To obtain equipotent points in a discrete

integration scheme, it is sufficient to divide the domain of

variation of u ([0, 1]) into nu intervals of central value ui
and the domain of variation of U (½0; p=2�) into nU intervals

of central value Uj. The average is finally computed as

f ¼ 1

N

X

i;j

f ðhi;UjÞ; ð18Þ
Fig. 1 Characterization of mono-crystal orientations in a spherical

coordinate system
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in which N ¼ nu nU and hi ¼ arccosðuiÞ. We adopt an

isotropic distribution of grain orientations without

accounting for any texture. The procedure for solid angle

integration is the following: since the solid angle element

reads sin h dhdU, we divide the range of angle h into 10

equipotent intervals (same variations of cos h); each of

these intervals is then divided into 20 subdomains inter-

cepted by the angle U. This provides 200 possible orien-

tations for the grain (i.e., N ¼ 200). Simulations with more

points required longer computation time but presented

similar results, which indicated that N ¼ 200 was a rep-

resentative number of orientations for homogenization

purposes.

3.2 Inclusion-Matrix Model

The stresses and strains in mono-crystals depend on the

macroscopic load imposed on the aggregate and on the

interactions among these mono-crystals. We propose an

inclusion-matrix model to account for the interactions

among grains. Following a self-consistent upscaling

scheme, we treat each mono-crystal as an inclusion

embedded in an infinite homogeneous matrix, which rep-

resents the polycrystalline aggregate. In this model, we

treat mono-crystals as spherical inclusions.

Microscopic stresses at the interface between two con-

stituents reach their balance by correcting the macroscopic

stress (strain, respectively) by an eigenstress (eigenstrain,

respectively). We deduce aggregate REV properties (e.g.,

the REV stiffness matrix) from the knowledge of stress

(strain, respectively) concentration tensors, which depend

on the geometry of the heterogeneity present in the

aggregate (Nemat-Nasser and Hori 1993).

For a homogeneous and isotropic elastic matrix, Weng

(1982) extended the Kröner model proposed initially for

elasto-plastic materials to viscoplastic materials as

_r� _r ¼ 2lð1� bÞ _evp � _evp
� 	

; ð19Þ

in which _r is the rate of microscopic stress and _r the rate of

macroscopic stress. _evp and _evp denote the macroscopic and

microscopic viscoplastic strain rates, respectively. b is

given by

b ¼ 2ð4� 5mÞ
15ð1� mÞ ; ð20Þ

in which m is the Poisson’s ratio of the homogenized REV.

Both the mono-crystal inclusions and the matrix follow

viscoplastic laws. We adopted the viscoelastic self-con-

sistent model of Weng, which is based on Eshelby’s

inclusion model. In this model, we capture the matrix-in-

clusion interaction with a purely elastic matrix behavior

model, which implies that macroscopic viscoplasticity only

stems from grain-scale viscoplastic deformation rather than

grain/matrix incompatibilities. We couple the local stress

in the inclusions (r) and the far-field stress in the matrix (r)

to the microscopic strain (e) and the macroscopic strain (e)

by the following relationship:

r� r ¼ �L� : ðe� eÞ; ð21Þ

where L� is Hill’s tensor for a spherical inclusion in an

isotropic matrix (Hill 1965).

In this study, we focus on damage effects coupled to the

viscous deformation of the aggregate. Viscous accommo-

dation is not accounted for, to better understand the effects

of damage in the inclusion-matrix interaction model.

3.3 Micro-Macro Damage Model

At the macroscopic scale, we define damage as the

reduction in elastic moduli and rock strength. Tension,

compression, or shear drive damage propagation at the

macroscopic scale (Bobet and Einstein 1998). At the grain

scale, damage triggers when one mono-crystal fails. We

restrict the damage initiation at the grain scale to mode I

failure, which occurs when the microscopic stress exceeds

the tensile strength rT of salt mono-crystals. In this model,

we represent crack propagation at the grain–matrix inter-

face or inside the grain by the breakage of the whole grain.

If the major principal local stress of a grain exceeds rT , the
grain is breaking. Damage propagates when subsequent

stress redistribution and further loading increase micros-

tress in other grains to the tensile limit. We denote the

number of unbroken grains as Ng, the number of broken

grains Nb, and the total number of grains in the REV N

(with N ¼ nu nU, the number of mono-crystal orientations

studied in the REV). We reckon that this assumption is

crude; however, modeling microscopic damage along the

grain interfaces cannot be done in the framework of the

inclusion-matrix model used here and falls beyond the

scope of this work.

The Voigt estimate for the elastic matrix yields the

effective bulk modulus (ej) and shear modulus (el) as

ej ¼ Ng

N
j ¼ N � Nb

N
j ¼ ð1� DmÞj

el ¼ Ng

N
l ¼ N � Nb

N
l ¼ ð1� DmÞl;

ð22Þ

in which Dm, defined as Dm ¼ Nb=N ¼ 1� Ng=N, is the

macroscopic damage variable obtained from the micro-

macro analysis. From the expressions of the damaged bulk

and shear moduli in Eq. 22, we realize that Poisson’s ratio

does not change upon grain breakage: em ¼ m. The proposed
micro-macro modeling approach combines Hill’s scheme

(Hill 1965) for the rate-independent non-linear elastic

matrix behavior (to represent the inclusion-matrix

Micro-Macro Analysis and Phenomenological Modelling of Salt... 2571

123



interaction), and a brittle constitutive law for the grains

subject to breakage (to represent damage). We calculate

Hill’s constraint tensor for the damaged matrix. As a result,

in the present work, the inclusion-matrix interaction model

accounts for brittle grain breakage, but it does not capture

the ‘‘viscous accommodation’’ because of the viscous

deformation of the matrix. As mentioned earlier we adopt

this simplification because the focus of this study is

macroscopic fatigue behavior induced by creep or cyclic

loading.

For each macroscopic stress loading increment dqðtÞ
applied between times tn and tnþ1, we update the macro-

scopic and microscopic variables in two steps:

1. The ‘‘damage phase’’ (tn � tþn ) accounts for instanta-

neous variations because of grain breakage at time tn.

We denote these variations as dr, de, dr, de.
2. The ‘‘viscous phase’’ (tþn � tnþ1) accounts for time-

dependent variations because of viscous deformation

on the time interval Dnt ¼ tnþ1 � tn. We denote these

variations as _rD, _eDnt, _rDnt, _eDnt.

At each stress increment (i.e., time step), we check the

grain breakage criterion at the beginning of the damage

phase (t ¼ tn) and then sort grains into three categories,

depending on the stress state of the mono-crystal:

– The grain is non-broken if the maximum principal

microscopic stress is less than the mono-crystal tensile

strength rT .
– The grain is breaking if the maximum principal

microscopic stress exceeds the mono-crystal tensile

strength rT during the current loading increment.

– The grain is broken if the mono-crystal has already

been broken in a previous loading increment.

Initially at t ¼ tn, we calculate the damaged elastic moduli

from Eq. 22, in which Nb accounts for both breaking and

broken grains. For all three types of grains, the Hill’s

formula (Eq. 21) governs the inclusion-matrix interaction.

Grain breakage results in a redistribution of micro-stresses:

when breaking grains actually fail, non-broken grains

become subjected to microscopic stresses of higher mag-

nitude. At the beginning of the viscous phase (at t ¼ tþn ),

we update resulting micro-stresses using the equations for

the sliding mechanisms. Note that the redistribution of

micro-stresses because of grain breakage (at t ¼ tþn ) can

result in tensile stresses that exceed the tensile strength in

some of the non-broken grains. We count those grains

subjected to higher stresses than the tensile strength as non-

broken during the viscous phase of the loading (between

t ¼ tþn and t ¼ tnþ1). We will check the status of the grains

and update them at the beginning of the damage phase of

the following loading increment (at t ¼ tnþ1). As the

damage and viscoplastic updates are step dependent, we

simulate stress paths with a high number of increments to

ensure that there is no significant numerical difference

between results obtained when updates are done at step n or

step nþ 1. Sufficiently small time increments are used, so

that the numerical solution tends to the real solution.

Simulation of the creep of salt polycrystals using this

model showed that creep deformation obeyed a power law

in stress, and that the onset of the tertiary creep is exactly

related to the initiation of damage (Pouya et al. 2015). This

result makes it possible to identify the onset of damage by

analysing experimental creep curves. The procedure to

calibrate the transition between secondary and tertiary

creep phases is explained in Sect. 4 below.

4 Phenomenological Modeling Framework

To study salt viscous damage at the field scale, we propose

a phenomenological model of viscoplastic deformation that

captures the transition between secondary and tertiary

creep regimes. In the following, we define this transition

with a micro-macro damage criterion. During the sec-

ondary creep regime, the viscoplastic deformation is the

result of grain-scale sliding mechanisms. During tertiary

creep, the strain rate increases with damage as the conse-

quence of grain breakage. We use Norton–Hoff law for

secondary creep (Carter and Hansen 1983):

_evpss ¼ 3

2
A � exp � Q

RT


 �

re
r0


 �n1 1

re
s; ð23Þ

in which A and n1 are material constants, Q is the activation

energy for the slip mechanism, R is the universal gas

constant, T is the absolute temperature, s is the deviatoric

stress tensor, r0 is a reference stress, arbitrarily set equal to

1MPa, re ¼
ffiffiffiffiffiffiffi

3J2
p

is the equivalent von Mises stress, and

J2 ¼ sijsij
2

is the second deviatoric stress invariant. This

relation is equivalent to the macroscopic viscoplastic law

proposed in our previous study (Zhu et al. 2015). Experi-

ments conducted at various temperatures led to similar

empirical power laws (Heard 1972; Handin et al. 1986).

For the case of uniaxial creep, according to Eq. 23, we

have

_evpa ¼ A � exp � Q

RT


 �

re
r0


 �n1

; ð24Þ

in which re is the uniaxial stress.

Micro-stresses increase with macroscopic viscoplastic

deformation, which may cause grain breakage if grain tensile

strength is exceeded. The consequent redistribution of

microstresses leads to higher local stress concentrations,which

further accelerate viscoplastic deformation and damage prop-

agation. This phenomenon is known as tertiary creep (Fig. 2).
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As explained here-above, according to micromechanical

analysis, we related the onset of the tertiary creep to the

damage initiation, i.e., tertiary creep is triggered by grain

breakage. In the micro-macro modeling framework pre-

sented above, we accounted for the consequent mechanical

macroscopic damage (Dm) by scaling the elastic properties

by the fraction of non-broken grains in the REV. In the

following, we denoted the damage variable in the phe-

nomenological model as DM to account for the change of

viscoplastic strain rate induced by grain breakage—which

we modeled as the opening of microcracks and microvoids

(Hutchinson 1983; Ashby and Hallam 1986). The tertiary

creep deformation law is similar to the secondary creep law

(Leckie and Hayhurst 1974):

_evpts ¼ 3

2
B � exp � Q

RT


 �

re=ð1� DMÞ
r0

� 
n2 1

re
s; ð25Þ

in which B and n2 are material constants. re
1�DM

is the

effective stress. The damage variable DM also contributes

to the degradation of material stiffness as

CD ¼ ð1� DMÞC0; ð26Þ

in which CD is the stiffness of the damaged material, C0 is

the initial stiffness of the undamaged material. For uniaxial

creep, according to Eq. 25, we have

_evpa ¼ B � exp � Q

RT


 �

re=ð1� DMÞ
r0

� 
n2

; ð27Þ

in which re takes the value of the uniaxial axial stress.

We compare two damage evolution laws. The first law

(noted as damage evolution law 1), initially proposed for

metallic materials (Hayhurst et al. 1984), depends on both

the current damage and stress states as

_DM ¼ Crne
ð1� DMÞu

; ð28Þ

in which C, n, and u are material constants governing the

damage accumulation during the tertiary creep phase. The

second damage evolution law (noted as damage evolution

law 2), which depends on the current viscoplastic deforma-

tion state only, was successfully employed tomodel concrete

(Mazars 1984) and interfaces in cementitious materials

(Jefferson 1998). We assume that damage remains equal to

zero up to a critical viscoplastic deformation evp0 , and then

increases exponentially with deformation as

DM ¼ 1� e
�

evp�evp
0

,evp
0 ;

ð29Þ

As a result, the rate of damage is expressed as:

_DM ¼ 1

,evp0
_evpj jj je

�evp�e0
,evp
0 ; ð30Þ

in which evp0 is the critical viscoplastic strain at the onset of

tertiary creep state. , is a damage parameter which mea-

sures the ductility of the material: the larger the value of ,,

the more ductile the material. jj_evpjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
_evpij _e

vp
ij

q

is the

equivalent von Mises strain.

We implemented the micro-macro model presented in

Sects. 2 and 3 in MATLAB to study salt viscous damage at

the material point. We simulated creep tests under various

axial stresses, and determined the critical viscoplastic

strain as the cumulated viscoplastic strain reached at the

first occurrence of grain breakage. In Fig. 3, the onset of

tertiary creep (cross symbol) is indicated by the point

where the viscoplastic deformation predicted in the

absence of grain breakage (non-damage model) separates

from the one predicted with the consideration of grain

breakage (damage model).

Fig. 2 Complete creep curve. Tertiary creep phase initiates when first

grain breakage occurs

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

−4

Time (day)

Non−damage Model
Damage Model

Fig. 3 Evolution of macroscopic viscoplastic strain during the long-

term creep test with 7 MPa creep load
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We adopt the microstress mapping method introduced

by Pouya (2000) for displaying the distribution of

microstresses in grains. Vector ri represents the principal

stresses of each grain. vi is a unit vector indicating the ith

microstress eigenvector and ri is a scalar indicating the ith

microstress eigenvalue. We adopt the rock mechanic sign

convention with tension counted as positive. In a r-z plane,

vector OM
��!

refers to a tensile principal stress (r[ 0, z[ 0)

and vector ON
�!

a compressive principal stress (r\0, z\0).

a measures the angle between the compression axis z and

the direction of principal microstress. The microstress map

in Fig. 4 follows that convention, and shows the sign and

the magnitude of the principal microstresses, as well as the

angle between the compression axis and principal micros-

tresses for each grain orientation studied in the REV. In the

absence of grain breakage (non-damage model), micros-

tress in the grains can exceed 2 MPa. When grain breakage

is accounted for (damage model), grains break as soon as

microstress exceeds 2 MPa, which results in grains that

support zero stress.

We determined the critical viscoplastic deformation for

creep tests under various axial stresses, and established a

relationship between critical viscoplastic strain evpc and

creep load rc at a material point—for both short-term and

long-term creep tests. Figure 5 shows the resulting damage

threshold, which is similar to a yield surface.

Note that the damage criterion obtained with short-term

creep parameters is similar to that obtained with long-term

creep parameters, which confirms that the occurrence of

damage depends on the cumulated viscoplastic strain—as

opposed to the viscoplastic strain rate. In addition, our

modeling approach is in agreement with the work pre-

sented by Kranz and Scholz (1977), according to which the

onset of tertiary creep should not depend on stress (but

rather, on viscoplastic strain).

Since this study focuses on the long-term behavior of

salt cavern subjected to creep load, we used the damage

criterion based on long-term creep datasets for the fol-

lowing simulations. The damage threshold takes a bilinear

form. Linear fitting provides:

evpc ¼ 5� 10�5rc � 2� 10�5 ð2	 rc 	 4:78Þ ð31Þ

evpc ¼ 4� 10�6rc þ 2� 10�4 ðrc [ 4:78Þ ð32Þ

When rc is less than 2 MPa, we assume that microstress

remains below 2 MPa in all grains and, therefore, that grain

breakage does not occur (i.e., the material remains in the

secondary creep regime at the macroscopic scale).

5 Numerical Simulation

5.1 Model Calibration

In a previous study (Zhu et al. 2015), we calibrated

material constants A and n1 against experimental results

from steady-state creep for both short-term and long-term

tests. In the following, we calibrate tertiary creep consti-

tutive parameters. For damage evolution law 1, these are B,

n2, C, n, and u; for damage evolution law 2, these are B, n2,

and ,. At the transition between secondary and tertiary

creep, when DM ¼ 0, we have:

A � exp � Q

RT


 �

re
r0


 �n1

¼ B � exp � Q

RT


 �

re
r0


 �n2

: ð33Þ

In addition, the creep deformation curve should fit exper-

imental data. For consistency, we use the experimental data

obtained from the same salt rock as in the calibration done

in the secondary creep regime (Fuenkajorn and Phueak-

phum 2010). Tests are carried out at room temperature
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Fig. 4 Microstress mapping of all grains at the end of the long-term

creep test with 7 MPa creep load. We adopt the rock mechanics sign

convention with tension counted as positive
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−4

Creep load (MPa)

Damage Threshold (Long Term)
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Numerical Simulation (Long Term)
Numerical Simulation (Short Term)

Fig. 5 Damage criterion determined from micromechanical model

(long term and short term)
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(T ¼ 295K). The activation energy Q for cross-slip in pure

alkali halides is 1:538� 104 J �mol�1 (Senseny et al.

1992). The universal gas constant R is 8.314

J �mol�1 � K�1.

For short-term creep, we obtained A ¼ B and n1 ¼ n2.

After damage initiation, the viscoplastic strain rate kept its

value of 6:89� 10�2 day�1. We used the tertiary creep

strain rate to fit the parameters involved in the damage

evolution laws (Fig. 6).

We also calibrated our model against long-term creep

datasets (Fuenkajorn and Phueakphum 2010). The tertiary

parameters B and n2 were different from the secondary

parameters A and n1 (Fig. 7). The resulting strain rate for

long-term steady-state creep is 5:61� 10�4 day�1.

Although some deviation exists between experimental data

and theoretical model, the trend is well captured by both

damage models.

We verified our calibrated model against independent

experimental datasets. For short-term creep, we used the

creep curve of another type of salt rock (Yang et al. 1999)

(complete creep curve, including secondary and tertiary

creep regimes). The steady-state viscoplastic strain rate

using calibrated parameters is 1:72� 10�2 day�1, same as

the reported experimental result. Damage evolution in salt

rock depends on its microstructure and defects, which

varies greatly among different types of salt rocks. So while

keeping other parameters unchanged, we had to do an

additional calibration of the two damage parameters: C ¼
0:18 and , ¼ 41.

Tables 1 and 2 summarize all calibrated parameters, for

both damage evolution laws. As expected, the values of A

and B for long-term creep are significantly smaller than

those obtained for short-term creep. The value of , is larger

for long-term creep—as the material becomes more duc-

tile. Note that the proposed model is able to capture the

transition between secondary and tertiary creep with an

input of 8 constitutive parameters (Fig. 8).

0 0.01 0.02 0.03 0.04
0

0.002

0.004

0.006

0.008

0.01

T−Tc (day)

Experimental Data
Damage Evolution Law 1
Damage Evolution Law 2

Fig. 6 Calibration of short-term parameters for the tertiary creep

phase. We obtain the experimental data from the short-term creep test

with the creep load 30 MPa (Fuenkajorn and Phueakphum 2010). Tc
and evpc are the time and the critical viscoplastic strain at the onset of

the tertiary phase, respectively

0 2 4 6
0

0.005

0.01

0.015

T−T
c
 (day)

Experimental Data
Damage Evolution Law 1
Damage Evolution Law 2

Fig. 7 Calibration of long-term parameters for the tertiary creep

phase. We obtain the experimental data from the short-term creep test

with the creep load 12.6 MPa (Fuenkajorn and Phueakphum 2010). Tc
and evpc are the time and the critical viscoplastic strain at the onset of

the tertiary phase, respectively

Table 1 Model parameters calibrated for damage evolution law 1

based on the experimental data (Fuenkajorn and Phueakphum 2010)

Short term

A (day�1) n1ð�Þ B (day�1) n2ð�Þ
1:88� 10�4 3.58 1:88� 10�4 3.58

Cð�Þ nð�Þ uð�Þ
0.915 0.7 2.05

Long term

A (day�1) n1ð�Þ B (day�1) n2ð�Þ
1:06� 10�5 4.04 1:00� 10�8 6.9

Cð�Þ nð�Þ uð�Þ
0.0037 0.8 4.92

Table 2 Model parameters calibrated for damage evolution law 2

based on the experimental data (Fuenkajorn and Phueakphum 2010)

Short term

A (day�1) n1ð�Þ B (day�1) n2 ,ð�Þ
1:88� 10�4 3.58 1:88� 10�4 3.58 23

Long term

A (day�1) n1ð�Þ B (day�1) n2 ,ð�Þ
1:06� 10�5 4.04 1:00� 10�8 6.9 115

Micro-Macro Analysis and Phenomenological Modelling of Salt... 2575

123



5.2 Finite Element Simulations

We implemented the phenomenological models into

POROFIS, a Finite Element Method (FEM)-based program

written in Fortran, which was developed to model coupled

flow and deformation in porous fractured media (Pouya

2015). In POROFIS, we update the rock stiffness at each

time increment and, in this way, we account for the damage

effect on the stress field around the cavern.

We simulated the depressurization of an axisymmetric

salt cavern of irregular shape (Fig. 9), which consists of

both convex and concave regions and is similar to that of

the Eminence salt dome site (Warren 2006). The depth and

height of the cavern were 850 and 100 m, respectively. The

salt formation had a unit weight of c ¼ 0:02 MN=m3, a

Young’s modulus of 23 GPa and a Poisson’s ratio of 0.3

(Fuenkajorn and Phueakphum 2010). In the FEM analysis,

we extracted a 500 m by 500 m domain close to the salt

cavern (Fig. 9). To account for the overburden, we applied

a vertical stress of PV ¼ cz ¼ 12 MPa at the top boundary.

To achieve a homogeneous stress field and apply an in situ

level storage pressure, we applied a 12 MPa lateral stress

PH and a 12 MPa initial storage pressure PA in the cavern.

The vertical displacement was fixed at the bottom of the

domain and the radial displacement fixed at the left side of

the domain (axis of symmetry). We carried out the FEM

simulations with both damage evolution laws and simu-

lated a depressurization process under typical CAES con-

ditions, in three stages:

– In stage 1 (steady-state, time-independent), we applied

the initial stresses.

– In stage 2 (transient state, time-dependent), within one

time step, we reduced the cavern pressure from 12 to 8

MPa—which is in the same order of magnitude as the

stresses encountered in CAES (Ibrahim et al. 2008).

– In stage 3 (transient state, time-dependent), we main-

tained a stress of 8 MPa at the cavity wall for a long

time (360 days), to reach a tertiary creep phase.

We simulated the salt cavern depressurization by

adopting a larger domain (1100 m height by 500 m width

for a 100-m-high cavern) to check the boundary effect. At

the end of stage 2, both models provide the same equiva-

lent stress distributions, with less than 3 % difference. The

zones of stress concentration are also similar. Comparison

of other results such as the distribution of various stress

components further indicates that the discrepancy is within

the acceptable range of 3 %. Therefore, in the following

analysis, to save computational time, we used the smaller

domain shown in Fig. 9. Figure 10 shows the equivalent

stress distribution around the cavern for the small domain

case. Note that results are reliable close to the cavern while

relatively larger deviations exist at the far-field.

At the end of the first stage, the damage variable DM is

zero for all elements. The stress distribution is homoge-

neous. The resulting equivalent von Mises stress re is close
to zero all over the domain.

At the end of the second stage, after the depressurization

in the cavern, we obtain extreme stresses around the cav-

ern. The equivalent stress concentrates at the vicinity of the

cavern, with the highest values appearing at specific

0 0.05 0.1 0.15 0.2
0

2

4

6

8 x 10−3

T−Tc (day)

Experimental Data
Damage Evolution Law 1
Damage Evolution Law 2

Fig. 8 Verification of short-term parameters for the tertiary creep

phase. We obtain the experimental data from the short-term creep test

with the creep load 21.5 MPa (Yang et al. 1999). Tc and evpc are the

time and the critical viscoplastic strain at the onset of the tertiary

phase, respectively

Fig. 9 Geometry and boundary conditions of a typical salt cavern

studied in POROFIS. Element W is the tracing element. Maximum

width of the cavern is 40 m at element W
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locations including the roof, the most convex and concave

parts (Fig. 10). This reveals the significant influence of the

irregular shape of the cavern on the stress distribution

surrounding the cavern. Figs. 11 and 12 show the distri-

bution of stress components Srr and Szz around the cavern

after stage 2.

Before the simulation reaches the end of the third stage,

as a result of the stress dependence in the damage evolution

law 1 (Eq. 28), damage increases rapidly in the element

with the highest stress intensity (Fig. 13). Because the

damage is so concentrated, it evolves very fast and does not

propagate in the other elements. Therefore, damage evo-

lution law 2 (Eq. 30) is more appropriate for the long-term

creep test simulation. Using damage evolution law 2, we

obtained the distribution of equivalent stress around the

cavern after 360 days (Figs. 14, 15).

As expected, damage predicted with damage evolution

law 2 reaches its highest value at the roof. We can observe

that in addition to the roof, damage tends to accumulate

faster at the most convex and concave parts. The damage

evolution governed by Eq. 30 is more appropriate and

allows the observation of the progressive damage accu-

mulation in all elements surrounding the cavern. Overall,

the cavern does not undergo severe damage for the par-

ticular geometry and boundary conditions adopted in this

problem. But as a result of viscoplastic deformation, salt

caverns with complex geometries may be subjected to

various types of failure such as rock fall (Djakeun 2014).

Fig. 10 Equivalent stress distribution at the end of stage 2 using a

500 m � 500 m domain

Fig. 11 Radial stress distribution at the end of stage 2

Fig. 12 Vertical stress distribution at the end of stage 2

Fig. 13 Damage distribution at the end of stage 3, using damage

evolution law 1 (Eq. 28). Only roof elements are damaged in this

magnified image
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Irreversible strain evolves around the cavern because of the

creep load induced by internal pressure (Fig. 16). The

distribution of irreversible strain matches with the distri-

bution of damage.

Figure 17 compares the stress distribution at the end of

stage 2 and at the end of stage 3 along path WW 0 (refer to
Fig. 9). Both radial and vertical stress components

decrease during the creep process. This phenomenon cor-

responds to the stress relaxation that follows the initiation

of damage. The distribution of equivalent stress along WW
0 confirms this phenomenon (Fig. 18). The equivalent stress

drops at the cavern wall whereas it remains almost

unchanged in the far-field.

We tracked one element (elementW in Fig. 9) at the cavern

wall. We plotted the evolution of the equivalent stress in

Fig. 19. Even though the pressure applied at the cavernwall is

constant during stage 3, the equivalent stress decreases over

time, as a result of stress relaxation induced by damage.

Because of the bilinear relationship between critical vis-

coplastic strain and the equivalent stress, the evolution of the

critical strain follows the evolution of the equivalent stress

(Fig. 20). The evolution of damage in element W (Fig. 21)

follows that of the viscoplastic equivalent strain, which can

exceed the critical viscoplastic strain in this simulation.

6 Conclusions

We used a self-consistent inclusion-matrix model to

homogenize the viscoplastic deformation of halite poly-

crystals. We introduced a scalar measure of damage in the

model, defined as the number of broken grains by the total

Fig. 14 Equivalent stress distribution at the end of stage 3. We use

the same scale of color bar as in Fig. 10

Fig. 15 Damage distribution at the end of stage 3, using damage

evolution law 2. The damage variable of the roof element reaches

0.02, but we set the maximum value of the color bar to 0.007 to

highlight the distribution of damage around the cavern

Fig. 16 Irreversible equivalent strain at the end of stage 3
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Fig. 17 Radial and vertical stress distribution along path WW 0 at the
end of stages 2 and 3
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number of grains in the Representative Elementary Vol-

ume, which is defined as a polycrystal containing 200

uniformly distributed halite crystal orientations. A grain

(i.e., a crystal of a given representative orientation) is

assumed to break when microscopic stress exceeds halite

tensile strength. We calibrated and verified the model

against published experimental data obtained during creep

tests, which allowed us to predict salt viscoplastic defor-

mation during secondary creep (before grain breakage) and

tertiary creep (after grain breakage), and to show that the

onset of tertiary creep is related to the grain damage. We

used this micro-macro modeling framework to simulate

creep tests under various axial stresses, which gave us the

critical viscoplastic strain at which grain breakage (i.e.,

tertiary creep) is expected to occur. The macroscopic

damage threshold, plotted in the viscoplastic strain/stress

space, is a bilinear function. The comparison of the simu-

lation results for short-term and long-term creep indicate

that the initiation of tertiary creep is a function of stress and

accumulated viscoplastic strain.

To predict stress concentrations and damage around salt

caverns used for Compressed Air energy Storage (CAES),

we implemented a phenomenological model of viscoplastic

deformation with damage into the Finite Element Method

(FEM) program POROFIS. The tertiary creep law is sim-

ilar to the secondary creep law, except that the deformation

rate depends on a phenomenological damage variable. The

transition between secondary and tertiary creep laws was

governed by the bilinear damage threshold that we had

determined by our micro-macro approach. We modeled a

850-m-deep salt cavern of irregular shape, in axis-sym-

metric conditions. We compared two phenomenological

damage evolution laws. Simulations of cavern depressur-

ization with the stress-dependent damage evolution law
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Fig. 18 Equivalent stress distribution along path WW 0 at the end of

stages 2 and 3
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provided concentrated damage at the crown, which led to

numerical challenges. By contrast, the strain-dependent

damage evolution law allowed capturing the formation of a

damaged zone around the cavity.

Although phenomenological deformation laws are

desirable for FEM implementation, the knowledge of the

dominating halite crystal deformation mechanisms is crit-

ical to understand salt rock macroscopic creep rates

observed around caverns and to predict the transition

between secondary and tertiary creep. More work is needed

to link grain breakage to the phenomenological damage

variable used in Continuum Damage Mechanics to predict

the reduction of elastic moduli.
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