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Abstract Steel-lined pressure tunnels and shafts are

constructed to convey water from reservoirs to hydroelec-

tric power plants. They are multilayer structures made of a

steel liner, a cracked backfill concrete layer, a cracked or

loosened near-field rock zone and a sound far-field rock

zone. Designers often assume isotropic behavior of the far-

field rock, considering the most unfavorable rock mass

elastic modulus measured in situ, and a quasi-static internal

water pressure. Such a conventional model is thus

axisymmetrical and has an analytical solution for stresses

and displacements. However, rock masses often have an

anisotropic behavior and such isotropic assumption is

usually conservative in terms of quasi-static maximum

stresses in the steel liner. In this work, the stresses and

displacements in steel-lined pressure tunnels and shafts in

anisotropic rock mass are studied by means of the finite

element method. A quasi-static internal water pressure is

considered. The materials are considered linear elastic, and

tied contact is assumed between the layers. The constitu-

tive models used for the rock mass and the cracked layers

are presented and the practical ranges of variation of the

parameters are discussed. An extensive systematic para-

metric study is performed and stresses and displacements

in the steel liner and in the far-field rock mass are pre-

sented. Finally, correction factors are derived to be inclu-

ded in the axisymmetrical solution which allow a rapid

estimate of the maximum stresses in the steel liners of

pressure tunnels and shafts in anisotropic rock.

Keywords Steel liner � Anisotropy � Transversely
isotropic rock � Pressure tunnels and shafts � Finite element

method � Water pressure

List of symbols

Latin characters

E, E0 Elastic moduli of a transversely

isotropic rock

Ec, Ecrm, Erm, Es Elastic moduli of the backfill

concrete, the near-field rock, the

isotropic far-field rock and the steel

liner, respectively

Eh Elastic modulus in the tangential

direction in polar coordinates

G, G0 Shear moduli of a transversely

isotropic rock

G0
S�V Empirical cross-shear modulus of a

transversely isotropic rock according

to Saint-Venant

Ghr, Ghz Shear moduli in polar coordinates

pc, pc;corr, pcrm, prm Pressures transmitted at radii rc (and its

correction), rcrm and rrm, respectively

pi Quasi-static internal water pressure

rc, rcrm, ri, rrm Internal radii of the backfill concrete,

the near-field rock, the steel liner and

the far-field rock, respectively

tc, tcrm, ts Thicknesses of the backfill concrete,

the near-field rock and the steel liner,

respectively

ucr , u
crm
r , urmr , usr Radial displacements of the backfill

concrete, the near-field rock, the far-

field rock and the steel liner,

respectively
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ûsr, û
s
r;max, û

s
r;min Normalized radial displacements in

the steel liner, and the maximum and

minimum values, respectively

usr;iso, u
s
r;aniso Radial displacements in the steel

liner considering isotropic and

anisotropic rock, respectively

Greek symbols

cxy, cxz, cyz Shear strains in Cartesian coordinates

Dr0 Initial gap between the steel liner and

the backfill concrete

�x, �y, �z Strains in Cartesian coordinates

h Angle in polar coordinates

m, m0 Poisson’s ratios of a transversely

isotropic rock

mc, mcrm, mrm, ms Poisson’s ratios of the backfill

concrete, the near-field rock, the

isotropic far-field rock and the steel

liner, respectively

mhr, mhz Poisson’s ratio in polar coordinates

rs1, r
s
2, r

s
3 Principal stresses in the steel liner

rs1;iso, r
s
1;aniso Major principal stresses in the steel

liner considering isotropic and

anisotropic rocks, respectively

rrm1;iso, r
rm
1;aniso,

rrm3;iso, r
rm
3;aniso,

r̂rm1;iso, r̂
rm
1;aniso

Major and minor principal stresses in

the far-field rock considering isotropic

and anisotropic rocks, respectively,

and their normalized values for the

major principal stresses

r̂s1;max, r̂
s
1 Normalized maximum and major

principal stresses in the steel liner,

respectively

r̂rm1 , r̂rm1;max, r̂
rm
1;min Normalized major principal stresses in

the far-field rock, and their maximum

and minimum values, respectively

r̂rm3 , r̂rm3;max Normalized minor principal stresses in

the far-field rock and their maximum

value, respectively

r̂s1;num, r̂
s
eq;num Normalized numerical major principal

and equivalent stresses in anisotropic

rock

rs1;corr, r
s
eq;corr,

r̂s1;corr, r̂
s
eq;corr,

rrm1;corr, r̂
rm
1;corr

Corrected maximum major principal

and equivalent stresses in the steel

liner and in the far-field rock, and their

normalized values, respectively

rs1;int, r
s
1;ext Major principal stresses at the internal

and external fibers, respectively

rs1;max, r
s
eq;max Maximum major principal and

equivalent stresses in the steel liner

rs2;corr Corrected intermediate principal stress

in the steel liner, corresponding to the

corrected major principal stress

rseq Equivalent stress in the steel liner

rsi , r
c
i , r

crm
i , rrmi Stresses in the steel liner, the backfill

concrete, the near-field rock, the

isotropic far-field rock and the steel

liner, respectively, along the i-

coordinate

rx, ry, rz Stresses in Cartesian coordinates

sxy, sxz, syz Shear stresses in Cartesian coordinates

Correction factors

Xi Dimensionless parameters

ai Free coefficients

Abbreviations

FE Finite element

FEM Finite element method

HSS High-strength steel

1 Introduction

1.1 Recent Developments of High-Head

Hydroelectric Power Plants

The increasing demand for energy and the changes in the

electricity market in the last decades impose more drastic

operational requirements to hydroelectric power plants.

The development of high-strength steels (HSS) together

with high-head Pelton turbines result in the design of

highly loaded pressure tunnels and shafts (Schleiss and

Manso 2012). Therefore in new high-head hydroelectric

projects as well as in recently constructed plants the

internal water pressure can be higher than 150 bar (Benson

1989; Schleiss and Manso 2012). High-head hydropower

plants transient operations result in dynamic pressure sur-

ges called water hammer, causing additional loading in the

system of about 15 to 25 % of the static head (Brekke and

Ripley 1987). In 1998, the Cleuson-Dixence shaft attained

world record conditions with a discharge of 75m3=s and a

dynamic internal water pressure of more than 200 bar

(Ribordy 1998).

Pressure tunnels and shafts of high-head hydropower

plants usually have a major influence on the economic

feasibility of the project (Vigl 2013; Schleiss 2013).

Despite their importance, limited effort has been dedicated

to study the design of liners of pressure tunnels in general,

compared to other types of tunnels (Bobet and Nam 2007).

Larger dimensions, intensified and more frequent dynamic

surges impose high mechanical requirements for the steel

liners and the use of HSS, which are more difficult to weld

than ductile steel grades (Cerjak et al. 2013; Greiner et al.

2013). As a consequence, the need for an appropriate
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design that guarantees safety arises. When the rock con-

ditions are adequate (depending on the rock overburden

and the in situ stress field) the design can consider that a

significant part of the internal water pressure can be

transfered to the concrete–rock system. Thereby, the

thickness of the steel liner can be decreased. This also

facilitates welding when using HSS. The standard design

methods for steel-lined pressure tunnels and shafts are

appropriate and conservative for ductile steel (Brekke and

Ripley 1987) but not when using HSS, in which case new

design conditions arise and new design methods need to be

developed for a wide and safe application in high-head

hydropower plants (Cerjak et al. 2013; Hachem and Sch-

leiss 2009).

1.2 Conventional Design for Steel-Lined Pressure

Tunnels and Shafts in Isotropic Rock

Pressure tunnels and shafts drilled in rock may be steel-

lined where rock confinement is not sufficient or when

leakage into the rock mass is not acceptable (Brekke and

Ripley 1987). Steel linings address these issues by pro-

viding greater stiffness, strength, and impermeability. The

basic design criteria for the steel liners are summarized by

Schleiss (1988) as follows:

1. The working stress and deformation in the steel liner:

(a) Stability of the steel liner under external water

pressure (buckling);

(b) Limiting working stresses in the steel liner under

internal water pressure;

(c) Limiting local deformation of the steel liner

(crack bridging); and

2. The load-bearing capacity of the rock mass.

The second criterion refers to the verification of the load-

sharing assumed for the limiting working stresses in the

steel liner and to ensure the required security against the

rock mass failure. The portion of the internal water pres-

sure taken by the rock should not exceed the in situ stress

or the tensile strength of the rock material (Olsson et al.

1997; Schleiss 1988).

In Europe, the C.E.C.T. (1980) recommendations for the

design of steel-lined pressure tunnels and shafts have been

developed for both the design and the construction. Load

combinations and allowable equivalent stresses in steel lin-

ers according to the Hencky–Von Mises theory in triaxial

state of stresses are discussed in these recommendations.

For the design it is common practice to consider an

isotropic rock behavior, with the most unfavorable elastic

modulus measured in situ. This is usually a conservative

assumption in the quasi-static case. The axisymmetrical

multilayer model used for the design is presented in Sect. 2,

with emphasis on the material characteristics and the

assumptions for each layer. The associated closed-form

solution is discussed in Sect. 3.

1.3 Pressure Tunnels and Shafts in Anisotropic

Rocks

Several authors have studied pressure tunnels and shafts

subjected to internal water pressure considering the rock

mass anisotropy. Experimental studies of linings in aniso-

tropic media and an analytical method of the lining behavior

in elastic orthotropic media by partitioning the lining into

beam elements were published by Éristov (1967a, b). The

latter analytical method is similar to the FEM approach

presented in USACE (1997), as noted by Hachem and

Schleiss (2009). Baslavskii (1973) derived an analytical

solution for the stresses in the lining of a pressure tunnel in a

linear elastic rock which is inhomogeneous within a thick

ring around the liner. This inhomogeneity was characterized

by a slight variation of the shear modulus around the

opening. Postol’skaya (1986) performed a series of para-

metric investigations on the stresses in crack-resistant lin-

ings in different anisotropic media using the FEM. Kumar

and Singh (1990) studied the effect of jointed rocks on

reinforced concrete linings in pressure tunnels by means of

the FEM. Their approach is particularly interesting as they

introduced a reduction factor in the analytical expression for

load-sharing between a lining and an isotropic and homo-

geneous rock mass to include the effect of joints. They used

a continuous constitutive relation according to Singh (1973)

to characterize the jointed rock mass. More recent analytical

developments were carried out to compute stresses and

deformations in unlined and lined tunnels in anisotropic

rock subjected to in situ loadings (e.g., Hefny and Lo 1999;

Bobet 2011; Tran Manh et al. 2014).

Nevertheless, in these studies, the particular case of

steel-lined pressure tunnels and shafts made of four layers

with different properties (Sect. 2) and the assumption of

cracked layers was not considered. To the authors’

knowledge, there are neither analytical, experimental nor

numerical published extensive parametric study charac-

terizing the influence of anisotropic rock behavior on

stresses and deformations in steel-lined pressure tunnels

and shafts under quasi-static internal water pressure.

In this article, the stresses and displacements in steel

liners of pressure tunnels and shafts subjected to quasi-

static internal water pressure loading are studied by means

of the FEM. The constitutive models considered for ani-

sotropic rocks and for the radially cracked layers are pre-

sented in Sects. 4 and 5. The Finite Element (FE) model is

presented in Sect. 6 as well as its validation for isotropic

rock conditions. A systematic parametric study is per-

formed and presented in Sect. 7, with the main focus on the
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results in the steel liner, although results in the far-field

rock are presented for completion. Correction factors to be

included in the closed-form solution in isotropic rock in

order to estimate maximum stresses in steel liners in ani-

sotropic rock are derived in Sect. 8. Finally, the results and

hypothesis are discussed in Sect. 9 and conclusions are

given in Sect. 10.

2 Axisymmetrical Multilayer Model in Isotropic
Rock

The standard model as well as the nomenclature for the

calculation of stresses and displacements in steel-lined

pressure tunnels and shafts in isotropic rock are illustrated

in Fig. 1. It represents an axisymmetrical multilayer system

where five zones are commonly distinguished (see e.g.,

Brekke and Ripley 1987; Schleiss 1988; USACE 1997;

ASCE 2012): (1) the steel liner; (2) an initial gap denoted

Dr0 between the steel liner and the backfill concrete; (3) the
backfill concrete; (4) the near-field rock; and (5) the far-

field rock, of infinite thickness.

2.1 The Steel Liner

The steel liner is regarded as a linear and isotropic material,

of elastic modulus Es and Poisson’s ratio ms. It is imper-

vious, and its internal surface is in contact with the pres-

surized water with pressure pi (Fig. 1).

2.2 The Initial Gap

The initial gap Dr0 is an annular space at the interface

between the steel liner and the backfill concrete (Fig. 1). It

results from the thermal shrinking of the steel as a conse-

quence of the contact with cold water and the non-recov-

erable deformations of the backfill concrete and the rock

system (Brekke and Ripley 1987). Hachem and Schleiss

(2009) summarize several assumptions made by designers

to estimate Dr0.

2.3 The Backfill Concrete

Concrete is a quasi-brittle material with low tensile

strength (1–2MPa). Therefore, for the design of steel-lined

pressure tunnels and shafts, the backfill concrete is regar-

ded as a radially cracked material (as major principal

stresses are tensile stresses in the tangential direction). The

result is that the backfill concrete cannot transmit tangential

stresses. It is regarded as a linear elastic material and its

elastic modulus and Poisson’s ratio are denoted Ec and mc,
respectively.

2.4 The Near-Field Rock

The near-field rock is a loosened (distressed, cracked) zone

of the rock mass as a result of the excavation method (e.g.,

blasting effects), the rock properties, etc. Similarly to the

backfill concrete, the near-field rock is regarded as radially

Fig. 1 Definition sketch of the standard multilayer system for pressure tunnels and shafts embedded in: a elastic, isotropic rock mass

(axisymmetrical case); b transversely isotropic, elastic rock mass; and c transversely isotropic, elastic rock mass with two sets of discontinuities
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cracked, and thus cannot transmit tensile stresses. The

depth tcrm of this loosened zone (Fig. 1) is variable and is

important to be determined because of its influence on the

global deformability of the system. For instance, Benson

(1989) states that excavation in hard rock with tunnel

boring machines induces a low damage on the rock,

resulting in a loosened layer generally restricted to 0.3–

0.5 m depending on tunnel diameter. For excavation with

the drill and blast method, the loosened layer is generally

less than 1 m in good rock, although it can reach 2–3 m in

brittle rock. Another important parameter to be determined

is the elastic modulus Ecrm of the loosened layer. It is in

general lower than the sound rock modulus of elasticity,

e.g., found to be reduced by 40 % by measurements during

the initial filling of a steel-lined pressure tunnel by Bowling

(2010). The characteristics of the loosened rock zones for

several projects can be found for example in Brekke and

Ripley (1987). The Poisson’s ratio for the near-field rock is

denoted mcrm. This near-field zone may be grouted to

increase the stress transfer from the lining to the sound rock

as well as to decrease irreversible deformations. Then, Ecrm

may reach or even exceed the modulus of the far-field rock.

2.5 The Far-Field Rock

The far-field rock is a non-disturbed zone of the rock mass,

assumed as a homogeneous, isotropic and elastic material.

Its elastic modulus and Poisson’s ratio are denoted Erm and

mrm, respectively. The far-field rock layer is normally

considered as infinite for deep tunnels. The estimation of

the mechanical parameters of the rock mass is very

important as they have a significant influence on the global

deformability of the system and its capability to withstand

transmitted load. The deformability of the rock should be

measured in the vicinity of the tunnel with in situ testings

as for example large plate load tests. Furthermore, in situ

stress has to be known in order to verify the capability of

the rock to absorb the transmitted internal water pressure

(Seeber 1985). Deformations in steel-lined pressure tunnels

and shafts can be monitored for a limited time during

operation with instruments installed during the construc-

tion (Bowling 2010; Chène 2013).

3 Closed-Form Solution in Isotropic Rock

3.1 Compatibility Conditions

The displacements in the axisymmetrical multilayer system

(Fig. 1) are derived from the compatibility conditions on

the displacements at the interfaces between the layers

(Hachem and Schleiss 2011). The radial displacement at rc
has to be equal in the steel liner and the backfill concrete,

as between the backfill concrete and the near-field rock and

between the near- and far-field rocks. This is expressed as

follows, taking into account a positive initial gap between

the steel liner and the backfill concrete:

usrðr ¼ rcÞ � Dr0 ¼ ucrðr ¼ rcÞ
with Dr0 � 0;

ucrðr ¼ rcrmÞ ¼ ucrmr ðr ¼ rcrmÞ;
ucrmr ðr ¼ rrmÞ ¼ urmr ðr ¼ rrmÞ:

ð1Þ

The superscript s is related to the steel, c to the backfill

concrete, crm to the near-field rock mass (cracked) and rm

to the far-field rock mass. The subscript r indicates the

radial direction.

The steel liner is modeled according to the thick-walled

cylinder theory (Timoshenko and Goodier 1970). As

already mentioned before it is assumed that tensile stresses

cannot be transmitted in the cracked layers (backfill con-

crete and near-field rock). The far-field rock is modeled as

an infinite homogeneous, elastic and isotropic layer. In the

case of pressure tunnels and shafts, the longitudinal

dimension is very large (out-of-plane in Fig. 1) and the

assumption of plane strain condition is made.

Some conventions are used in this article: (1) pressures

are always positive; (2) tensile stresses are denoted with

positive values and compressive stresses are denoted with

negative values; and (3) the sign convention for the dis-

placements are according to the corresponding coordinate

axes.

Considering the aforementioned assumptions, the radial

displacements at the layers’ interfaces can be expressed

analytically (Hachem and Schleiss 2011):

1. In the steel liner:

usrðrcÞ ¼
1þ ms
Es

rc

r2c � r2i

� ð1� 2msÞðpir2i � pcr
2
c Þ þ ðpi � pcÞr2i

� �
; ð2Þ

2. In the backfill concrete:

ucrðrcrmÞ ¼ ucrðrcÞ þ
ð1� m2cÞpcrc

Ec

ln
rc

rcrm

� �
ð3Þ

with

pcrc ¼ pcrmrcrm; ð4Þ

3. In the near-field rock:

ucrmr ðrrmÞ ¼ ucrmr ðrcrmÞ þ
ð1� m2crmÞpcrmrcrm

Ecrm

ln
rcrm

rrm

� �

ð5Þ

with

pcrmrcrm ¼ prmrrm; ð6Þ
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4. And in the infinite far-field rock:

urmr ðrrmÞ ¼
1þ mrm
Erm

prmrrm: ð7Þ

Combining Eqs. 3–7, and assuming a tied contact between

the steel liner and the backfill concrete (Dr0 ¼ 0), the

pressure pc taken by the concrete–rock system can be

obtained as:

pc ¼

1þ ms
Es

rc

r2c � r2i
ð1� 2msÞpir2i þ pir

2
i

� �

1þ ms
Es

rc

r2c � r2i
ð1� 2msÞr2c þ r2i
� �

þ rc
1

Eeq

; ð8Þ

where

1

Eeq

¼ 1� m2c
Ec

ln
rcrm

rc

� �
þ 1� m2crm

Ecrm

ln
rrm

rcrm

� �
þ 1þ mrm

Erm

:

ð9Þ

3.2 Displacements

Given pc, the radial displacements in the steel liner can be

computed by

usrðrÞ ¼
1þ ms
Es

r

r2c � r2i

� ð1� 2msÞðpir2i � pcr
2
c Þ þ ðpi � pcÞ

r2i r
2
c

r2

� �
: ð10Þ

In the backfill concrete and the near-field rock, the radial

displacements are, respectively

ucrðrÞ ¼ usrðrcÞ þ
ð1� m2cÞpcrc

Ec

ln
rc

r

� 	
ð11Þ

and

ucrmr ðrÞ ¼ ucrðrcrmÞ þ
ð1� m2crmÞpcrmrcrm

Ecrm

ln
rcrm

r

� 	
: ð12Þ

Finally, the radial displacements in the far-field rock are

expressed by:

urmr ðrÞ ¼ 1þ mrm
Erm

r2rm
r
prm: ð13Þ

3.3 Stresses

The tangential, radial and longitudinal stresses in the steel

liners are given, respectively, by

rshðrÞ ¼
1

r2c � r2i
r2i pi � r2cpc �

r2i r
2
c

r2
ðpc � piÞ

� �
; ð14Þ

rsrðrÞ ¼
1

r2c � r2i
r2i pi � r2cpc þ

r2i r
2
c

r2
ðpc � piÞ

� �
; ð15Þ

and

rszðrÞ ¼ ms½rshðrÞ þ rsrðrÞ� ¼
2ms

r2c � r2i
ðr2i pi � r2cpcÞ: ð16Þ

For the backfill concrete, rch ¼ 0 and

rcrðrÞ ¼ � rc

r
pc: ð17Þ

Similarly, for the near-field rock, rcrmh ¼ 0 and

rcrmr ðrÞ ¼ � rcrm

r
pcrm: ð18Þ

Finally, for the far-field rock

rrmh ðrÞ ¼ rrm

r

� 	2

prm ð19Þ

and

rrmr ðrÞ ¼ � rrm

r

� 	2

prm: ð20Þ

4 Constitutive Modeling of Anisotropic Rock

In engineering problems, when the rock is inhomogeneous

or highly discontinuous, the latter is often modeled with a

continuum approach (Jing 2003). A jointed rock mass is

thus regarded as a continuum with equivalent properties

taking into account the effects of the fabric patterns. In the

particular cases of excavations in jointed rock masses, the

continuum approach is justified when the opening diameter

is large compared to the spacing of the discontinuities

(Gerrard 1982; Jing 2003).

Amadei et al. (1987) states that the anisotropic behavior

of rocks is often related to their fabric pattern in the form of

bedding, stratification, layering, schistosity planes, folia-

tion, fissuring or jointing. According to them, this is a

general characteristic for rocks such as foliated metamor-

phic rocks, stratified sedimentary rocks and rocks cut by

one or several regular and closely spaced joint sets. To

model such discontinuities in rocks, one may consider an

elastic transversely isotropic behavior for the constitutive

law (Wittke 1990), i.e., with a plane of isotropy which is

parallel to the foliation for example.

4.1 Stress–Strain Relations in a Transversely

Isotropic Medium

Transverse isotropy is a particular case of orthotropy, i.e.,

with a plane of isotropy. To characterize a transversely

isotropic material, five independent constants denoted E,

E0, m, m0 and G0 (G ¼ E=½2þ 2m�) are required. E and E0 are
the elastic moduli in the plane of isotropy and perpendic-

ular to it, respectively, m and m0 are the Poisson’s
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coefficients which characterize the reduction in the plane of

isotropy for the tension in the same plane and the tension in

a direction normal to it, respectively, and G and G0 are the

shear moduli for the planes parallel and normal to the plane

of isotropy, respectively, (Amadei et al. 1987). G0 is also

called the cross-shear modulus. Assuming that the isotropic

plane is parallel to the xz-coordinates plane, the stress–

strain relation in Cartesian coordinates is expressed as

(Lekhnitskii 1963)

�x

�y

�z

cyz
cxz
cxy

2

666666664

3

777777775

¼

1

E

�m0

E0
�m
E

0 0 0

�m0

E0
1

E0
�m0

E0 0 0 0

�m
E

�m0

E0
1

E
0 0 0

0 0 0
1

G0 0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G0

2

6666666666666666664

3

7777777777777777775

rx
ry
rz
syz
sxz
sxy

2

666666664

3

777777775

: ð21Þ

4.2 Admissible Values for the Elastic Constants

Thermodynamic considerations require that the strain

energy of an elastic material is always positive definite. It

implies conditions on the admissible elastic constants

(Amadei et al. 1987, 1988):

E; E0; G0; G[ 0;

� 1\m\1;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

E

1� m
2

r

\m0\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

E

1� m
2

r

:

ð22Þ

4.3 Ranges of Properties of Transversely Isotropic

Rocks

The elastic properties of transversely isotropic rocks are

usually assessed by in situ and laboratory tests, sometimes

associated with numerical modeling (Hakala et al. 2007).

However, despite the simplicity of the constitutive rela-

tions, the determination of these elastic properties is not

simple due to the lack of standardization for the measure-

ment methods (Gonzaga et al. 2008). The cross-shear

modulus G0 is the most difficult parameter to assess

(Batugin and Nirenburg 1972; Homand et al. 1993).

Amadei et al. (1987) discuss the ranges of properties for

transversely isotropic rocks which can be found in nature.

For most transversely isotropic rocks, the values of the

degree of anisotropy E=E0 and the ratio of the shear moduli

G=G0 are between 1 and 3, the Poisson’s ratio m and m0 are

between 0.15 and 0.35, and the value of m0E=E0 is between
0.1 and 0.7. However, in exceptional cases, E=E0 may

reach values between 4 and 6. Gerrard (1977) gathered a

large bank of published data of anisotropic rocks, including

specific cases of transversely isotropic rocks. He also

indicates, as it can be observed in numerous studies pro-

viding transversely isotropic rock properties, that the

lowest stiffness is usually observed in the direction normal

to the bedding, stratification, layering, foliation, schistosity

planes, etc.

Gercek (2007) discusses in detail the Poisson’s ratios’

values for rocks. He outlines that for most rocks, the Pois-

son’s ratios may be between 0.05 and 0.45. However, for

most rock engineering applications with poor field data,

most probable values between 0.2 and 0.3 are often assumed.

For the estimation of G0, the following empirical relation

first introduced by Saint-Venant is widely considered in the

literature:

G0
S�V ¼ E0

1þ E0=E þ 2m0
: ð23Þ

However, although most of the published data support the

validity of this empirical equation, there are still major

exceptions (Gonzaga et al. 2008) and measured values do

not always correspond to G0
S�V (Hakala et al. 2007).

5 Constitutive Modeling of the Cracked Layers

As assumed in Sect. 2, the backfill concrete and the near-

field rock layers are radially cracked and thus cannot

transfer tensile stresses in the tangential direction. A simple

continuum damage-based approach is considered to model

this effect of radial cracks in the backfill concrete and in

the near-field rock. A scalar damage parameter Di that

measures the effect of damage is introduced (Cauvin and

Testa 1999):

1� Di ¼ Ri; ð24Þ

where the subscript i denotes a material parameter and Ri is

a scalar factor to be applied to a material property. This

approach does not aim at modeling an evolution of damage

depending on the internal pressure. Instead it considers an

already highly radially damaged material for a pseudo-

static analysis. Due to the axisymmetrical nature of the

problem, the stress–strain relations are considered in polar

coordinates. In accordance with the assumption that the

radially cracked materials do not transmit tangential tensile

stresses, the elastic modulus in the tangential direction

should be decreased by a high scalar factor REh :

REh ¼
~Eh

Eh
; ð25Þ
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where ~Eh is the elastic modulus of the damaged material in

the tangential direction. Accordingly, other elastic param-

eters are also affected by the drop of stiffness in the tan-

gential direction, and other scalar factors are defined to

take into account the effect of damage:

RGhr ¼ RGhz ¼
~Ghr

Ghr
¼

~Ghz

Ghr
; ð26Þ

and

Rmhr ¼ Rmhz ¼
~mhr
mhr

¼ ~mhz
mhr

: ð27Þ

The radially damaged materials are regarded as trans-

versely isotropic materials in polar coordinates, i.e., with

the plane of isotropy parallel to the rz-plane. The values of

the degrees of damage Ri are discussed in Sect. 6.

6 Finite Element Model

6.1 Finite Element Method Code

The commercial FEM code ANSYS� MechanicalTM soft-

ware of the product ANSYS�Academic Research, Release

14.0 was chosen for this study (ANSYS Inc 2011). This

choice was taken in order to use the ANSYS Probabilistic

Design System based on the ANSYS Parametric Design

Language. Although no probabilistic design is performed

in this work, the Probabilistic Design System allows to

perform a large number of simulations using User-Defined

Sampling for the parameters of the simulations and to build

a FE model parametrically.

6.2 Model

The 10 variables used in the FE model are presented in

Table 1 and the parameters kept constant are given in

Table 2.

The FE model (see Fig. 2) follows the same assumptions

as the analytical solution in isotropic rock (Sect. 3), and

some additional hypothesis, namely:

1. The opening has a circular cross-section;

2. All the layers, including the backfill concrete and near-

field rock zones have a circular cross-section;

3. 2D plane strain conditions;

4. High tunnel overburden, i.e., the dimensions of the far-

field rock are large enough to be considered as infinite

(equal to rrm þ 30� ri in this study) and thus full load

transmission occurs through the layers;

5. Tied contact between every layer, without initial gap

Dr0; and
6. All materials are linear elastic.

The constitutive laws for the far-field rock and cracked

materials are implemented as described in Sect. 4 (Eq. 21)

and in Sect. 5, respectively. REh , RGhr and RGhz are set equal

to 10�4 which is the largest order of magnitude ensuring

convergence toward the analytical solution for the isotropic

cases. Rmhr and Rmhz are set to zero.

Table 1 Variable parameters of the FE model

Parameter Definition

ri Internal radius of the steel liner

ts Thickness of the steel liner

tcrm Thickness of the near-field rock zone

pi Internal quasi-static water pressure

E Elastic modulus of the far-field rock in the plane of

isotropy

E0 Elastic modulus of the far-field rock in the plane

perpendicular to the plane of isotropy

G0 Cross-shear modulus of the far-field rock

m Poisson’s ratio of the far-field rock related to the plane of

isotropy

m0 Poisson’s ratio of the far-field rock related to the planes

perpendicular to the plane of isotropy

Ecrm Elastic modulus of the near-field rock

Table 2 Constant parameters of

the FE model
Parameter Unit Value

Es GPa 210

ms (–) 0.30

Ec GPa 20

mc (–) 0.20

tc m 0.5

mcrm (–) 0.20

Fig. 2 Example of a mesh of the FE model around the opening for

ri ¼ 1:5m, ts ¼ 0:050m, tc ¼ 0:50m and tcrm ¼ 0:30m
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The elements used are PLANE183, 8-node squares for

the steel liner and the beginning of the far-field rock (for

post-processing convenience) and 6-node triangles for all

the other zones of the model. The FE model, depending on

the geometrical parameters, is meshed with a variable

number of elements to ensure convergence toward the

corresponding analytical solution in the isotropic case. The

steel liner, for instance, is discretized by 400 elements

along 90� in the circumferential direction and 12 elements

in the radial direction. An example of a coarse mesh around

the opening (for presentation purpose) is shown in Fig. 2.

6.3 Nomenclature

The nomenclature used in this article is illustrated in Fig. 3.

The plane of isotropy is along the xz-plane in Cartesian

coordinates. E denotes the elastic moduli along the x- and

z-axis (out-of-plane). E0 denotes the elastic moduli along

the y-axis. The angles of location h ¼ 0 and 90� in polar

coordinates are shown, as well as the locations of the so-

called internal and external fibers of the steel liner.

6.4 Validation in Isotropic Rock

Two thousands isotropic cases were generated and solved

(see the ranges of variation of the parameters in Sect. 8).

The relative error on the maximum major principal stress

rs1;max and the maximum radial displacement usr;max in the

steel liner (both at the internal fiber for r ¼ ri) was com-

puted as

Error ¼ Numerical result� Theoretical result

Theoretical result
� 100%

ð28Þ

where the numerical result was obtained with ANSYS and

the theoretical result from the analytical solution (Sect. 3,

Eqs. 8, 9, 10 and 14). The mean relative error on rs1;max

considering the two thousands simulations is �0:38%,

with a minimum of �0:17% and a maximum of �0:81%.

The mean relative error on usr;max is �0:33%, with a min-

imum of �0:13% and a maximum of �0:78%. These

results are in very good agreement with the analytical

solution. In addition, results along paths in radial directions

were studied for several cases and showed a very good

behavior of the FE solution compared to the analytical

solution.

7 Systematic Parametric Study

7.1 Preliminary Discussion on the Parameters

Similarly to the methodology described in the following

Sect. 7.2, preliminary systematic parametric studies, not

detailed herein, were performed in order to assess the

influence of the variable parameters of the problem. It was

shown that material parameters such as Ecrm, m and m0 cause
minor, if any, variations in the results. Concerning the

geometrical parameters, it was also shown that the results

only depend on the ratio ts=ri, i.e., that for different values

of ts and ri which result in a constant ratio, the results do

not vary. Finally, because of the assumption of elasticity,

the internal pressure pi is not investigated.

7.2 Set of Calculation Cases

Considering the aforementioned observations, a systematic

parametric study was performed in order to assess the

influence of the relevant variable parameters. A so-called

reference set of cases was defined with fixed parameters

presented in Table 3. With respect to the reference set of

cases, three dimensionless parameters were changed,

namely:

1. The near-field rock thickness to steel liner’s internal

radius ratio tcrm=ri;

2. The rock mass elastic modulus to steel elastic modulus

ratio E=Es; and

3. The cross-shear modulus to Saint-Venant empirical

relation ratio G0=G0
S�V .

They are shown in Table 3. For each set of cases (reference

and others), the liner’s thickness to its internal radius ratio

Table 3 Variation of the dimensionless parameters with respect to

the reference set of cases

Parameter Reference value Value 1 Value 2

tcrm=ri 0.33 0.00 0.66

E=Es 0.024 0.071 0.119

G0=G0
S�V 1.00 0.70 1.30

Fig. 3 Nomenclature used for the discussion of the results
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ts=ri and the degree of anisotropy E=E0 were changed as

reported in Table 4. For all the simulations, ri ¼ 2m, m ¼
m0 ¼ 0:20 and Ecrm=E

0 ¼ 0:80.

As a consequence, there were seven sets of simulated

cases (including the reference set), each one containing 77

cases, for a total of 1078 simulated cases in anisotropic

rock. Every simulated case respected the following ther-

modynamic constraint and practical range of variation of

the m0E=E0 term (see Sect. 4):

m0\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

E

1� m
2

r

;

0:1\m0
E

E0 \0:7:

ð29Þ

7.3 Normalized Results

All the results are normalized in the following, i.e., pre-

sented in a dimensionless form by dividing the numerical

solution in transversely isotropic rock by the numerical

solution of the most conservative isotropic case, called the

reference isotropic case herein. For example, considering

an anisotropic rock of parameters E, E0\E, m, m0\m and G0,
the reference isotropic case will be the case in isotropic

rock of parameters E0 and m, i.e., Erm ¼ E0 and mrm ¼ m
correspondingly to Eqs. 8 and 9. Normalized results are

denoted with a caret character, as for instance the major

principal stress in the steel liner:

r̂s1 ¼
rs1;aniso
rs1;iso

ð30Þ

where the subscript aniso refers to the results considering

anisotropic rock behavior, and iso refers to the results in

the corresponding reference isotropic case.

7.4 Stresses and Displacements in the Steel Liner

7.4.1 Maximum Stresses

Maximum normalized major principal stresses in the steel

liner r̂s1;max as a function of the degree of anisotropy E=E0

are shown in Fig. 4. As r̂s1;max always occurs at the internal

fiber of the steel liner in the plane of isotropy (see Sect.

7.4.2), the normalized results are computed as

r̂s1;max ¼
rs1;anisoðr ¼ ri; h ¼ 0Þ

rs1;isoðr ¼ riÞ
: ð31Þ

Figure 4, in quadrant (a), shows the influence of the relative

thickness of the near-field rock compared to the internal

radius tcrm=ri on r̂s1;max. The greater tcrm=ri and the greater

ts=ri, the lower the variation r̂s1;max. The influence of ts=ri

can be explained by the notion of relative stiffness between

the steel liner and the rest of the system. Indeed a stiff liner

will limit the deformations induced by the internal pressure

pi, and will withstand large stresses. The influence of ani-

sotropic behavior of the far-field rock compared to the

reference isotropic case on r̂s1;max is thus less significant if

the relative stiffness of the liner is large compared to the

rest of the system. The role of tcrm=ri can be explained with

similar considerations. An extended near-field rock zone

(large tcrm=ri) decreases the relative stiffness of the con-

crete–rock system compared to the steel liner and results in

the same conclusions. One may also consider an additional

effect due to the hypothesis of a cylindrical anisotropy in

the cracked near-field zone with a constant elastic modulus

in the radial direction. Such an axisymmetrical layer is thus

expected to mitigate the effect of far-field anisotropy in

terms of variations of r̂s1;max in the steel liner.

In the quadrant (b) of Fig. 4, the influence of the relative

stiffness of the far-field rock compared to the stiffness of

the steel E=Es is shown. The greater E=Es, the lower r̂s1;max

compared to the corresponding reference isotropic case.

These results depend on the relative stiffness between the

steel liner and concrete–rock system. The stiffer the far-

field rock (high relative stiffness E=Es) the larger the part

of pi that the latter withstands, and thus considering ani-

sotropic behavior yields a larger change in the estimation

of r̂s1;max in the steel liner. In other words, the lower the

relative stiffness of the steel liner, the more conservative

the consideration of the reference isotropic case in terms of

r̂s1;max.

The third quadrant (c) of Fig. 4 represents the influence

of the deviation of the cross-shear modulus G0 from the

empirical formula of Saint-Venant G0
S�V . The effect of

G0=G0
S�V on r̂s1;max has a different pattern, although the

results may also depend on the concept of relative stiffness.

For low values of E=E0, a low cross-shear modulus G0 (i.e.,
lower than the value of G in an isotropic case), r̂s1;max is

larger than in the corresponding reference isotropic case.

This is due to the fact that the far-field rock is globally

softer than the corresponding reference isotropic case, and

thus induces larger stresses in the steel liner to withstand pi.

This effect is canceled and even reversed for higher E=E0,
where the influence of the latter becomes more significant.

Conversely, a large cross-shear modulus G0 for low degrees

Table 4 Variation range of the variable dimensionless parameters for

each set of cases

Parameter Min. value Max. value Increment

ts=ri 0.008 0.035 0.005 (from 0.010)

E=E0 1.00 3.50 0.25
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of anisotropy will increase the ability of the far-field rock

to attract stresses, and therefore r̂s1;max is lower than in the

corresponding reference isotropic case. This effect is

moderated for larger E=E0.

7.4.2 Major Principal Stresses and Radial Displacements

Normalized major principal stresses in the steel liner at the

internal fiber r̂s1;int and at the external fiber r̂s1;ext as a

function of the angle h with respect to the plane of isotropy

are shown in Fig. 5. For all the tested cases, r̂s1;max always

occurs in the plane of isotropy (h ¼ 0), at the internal fiber

(r ¼ ri). The normalized results at internal and external

fibers are computed with respect to the maximum major

principal stress rs1;max in the steel liner for the reference

isotropic case as:

r̂s1;intðhÞ ¼
rs1;anisoðr ¼ ri; hÞ
rs1;isoðr ¼ riÞ

ð32Þ

and

r̂s1;extðhÞ ¼
rs1;anisoðr ¼ ri þ ts; hÞ

rs1;isoðr ¼ riÞ
: ð33Þ

To illustrate the deformed shapes of the steel liners, the

corresponding normalized radial displacements in the steel

liner ûsr (at the internal fiber) are shown in Fig. 6. The

normalized results are computed with respect to the max-

imum radial displacement of the corresponding reference

isotropic case as

ûsrðhÞ ¼
usr;anisoðr ¼ ri; hÞ
usr;isoðr ¼ riÞ

: ð34Þ

Figure 5a–c shows the influence on r̂s1 of the relative

thickness of the near-field rock compared to the internal

radius tcrm=ri, the relative stiffness of the far-field rock

compared to the stiffness of the steel E=Es, and the devi-

ation of the cross-shear modulus G0 from the empirical

formula of Saint-Venant G0
S�V , respectively. Figure 6a–c

shows the influence of the dimensionless parameters on ûsr,

respectively.
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Fig. 4 Maximum normalized major principal stresses in the steel

liner r̂s1;max as a function of the degree of anisotropy E=E0 for

different: a near-field rock thickness to steel liner’s internal radius

ratio tcrm=ri; b rock mass elastic modulus to steel elastic modulus ratio

E=Es; and c cross-shear modulus to Saint-Venant empirical relation

ratio G0=G0
S�V , and by varying the steel liner’s thickness to the

internal radius ratio ts=ri
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Fig. 5 Normalized major principal stresses in the steel liner r̂s1 at the
internal and external fibers as a function of the angle h with respect to

the plane of isotropy for different: a near-field rock thickness to steel

liner’s internal radius ratio tcrm=ri; b rock mass elastic modulus to

steel elastic modulus ratio E=Es; and c cross-shear modulus to Saint-

Venant empirical relation ratio G0=G0
S�V , and by varying the steel

liner’s thickness to the internal radius ratio ts=ri and the degree of

anisotropy E=E0
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Fig. 6 Normalized radial displacements at the internal fiber of the

steel liner ûsr as a function of the angle h with respect to the plane of

isotropy for different: a near-field rock thickness to steel liner’s

internal radius ratio tcrm=ri; b rock mass elastic modulus to steel

elastic modulus ratio E=Es; and c cross-shear modulus to Saint-

Venant empirical relation ratio G0=G0
S�V , and by varying the steel

liner’s thickness to the internal radius ratio ts=ri and the degree of

anisotropy E=E0
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The same observations on the influence of each

parameter on r̂s1;max as in Fig. 4 can me made. However as

Fig. 5 shows the normalized major principal stresses on the

perimeter of the steel liner both at the internal and external

fibers, one can obtain information about the occurrence of

bending in the steel liner. Some general observations can

be made:

• The maximum major principal stress r̂s1;max always

occurs at the internal fiber at h ¼ 0�, along the

springline (i.e., in the plane of isotropy of the far-field

rock, see Fig. 5);

• The minimum major principal stress always occurs at

the external fiber at h ¼ 90�, along the crown (in the

plane perpendicular to the plane of isotropy of the far-

field rock, see Fig. 5);

• The liner is subjected to bending which tends to

increase the tension at the internal fiber at h ¼ 0� and to
decrease the tension at the internal fiber at h ¼ 90�;

• The larger E=E0, the larger the bending effect.

The aforementioned observations are consistent with the

ellipse-like deformed shapes observed in Fig. 6, as the

maximum radial displacement ûsr;max always occurs at h ¼
90� along the crown (the direction of the lowest modulus of

elasticity E0), and the minimum radial displacement ûsr;min

always occurs at h ¼ 0�, along the springline (the stiffest

direction with the modulus of elasticity E).

Figure 5a shows that an increasing thickness of the near-

field rock zone attenuates the effect of the degree of ani-

sotropy: the larger the extent of the near-field rock, the

smaller the effect on anisotropy in terms of major principal

stresses in the steel liner, and thus the effect of bending.

This is in accordance with the radial displacements ûsr
depicted in Fig. 6a and the observations made from the

quadrant (a) of Fig. 4. This effect, although observable, is

not significant.

One can observe in Fig. 5b that the relative stiffness of

the far-field rock E=Es have no or minor effect on bending.

Only r̂s1;max is significantly affected, as discussed in Sect.

7.4.1. Indeed, Fig. 6b shows minor variations of ûsr for

different values of E=Es.

The influence of G0=G0
S�V depicted in Fig. 5c is also

minor, if any, on the bending effect. This corresponds to

the minor variations in the radial displacements ûsr in

Fig. 6c.

7.5 Stresses in the Far-Field Rock

7.5.1 Maximum Stresses

Maximum normalized major principal stresses in the far-

field rock r̂rm1;max as a function of the degree of anisotropy

E=E0 are shown in Fig. 7, at the interface between the near-

and the far-field rock masses (at r ¼ rrm). Unlike in the

steel liner, r̂rm1;max at r ¼ rrm does not occur at a constant

angle of location (see Sect. 7.5.2). The normalized results

are thus computed as

r̂rm1;max ¼
rrm1;anisoðr ¼ rrm; h ¼ ~hÞ

rrm1;isoðr ¼ rrmÞ
ð35Þ

where ~h is the angle of location of the maximum stress for

each case. From Fig. 7 it can be seen that, contrary to r̂s1;max

in most cases, r̂rm1;max is amplified compared to the reference

isotropic case by considering the influence of the aniso-

tropic rock behavior. The following analysis is comple-

mentary to the observations made on the variations of

r̂s1;max in Sect. 7.4.1.

The quadrant (a) of Fig. 7 illustrates the influence of

tcrm=ri on r̂rm1;max. It is shown that the lower ts=ri and the

larger tcrm=ri, the smaller the increase of r̂rm1;max. The role of

tcrm=ri can be explained referring to the reference isotropic

case. Considering Eqs. 4 and 6 yields prm ¼ ðrc=rrmÞpc. As
a consequence, the larger tcrm (and thus rrm), the smaller the

pressure transmitted to the far-field rock. The variation of

r̂rm1;max compared to the corresponding reference isotropic

case is therefore smaller with a more extended cracked

near-field rock, which mitigates the effect of the far-field

anisotropy.

The influence of E=Es on r̂rm1;max is shown in the quadrant

(b) of Fig. 7. One observes that the larger E=Es and the

smaller ts=ri, the smaller the variation of r̂rm1;max. Similarly

to the analysis of the stresses in the steel liner, this phe-

nomenon can be explained by the notion of relative stiff-

ness. A relatively stiff far-field rock (high E=Es ratio and

low ts=ri ratio) attracts a larger part of the internal pressure

pi and therefore will be less affected by the consideration

anisotropic behavior compared to the reference isotropic

case. Considering the far-field anisotropy introduces a

larger elastic modulus E in the plane of isotropy which

makes the rock withstand a larger part of pi at the expense

of larger r̂rm1;max compared to the reference isotropic case,

and a smaller r̂s1;max consistently to the observations in

Sect. 7.4.1.

The quadrant (c) of Fig. 7 illustrates the influence of

G0=G0
S�V on r̂rm1;max. Some general observations can be

made:

• The larger the deviation of the cross-shear modulus G0

from the empirical formula of Saint-Venant G0
S�V

(either softer or stiffer), the more r̂rm1;max is underesti-

mated considering the reference isotropic case;

• The lower ts=ri, the lower the change of r̂rm1;max (except

for low E=E0 and low G0=G0
S�V , although not
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significant), similarly to the previous observations of

quadrants (a) and (b).

The explanation of the magnitude of the variations of r̂rm1;max

due to high or low G0=G0
S�V ratios would require further

investigations, out of the scope of this article.

7.5.2 Major and Minor Principal Stresses

Normalized major and minor principal stresses in the far-

field rock r̂rm1 and r̂rm3 as a function of the angle h with

respect to the plane of isotropy are shown in Figs. 8 and 9,

respectively, at the interface between the near- and the far-

field rock masses (at r ¼ rrm). Normalized stresses at r ¼
rrm are computed as

r̂rm1 ðhÞ ¼
rrm1;anisoðr ¼ rrm; hÞ
rrm1;isoðr ¼ rrmÞ

ð36Þ

and

r̂rm3 ðhÞ ¼
rrm3;anisoðr ¼ rrm; hÞ
rrm3;isoðr ¼ rrmÞ

: ð37Þ

The plots of r̂rm1 and r̂rm3 versus h give more information on

the stress repartition in the far-field rock. From Fig. 8 it can

be seen that for all cases whereG0 ¼ G0
S�V , r̂

rm
1 is maximum

in the plane of isotropy along the springline and in the

perpendicular direction of lowest stiffness along the crown,

with minor differences. The higher the degree of anisotropy

E=E0, the larger the variation along the perimeter at the

near- and far-field interface compared to the reference

isotropic case. For low values of G0 (see Fig. 8c), r̂rm1;max

occurs at h ¼ 0� and there is a large variation of r̂rm1 along

the perimeter, with the lowest major principal stress in the

shear plane. Indeed, a low cross-shear modulus indicates

that the rock attracts less stresses in this direction. Con-

versely, r̂rm1;max occurs in the shear plane when G0 is larger

thanG0
S�V (see Fig. 8c). This is illustrated in a xy-plane from

r ¼ rrm to 2rrm in Fig. 10 for a specific configuration. The

isotropic case is shown in Fig. 10a, and the anisotropic cases

with different G0=G0
S�V ratios are shown in Fig. 10b–d.

Figure 9 shows the corresponding normalized minor

stresses in the far-field rock r̂rm3 . One can only observe a

minor variation around the perimeter. These results are

given herein for completion.
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Fig. 7 Maximum normalized major principal stresses in the far-field

rock r̂rm1;max as a function of the degree of anisotropy E=E0 for

different: a near-field rock thickness to steel liner’s internal radius

ratio tcrm=ri; b rock mass elastic modulus to steel elastic modulus ratio

E=Es; and c cross-shear modulus to Saint-Venant empirical relation

ratio G0=G0
S�V , and by varying the steel liner’s thickness to the

internal radius ratio ts=ri
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Fig. 8 Normalized major principal stresses in the far-field rock r̂rm1 at

radius rrm as a function of the angle h with respect to the plane of

isotropy for different: a near-field rock thickness to steel liner’s

internal radius ratio tcrm=ri; b rock mass elastic modulus to steel

elastic modulus ratio E=Es; and c cross-shear modulus to Saint-

Venant empirical relation ratio G0=G0
S�V , and by varying the steel

liner’s thickness to the internal radius ratio ts=ri and the degree of

anisotropy E=E0
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Fig. 9 Normalized minor principal stresses in the far-field rock r̂rm3 at

radius rrm as a function of the angle h with respect to the plane of

isotropy for different: a near-field rock thickness to steel liner’s

internal radius ratio tcrm=ri; b rock mass elastic modulus to steel

elastic modulus ratio E=Es; and c cross-shear modulus to Saint-

Venant empirical relation ratio G0=G0
S�V , and by varying the steel

liner’s thickness to the internal radius ratio ts=ri and the degree of

anisotropy E=E0
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8 Estimation of Maximum Stresses in Steel Liners
in Anisotropic Rock by the use of Correction
Factors

The maximum stresses in the steel liners of pressure tun-

nels and shafts have to be assessed according to the design

criteria in practice (Sect. 1.2). When the rock mass has an

anisotropic behavior, there is no straight forward and effi-

cient method for a fast estimation of the stresses. There-

fore, correction factors to be included in the analytical

solution of the isotropic case which allow to compute

maximum stresses in steel liners embedded in anisotropic

rock are derived.

8.1 Database

In order to calibrate and test the validity of the proposed

correction factors, a large database of numerical results for

anisotropic rock behavior was created by using the FE

model described in Sect. 6 and the Probabilistic Design

System in ANSYS. A user-defined-sampling of 2000 cases

was generated accordingly to the ranges introduced in

Table 5 for 9 geometrical and material parameters. The

parameters of each case were randomly sampled with a

uniform distribution of values under the constraints

described by Eq. 29. Every sampled case not included in

the aforementioned set of constraints was re-sampled until

they were satisfied.

8.2 Correction Factors to be Included

in the Analytical Solution in Isotropic Rock

According to Eq. 9, the three terms in the expression for

E�1
eq refer, respectively, to the participation of the cracked

backfill concrete, the cracked near-field rock and the far-

field rock to withstand the internal pressure pi. As a con-

sequence, the expression for pc (Eq. 8) physically repre-

sents the ratio of the global stiffness of the system divided
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Fig. 10 Normalized major principal stresses in the far-field rock shown up to 2rrm: a r̂1 in the isotropic case; r̂1 in the anisotropic case for cross-
shear moduli ratios of b G0=G0

S�V ¼ 0:7; c G0=G0
S�V ¼ 1:0; and d G0=G0

S�V ¼ 1:3
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by the stiffness of the steel liner. Once pc is known, the

maximum stresses in the liner can be calculated with

Eq. 14 for r ¼ ri.

From a physical insight, correction factors that multiply

the term of the far-field rock participation in Eq. 9 were

chosen in order to take into account the influence of the

anisotropic behavior of the rock mass. The correction

factors have to be physically correct, i.e., equal to unity in

the isotropic cases, and were defined from dimensionless

material parameters of the far-field rock mass. The so-

called corrected E�1
eq was introduced as

E�1
eq;corr ¼

1� m2c
Ec

ln
rcrm

rc

� �
þ 1� m2crm

Ecrm

ln
rrm

rcrm

� �

þ
Y3

i¼1

Xai
i � 1þ m

E0 ;

ð38Þ

where the Xai
i are the correction factors; the Xi are the

dimensionless parameters X1 ¼ E=E0, X2 ¼ G=G0, and

X3 ¼ ð1þ mÞ=ð1þ m0Þ; and the ai are free coefficients to be

optimized. In this aim, the objective function was to min-

imize the fitness measure as

â ¼ argmin
a

MSE r̂s1;num; r̂
s
1;corrðX; aÞ

h i
; ð39Þ

where MSE is the mean squared error; â ¼ fa1; a2; a3g is

the argument of the minimum; X ¼ fX1;X2;X3g; r̂s1;num is

computed with the numerical maximum major principal

stresses in the steel liner in the isotropic and anisotropic

cases; and r̂s1;corr is computed with the normalized analyt-

ical solution including the corrected expression for E�1
eq

(Eq. 38).

The â leading to the minimum mean squared error was

determined using genetic algorithm. From the database, a

training group containing 90 % of the results was randomly

sampled, and the rest of the samples were contained in a

test group. The generation of the training and test groups

and the optimization of â was repeated 100 times, and the

mean values of the ai were computed as

â ¼ f�0:65;þ0:50;�0:56g; ð40Þ

with standard deviations equal to 0.03, 0.04 and 0.07,

respectively.

The regression between the normalized corrected max-

imum major principal stresses r̂s1;corr and the normalized

numerical maximum major principal stresses r̂s1;num is

plotted in Fig. 11a for one example of test group. A

coefficient of determination R2 ¼ 0:994 and a root mean

squared error RMSE = 0.005 were obtained.

When designing steel liners of pressure tunnels and

shafts, the working stresses criterion usually suggests

allowable equivalent stresses in steel liners according to the

Hencky–Von Mises theory in triaxial state of stresses,

generally expressed as

rseq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðrs1 � rs2Þ

2 þ 1

2
ðrs2 � rs3Þ

2 þ 1

2
ðrs3 � rs1Þ

2

r

:

ð41Þ

A corrected maximum equivalent stress in the steel liner

considering anisotropy, denoted rseq;corr, would thus be

useful for designers. It can be obtained from Eq. 41, by

substituting:

• rs1 by the corrected value rs1;corr (Eq. 14, together with

Eqs. 8 and 38);

• rs3 by its analytical value in the reference isotropic rock

(Eq. 15, together with Eqs. 8 and 9); and

• rs2 by the corrected value denoted r
s
2;corr computed from

Eq. 16 with rs1;corr and rs3.

The regression between the normalized corrected maxi-

mum equivalent stresses r̂seq;corr and the normalized

numerical maximum equivalent stresses r̂seq;num is plotted

in Fig. 11b for the same test group than in Fig. 11a, and

shows the same accuracy.

The applicability of these correction factors (Eq. 40) to

estimate the normalized maximum major principal stresses

in the far-field rock was investigated. The regression

between the normalized corrected maximum major prin-

cipal stresses r̂rm1;corr (computed with Eqs. 19 and 38) and

the normalized numerical maximum major principal

stresses r̂rm1;num is plotted in Fig. 11d for all the 2000 cases.

It can be observed that the correction factors are only

applicable to estimate the maximum major principal

stresses in the cases where G0=G0
S�V ¼ 1, plotted in

Fig. 11c which shows a very good accuracy.

Table 5 Variation range of the parameters for the random user-de-

fined sampling

Parameter Unit Min. value Max. value

ri m 1.00 3.50

ts m 0.010 0.080

tcrm=ri (–) 0.00 0.66

E GPa 5.0 25.0

E=E0 (–) 1.1 3.5

G0=G0
S�V (–) 0.70 1.30

m (–) 0.10 0.35

m=m0 (–) 1.0 3.5

Ecrm=E
0 (–) 0.60 1.00
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8.3 Synthesis

The conceptual formulas for the corrected maximum major

principal stresses in the steel liner and in the far-field rock

and the corrected maximum equivalent stresses in the steel

liner with correction factors are summarized in Table 6.

The proposed approach is therefore very efficient as it

allows to assess maximum stresses in steel liners in ani-

sotropic rock by introducing only three dimensionless

correction factors multiplying the term related to the far-

field rock participation in the analytical solution for iso-

tropic rock. It is independent of the variable geometrical

parameters and of the relative stiffness between the steel

liner and the rest of the system. This approach, however, is

not capable of representing the behavior of far-field rocks

with a cross-shear modulus G0 deviating from the empirical

relation of Saint-Venant in terms of maximum major

principal stresses in the far-field rock.
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Fig. 11 Regression plots of the normalized corrected maximum

stresses r̂corr vs. the normalized numerical maximum stresses r̂num
with a ¼ f�0:65;þ0:50;�0:56g. The maximum a major principal

r̂s1;corr and b equivalent stresses r̂seq;corr in the steel liner are

represented for a test group of 10 % of the 2000 cases. The maximum

major principal stresses r̂rm1;corr in the far-field rock are represented in

c for all the 155 generated cases in which G0=G0
S�V ¼ 1 and in d for

all the 2000 cases
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8.4 Examples of Application

In order to illustrate the applicability of the conceptual

formulas, two examples are treated below.

8.4.1 Example 1

In this example, a transversely isotropic far-field rock with

the elastic properties presented by Tonon and Amadei

(2003) is considered, with E ¼ 7:80 GPa, E0 ¼ 2:40 GPa,

G0 ¼ 0:83 GPa, m ¼ 0:22, m0 ¼ 0:07 and G=G0 ¼ 3:85. The

degree of anisotropy is E=E0 ¼ 3:25. A steel-lined pressure

tunnel is considered in this rock with the following char-

acteristics: ri ¼ 1:5m, ts ¼ 0:030m, tcrm ¼ 0:5m,

pi ¼ 100 bar, Ecrm ¼ 2 GPa. Other steel, backfill concrete

and near-field rock characteristics are according to Table 2.

For comparison purposes, two other far-field rocks are

considered: (1) the reference isotropic case with

E ¼ 2:40 GPa, G ¼ 0:98 GPa and m ¼ 0:22 correspond-

ingly to the conventions of this article; and (2) the rock

mass presented by Tonon and Amadei (2003) by substi-

tuting G0 by G0
S�V ¼ 1:66 GPa.

The numerical results and the results obtained with the

conceptual formulas are presented in Table 7. One can

observe that the conceptual formulas estimate the maxi-

mum major principal stresses in the steel liner rs1;corr and in

the far-field rock rrm1;corr with a high accuracy for the ani-

sotropic rock with G0 ¼ G0
S�V . In the case where the rock is

exactly the one presented by Tonon and Amadei (2003)

however, the maximum stress in the far-field rock rrm1;max is

underestimated by 27.5 % by the conceptual formula for

rrm1;corr. In this case G0 deviates from G0
S�V by 50 %, thus

this result is consistent with the analysis presented in Sect.

8.2. The maximum stresses in the steel liner rs1;max are

estimated with accuracy for every case (error\1%). Since

Table 6 Synthesis of the conceptual formulas derived to obtain some maximum stresses in steel-lined of pressure tunnels and shafts in

anisotropic rock

Corrected value Formula Application ranges

Maximum major principal stress

in the steel liner rs1;max

rs1;corr ¼
1

r2c � r2i
r2i pi � r2c pc;corr � r2c ðpc;corr � piÞ
� � Table 5 constrained

by Eq. 29

pc;corr ¼

1þ ms
Es

rc

r2c � r2i
ð1� 2msÞpir2i þ pir

2
i

� �

1þ ms
Es

rc

r2c � r2i
ð1� 2msÞr2c þ r2i
� �

þ rcE
�1
eq;corr

E�1
eq;corr ¼

1� m2c
Ec

ln
rcrm

rc

� �
þ 1� m2crm

Ecrm

ln
rrm

rcrm

� �

þ E

E0

� ��0:65
G

G0

� �0:50
1þ m
1þ m0

� ��0:56
" #

1þ m
E0

Maximum equivalent stress

in the steel liner rseq;max
rseq;corr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðrs1;corr � rs2;corrÞ

2 þ 1

2
ðrs2;corr � rs3Þ

2 þ 1

2
ðrs3 � rs1;corrÞ

2

r
Table 5 constrained

by Eq. 29

rs2;corr ¼ msðrs1;corr þ rs3Þ
rs3 is obtained from the analytical solution in the

reference isotropic rock

(Eq. 15, together with Eqs. 8 and 9)

Maximum major principal stress

in the far-field rock rrm1;max

rrm1;corr ¼
rc

rrm
pc;corr

Table 5 constrained

by Eq. 29 and restricted

to G0=G0
S�V ¼ 1

Table 7 Maximum major principal stresses in the steel liner and in the far-field rock for the cases of example 1

Cases rs1;max (MPa)

(ANSYS)

rs1;corr (MPa)

(Table 6)

Error

(%)

rrm1;max (MPa)

(ANSYS)

rrm1;corr (MPa)

(Table 6)

Error

(%)

Reference isotropic case 373 374 \1 1.51 1.53 1.4

Anisotropic rock from Tonon

and Amadei (2003)

364 361 \1 2.34 1.69 27.5

Anisotropic rock from Tonon

and Amadei (2003) with G0 ¼ G0
S�V

334 332 \1 2.00 2.03 1.1
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the cross-shear modulus is relatively low compared to the

empirical relation of Saint-Venant in the rock described by

Tonon and Amadei (2003), considering anisotropy does not

affect significantly the maximum major principal stress in

the steel liner rs1;max (lowered by 3 %). Nevertheless, in the

case with G0 ¼ G0
S�V , r

s
1;max is 10 % lower than in the

reference isotropic case.

8.4.2 Example 2

In this example a transversely isotropic far-field rock with

the elastic properties presented by Amadei (1996) is con-

sidered, with E ¼ 29:30 GPa, E0 ¼ 23:90 GPa,

G0 ¼ 6:20 GPa, m ¼ 0:18, m0 ¼ 0:13 and G=G0 ¼ 2. The

degree of anisotropy is E=E0 ¼ 1:23. A steel-lined pressure

tunnel is considered in this rock with the following char-

acteristics: ri ¼ 2:5m, ts ¼ 0:020m, tcrm ¼ 0:7m,

pi ¼ 150 bar, Ecrm ¼ 20 GPa. Other steel, backfill concrete

and near-field rock characteristics are according to Table 2.

Similarly to example 1, two other far-field rocks are

considered: (1) the reference isotropic case with

E ¼ 23:90 GPa, G ¼ 10:13 GPa and m ¼ 0:18; and (2) the

rock mass presented by Amadei (1996) by substituting G0

by G0
S�V ¼ 11:51 GPa.

The numerical results and the results obtained with the

conceptual formulas are presented in Table 8. In the case

where G0 ¼ G0
S�V , the maximum stresses in the steel liner

rs1;max and in the far-field rock rrm1;max are estimated with a

high accuracy. In the case where the rock is exactly the one

reported by Amadei (1996) with G0 53 % softer than G0
S�V ,

the maximum major principal stress in the far-field rock

rrm1;corr is underestimated by 10.9 %. Since the degree of

anisotropy is low (E=E0 ¼ 1:23) and the cross-shear mod-

ulus is relatively soft, the maximum major principal stress

in the steel liner rs1;max is underestimated (by 14 %) in the

reference isotropic case, which corresponds to the trend

presented in Sect. 7.4.1. In the case where G0 ¼ G0
S�V , and

despite the low degree of anisotropy, the maximum major

principal stress in the steel liner rs1;max is significantly lower

(by 8 %) than in the isotropic case as the relative stiffness

of the rock is high. This is in accordance with the trend

observed in Sect. 7.4.1.

9 Discussion

The approach presented in this article includes a series of

assumptions (see Sect. 6.2), that are discussed below.

1. The assumptions concerning the extent, shape and the

characteristics of the loosened near-field rock zone (as

a result of the excavation process) may be questionable

in certain cases. In the isotropic case, the near-field

rock zone is commonly assumed as circular, radially

cracked with no tension transmitted in the tangential

direction (see e.g., Schleiss 1988; USACE 1997;

Sharma et al. 1997; Hachem and Schleiss 2009,

2011; ASCE 2012), which was also considered herein

for transversely isotropic rock. This was done consid-

ering a constant radial elastic modulus based on the

weakest direction of the transversely isotropic rock.

However, the damage may not be axisymmetrical

considering the different characteristics of the far-field

rock in the two principal directions of anisotropy, as

the shape may not be circular. In addition, even if the

damage would be radial, one may expect a varying

stiffness with orientation, and a less conservative

assumption on the tangential stiffness. Some discus-

sions are enumerated below.

(a) The latter point was for example treated analyt-

ically by Bobet (2009) in isotropic rock. The

damaged zone was modeled with cylindrical

transverse isotropy, as in this article, but with a

tangential modulus of elasticity not equivalent to

zero. It seems reasonable to state that consider-

ing a constant significant value for the damaged

tangential elastic modulus in this work would

probably mitigate the effect of anisotropy, as it

was discussed in Sect. 7.4.1. The higher the

tangential stiffness, the higher this effect would

be expected.

(b) Should a more complex constitutive law for the

damaged near-field rock (e.g., non-radial cracks,

varying stiffness) be considered, when the far-

field is regarded as transversely isotropic, such a

consideration would considerably increase the

complexity of its definition. Cylindrical

Table 8 Maximum major principal stresses in the steel liner and in the far-field rock for the cases of example 2

Cases rs1;max (MPa)

(ANSYS)

rs1;corr (MPa)

(Table 6)

Error

(%)

rrm1;max (MPa)

(ANSYS)

rrm1;corr (MPa)

(Table 6)

Error

(%)

Reference isotropic case 204 204 \1 8.87 8.99 1.3

Anisotropic rock from Amadei (1996) 232 232 \1 9.92 8.84 10.9

Anisotropic rock from Amadei (1996)

with G0 ¼ G0
S�V

187 189 \1 8.97 9.07 1.1
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transverse isotropy defined via 5 constants could

no longer be used, and 10 constants would be

necessary to define such an anisotropic material

in 2D (ANSYS Inc 2011), thus introducing new

parameters to be varied independently.

(c) The qualitative probable influence of these

parameters can be discussed a priori. As men-

tioned previously, a significant damaged tan-

gential modulus of elasticity should diminish the

effect of anisotropy in terms of maximum major

principal stresses in the steel liner. Conversely,

varying radial stiffness in the near-field rock

correspondingly to the principal directions of the

far-field rock (within the hypothesis of radial

cracks) would increase the effect of anisotropy

on the steel liner. However, in the case of

grouted near-field rock zone, the properties of

the rock tend to be homogenized, and the

aforementioned effects would be a less signif-

icant limitation.

(d) It also seems reasonable to state that loosened

near-field rock shapes with little variations from

the circular shape may not induce significant

effect on the results. However, discussing a

priori the effects of a highly non circular

loosened near-field rock zone due to the forma-

tion of plastic deformations during excavation

may be controversial, and would require further

investigation, e.g., nonlinear numerical analysis.

Such considerations would have the serious

drawbacks to make the systematic analysis very

complicated. Nevertheless, such extensive plas-

tic zone has to be avoided with appropriated

primary support measures during excavation.

2. The assumption of linear elasticity of the far-field rock

also limits theoretically the applicability of the

proposed approach. It requires that there are no plastic

deformations further than the loosened near-field rock

zone due to the excavation method. This does not have

a strong limitation for good-quality rocks, i.e., if

adequate primary support measures are implemented

during excavation in weaker regions. Also, maximum

stresses due to the internal water pressure in the far-

field rock shall not exceed the in situ stresses

surrounding the tunnel not to put the rock into tension.

This requirement refers to the design criteria (2) in

Sect. 1.2 regarding a minimum required overburden for

steel-lined pressure shafts (Schleiss 1988). In most

cases, the tangential stresses around the opening are

compressive due to natural in situ stresses in the rock

mass. At large depth, this requirement is therefore not

a serious limitation.

3. To take into the account the issues enumerated so far,

but rarely relevant in practical design cases, it would

be required to take into account the stress history due

to the tunnel excavation, for instance by means of

nonlinear FE analysis.

4. No initial gap between the steel liner and the backfill

concrete was considered in this study. However, before

such a gap, if any, is closed, the steel liner takes solely

a part of the internal pressure. Considering a linear

elastic behavior of the materials and that the tangential

displacements in the liner are very small, the proposed

solution could be superimposed to the initial elastic

stresses due to the presence of such a gap as a first

approach.

5. The proposed method also relies on an accurate

knowledge of the transversely isotropic rock mass

properties, i.e., E, E0, G0, m, and m0. However, as

outlined by Jing and Hudson (2002), in rock mechanics

and engineering design, having insufficient data is a

way of life, rather than a local difficulty. This lack of

information may be due to economical factors (costs of

measurements campaigns), lack of standard procedures

for the estimation of the rock mass parameters, etc.

When facing such issues, uncertainties on the rock

mass parameters should be assessed and a sensibility

analysis should be performed on the proposed concep-

tual formulas. In practice, large security factors are

applied for the working stresses in the liner (see e.g.,

Schleiss 1988). Despite these uncertainties, in the case

of a steel-lined pressure tunnel and shaft embedded in

anisotropic rock, it may worth using a model closer to

reality than the axisymmetrical assumption, which can

in certain case either overestimate the stresses in the

steel liner (which is the main element) and underes-

timate the stresses in the rock mass (whose participa-

tion is ensured by enough overburden).

10 Summary and Conclusions

For the design of steel-lined pressure tunnels and shafts,

anisotropic rock behavior is rarely taken into account.

Designers rather use a conservative model considering an

unfavorable isotropic rock behavior in terms of maximum

stresses in the steel liner. As a consequence, the mechanical

behavior of the steel–concrete–rock system in anisotropic

rock is still not fully understood. In this article, thebehavior of

steel-lined pressure tunnels and shafts in transversely iso-

tropic rock was systematically studied by means of the FEM.

An extensive systematic parametric study was per-

formed over a wide range of geometrical and material

parameters, and significant results in terms of normalized
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stresses and displacements were investigated in the steel

liner and the far-field rock mass. It was shown that the

results mainly depend on the relative stiffness between the

steel liner and the concrete–rock system. In the steel liner,

considering the reference isotropic case generally induces

an overestimation of the maximum major principal stres-

ses, except for low degrees of anisotropy when the cross-

shear modulus is weaker than the empirical relation of

Saint-Venant. It was also shown that in anisotropic rock,

the steel liner is subjected to bending. In the far-field rock

mass, it was observed that the maximum major principal

stresses are underestimated compared to the isotropic

solution, as a part of the stiffness is not taken into account.

Correction factors to be included in the analytical

solution for isotropic rock conditions were derived. This

conceptual approach allows a simple and fast estimation of

the maximum major principal stresses and the maximum

equivalent stresses in the steel liner by a correction of the

isotropic analytical solution with a high accuracy if the

transversely isotropic rock parameters are known. These

correction factors are also applicable to estimate the

maximum major principal stresses in the far-field rock

when the cross-shear modulus is equivalent to the empiri-

cal relation of Saint-Venant.

Although the assumption of linear elasticity and the

hypothesis on the extent and the properties of the loosened

near-field rock limit the applicability of the results pre-

sented in this article for certain conditions in practice, it has

the strong advantage to propose a rational framework to

carry out a systematic parametric analysis with the relevant

parameters.

Further investigation is necessary to study the effects of

parameters such as the shape and properties of the loosened

near-field rock or nonlinear behaviors.

When using high-strength steels which are subjected to

fatigue and brittle failure, the static and dynamic

mechanical behavior of steel-lined pressure tunnels and

shafts needs to be further understood. This work is a first

contribution to this problematic, where new and innovative

design guidelines are claimed by engineers in practice.
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